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Abstract

In this paper, a predator-prey model with Holling type-I functional response and multi

state impulsive feedback control is established, where the intensity of pesticide

spraying and the release amount of natural enemies are linearly dependent on the

given threshold in the second impulse. Firstly, the existence of order-1 periodic

solution of the system is investigated by successor functions and Bendixson theorem

of impulsive differential equations, then the stability of periodic solutions is proved by

the analogue of the Poincaré criterion. Furthermore, in order to reduce the actual

total cost and obtain the best economic benefit, the optimal economic threshold is

obtained, which provides the optimal strategy for the practical application. Finally,

numerical simulations for specific examples are carried out to illustrate the feasibility

of the above conclusions.

MSC: 34C25; 34D20; 92B05

Keywords: semi-continuous dynamic systems; order-1 periodic solution; successor

functions; stability; optimization

1 Introduction

Differential equation is the most basic mathematical theory and method to study the

movement, evolution and change of things, objects and phenomena in natural sciences

and social sciences. Many principles and laws in the fields of biology, chemistry, physics,

aerospace, medicine, economics and finance can all be described by appropriate differ-

ential equations [–]. In [], Meng et al. analyzed the dynamic behavior of a stochastic

biological system; in [], Bai et al. investigated the dynamic behavior of the boundary value

problem fractional nonlinear system, and in the research articles [, ], Wang et al. paid

attention to the control problems of nonlinear systems. Moreover, in the fields of natural

sciences and engineering technology partial differential equations have been extensively

used (see, for examples, [–]).

In recent decades, scholars have paid more and more attention to the impulsive differ-

ential equations which have played an important role in the field of life sciences [, ]. In

addition, by modeling impulsive differential equations, external effects of various possi-

ble changes in the population can be included in the proposed model. The impulse of the

classical impulsive differential equation can be divided into two types: fixed time impulse
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and state impulse. In particular, the former type has been developed and widely used in

various fields [–]. Ballinger and Liu [] proposed a population dynamics model with

fixed time impulse and discussed the persistence of the model. Liu et al. [] established

a predator-prey model considering Holling type-I functional response with time impulse,

and the authors completely established the stability properties of the relevant equilibria

of the model. A pest management control model with continuous time impulse was pre-

sented and the global asymptotic stability properties of its positive equilibriumwere stud-

ied by Zhang et al. [].

In recent years, it can be seen that many scholars are interested in application in mathe-

matical biology; many practical problems, such as injecting insulin, vaccination and spray-

ing pesticides, need to be treated including state feedback control strategy [–]. The

state feedback control is a threshold strategy which is used in impulsive semi-dynamic

systems. The impulse starts to be effective when the abundance of a particular species

reaches a certain threshold. The threshold strategy is widely used in the fields of ecology,

life science and medicine. Therefore, it is crucial to describe and study impulsive differ-

ential equations; for instance, authors in the research articles [–] have formulated

mathematical models in pest management to study the dynamic behavior. It is well known

that in order to prevent the destruction by pests on some crops, it is required to spray pes-

ticides in a timely manner; as a result, it could quickly destroy the important proportion

of pest population also. In order to minimize the damage of using pesticides on the crops,

cultivators adopt the biological control method to control or eradicate the pest from the

crops. In this case, cultivators release natural enemies, the integrated impulse control to be

implemented when a given threshold is reached. Integrated pest management is the most

effective way tominimize the use of pesticides and to eliminate pests under the premise of

ensuring food safety and maintaining ecological balance. In [], Cheng et al. established

a pest control model with Holling type-I functional response and studied its existence and

attractiveness of order- periodic solution. In [], Tang et al. presented a semi-dynamic

predator-prey model with Holling type-II functional response and studied the global sta-

bility of boundary order- limit cycle. In [], Zhang et al. considered a pest management

model with nonlinear state impulsive control and Holling type-II functional response and

focused their attention on geometric analysis. For further information, the readers are

directed to read the references [–].

It is worthy to note that most scholars study the single state feedback control on impul-

sive differential equation, that is, they consider only the case when the density of popula-

tion reaches a given threshold. We can take preventive measures, but this method is not

consistent with the facts. To avoid the economic and practical issues, it is required to adopt

different controllingmethods under different thresholds. It can be considered under three

cases. Firstly, when the density of pest population x(t) reaches the slightly harmful thresh-

old h, releasing the natural enemy population y(t) may help avoid the damage. Secondly,

when the density of pest population x(t) is at the economic threshold h ( < h < h), only

releasing the natural enemy cannot reduce the damage. Therefore, certain pesticide has to

be sprayed and the natural enemy released at the same time. Finally, if control measures

are taken at the economic injury threshold h (h > h), high intensity pesticide will kill

a large number of natural enemies, pollute the environment and cause serious economic

losses. It can be seen that the pest controlling method of multi state pulse has important

research value in practical application [, ].
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The claim that the impulsive differential equations have been well developed can be ac-

cepted; however, more improvements are needed to cope with the real world applications.

For instance, we should not only consider the stability properties of the system under a

given time or threshold in the real life, but also consider how to minimize the loss caused

on crops by the pests. Therefore, the optimization problem incorporating both the ef-

fects of biological control and chemical control has an important theoretical value as well

as practical significance. However, it can be seen from the literature that the optimiza-

tion problem has not been extensively studied. Tang et al. [] established an integrated

pest management model and obtained the optimal pulse time. In [], Liu et al. studied a

stochastic model with delays and the optimal harvesting effort, and the authors obtained

an expression for the maximum expected value of sustainable yield. Sun et al. [, ]

investigated dynamics analysis and obtained the optimal pest control level of a pest man-

agement predator-prey system. However, in the above articles, although authors have ob-

tained excellent results, they have considered the optimization problems neglecting multi

state impulsive effect on the predator-prey system.

Based on the aboveworks and the analysis, the state-dependent impulsive predator-prey

system with Holling type-I functional response can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = ax(t) – bx(t)y(t),

y′(t) = –cy(t) + rbx(t)y(t),

⎫
⎬
⎭ x ≤ x,

x′(t) = ax(t) – bxy(t),

y′(t) = –cy(t) + rbxy(t),

⎫
⎬
⎭ x > x,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

x �= h or x = h, y > y∗,

�x(t) = ,

�y(t) = q,

⎫
⎬
⎭ x = h, y≤ y∗,

�x(t) = –α(x)x(t),

�y(t) = –β(x)y(t) + δ(x),

⎫
⎬
⎭ x = h,

()

where the density of the pest population and the natural enemy population are expressed

by x(t) and y(t), respectively. The intrinsic growth rate of pest, the predation coefficient

and the death rate of natural enemy are denoted by a, b and c, respectively.  < r <  means

the conversion coefficient, q is the release amount of natural enemy at time th , while δ is

the release amount of natural enemy at time th . a,b, r, c,d,q,h,h are all positive con-

stants, y∗ = a
b
, α,β represent the proportion of pests and natural enemies which are killed

by pesticides, respectively. In this paper, α(x),β(x) and δ(x) are continuous functions de-

fined on [h,h], which satisfies δ(h) = δmax and δ(h) = δmin, α(h) =  and α(h) = αmax,

β(h) =  and β(h) = βmax. α(x),β(x) and δ(x) are expressed as follows using the same

notation as in [], i.e.,

⎧
⎪⎪⎨
⎪⎪⎩

α(x) = αmax
x–h
h–h

,

β(x) = βmax
x–h
h–h

,

δ(x) = δmax – (δmax – δmin)
x–h
h–h

.

()

The main organization of the paper is as follows. Some important concepts and lem-

mas are presented in Section . In Section , the existence of order- periodic solution
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of system () is discussed by the successor function method and Bendixson theorem of

impulsive differential equations. In Section , sufficient conditions for the stability of pe-

riodic solutions of system () obtained by analogue of the Poincaré criterion are presented.

In Section , it is shown that the conclusions are verified by numerical simulation, and the

optimization problem is considered in order to minimize the total cost of pest control.

Finally, a summary is made.

2 Preliminaries

At first, we consider the free system of system ()

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′(t) = ax(t) – bx(t)y(t),

y′(t) = –cy(t) + rbx(t)y(t),

⎫
⎬
⎭ x ≤ x,

x′(t) = ax(t) – bxy(t),

y′(t) = –cy(t) + rbxy(t),

⎫
⎬
⎭ x > x.

()

Define the following function:

�(x, y) =

∫ x

x∗

–c + r�(s)

�(s)
ds +

∫ y

y∗

s – y∗

s
ds.

It is easy to know that �(x, y) is positive definite in the first quadrant and it satisfies all

conditions of the Lyapunov function.

The derivative of �(x, y) is

�′(x, y) =
rxy∗

�(x)

(
�(x) –�

(
x∗))

(
�(x∗)

x∗ –
�(x)

x

)
. ()

We can obtain that �′(x, y)≡  if x≤ x, then all solutions of system () constitute a set

{(x, y)|�(x, y)≤ �(x, y
∗)}, which is a closed orbit �(x, y) = �, where  <� <�(x, y

∗).

If x > x, we have �′(x, y) > , then the orbit of system () always passes through the

closed curve �(x, y) = � at x > x and out of the curve �(x, y) = �(x, y
∗).

Thus, we observe the line

l(x, y) = y + x –m, m > ,x < x≤ h,

where h is a threshold of system (). The derivative of l(x, y) is as follows:

l′(x, y)|l= = x′ + y′ = ax – bxy – cy + rbxy

= ax – bx(m – x) – c(m – x) + rbx(m – x)

= (ax + bx + c – rbx)x – (bx + c – rbx)m

≤ (ax + bx + c – rbx)h – (bx + c – rbx)m.

Then we get that l′|l= <  on condition of m > (ax+bx+c–rbx)h
bx+c–rbx

. Therefore, the following

lemma is obtained.
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Lemma .

(i) System () has two stable states: saddle point O(, ) and stable center E( c
rb
, a
b
) when

x ≤ x and satisfies x ≥ c
rb
.

(ii) The orbits of system () go across the line l =  from the right to the left, which

satisfies x < x≤ h and m > (ax+bx+c–rbx)h
bx+c–rbx

, and intersect the line x = x.

Some basic definitions and lemmas are given as follows.

Definition . ([]) Consider the general model with state-dependent impulse

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′(t) = P(x, y),

y′(t) =Q(x, y),

⎫
⎬
⎭ (x, y) /∈M{x, y},

△x(t) =U(x, y),

△y(t) = V (x, y),

⎫
⎬
⎭ (x, y) ∈M{x, y},

()

whereM(x, y) is called an impulsive set, and let N be the corresponding phase set.M(x, y)

andN(x, y) represent the curve line or straight line on the plane. There exists a continuous

impulsemapping I : I(M) =N .We define a dynamic system constituted by the definition of

solution of state impulsive differential equation () as semi-continuous dynamic systems,

which is denoted as (	, f , I,M).

Definition . ([]) Assume that the pulse set M and the phase set N are both straight

lines, as shown in Figure . For any point B ∈ N , then 
(B, t) = C ∈ M, I(C) = B+ ∈ N , we

denote the ordinates of points B and B+ by yB and yB+ , respectively. Then B+ is defined as

the successor point of B, and f (B) = yB+ – yB is the successor function of point B.

Definition . ([]) An orbit 
̃(Q,T) is called order- periodic solution with period T

if there exists a point Q ∈N and T >  such that Q = 
(Q,T) ∈ M and Q+ = I(Q) =Q.

Definition . ([]) For system (), the orbit starting from the point A reaches the point

A on LM , and then jumps onto the point A+
 on LN , that is, the orbit moves from A to A,

and then to A+
 . Similarly, the orbit moves from B to B, and then to B+

 . Thus the region

k encircled by the closed curve ÂBBA is an invariant set of system (). k is called the

Bendixson region of system ().

Lemma . ([]) The successor function defined in Definition . is continuous.

Figure 1 The diagram of the successor function.
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Lemma. ([]) In system (), if there exist A ∈ N ,B ∈N satisfying the successor function

f (A)f (B) < , then there must exist a point Q(Q ∈N) satisfying Q between the point A and

the point B such that f (Q) = , then system () has an order- periodic solution.

Lemma . ([] Bendixson theorem of impulsive differential equations) Assume that k

is a Bendixson region of system (), if k does not contain any critical points of system (),

then system () has an order- periodic solution in k.

Lemma . ([] Analogue of the Poincaré criterion) The T-periodic solution x = ξ (t), y =

η(t) of the system

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x′(t) = P(x, y),

y′(t) =Q(x, y),

}
if ϕ(x, y) �= ,

△x(t) =U(x, y),

△y(t) = V (x, y),

}
if ϕ(x, y) = 

is orbitally asymptotically stable if the multiplier μ satisfies the condition |μ| < , where

μ =

q∏

i=

�i exp

∫ T



[
∂P

∂x

(
ξ (t),η(t)

)
+

∂Q

∂y

(
ξ (t),η(t)

)]
dt,

�i =
P+(

∂V
∂y

∂ϕ

∂x
– ∂V

∂x
∂ϕ

∂y
+ ∂ϕ

∂x
) +Q+(

∂U
∂x

∂ϕ

∂y
– ∂U

∂y
∂ϕ

∂x
+ ∂ϕ

∂y
)

P ∂ϕ

∂x
+Q ∂ϕ

∂y

,

and P,Q, ∂U
∂x
, ∂U

∂y
, ∂V

∂x
, ∂V

∂y
, ∂ϕ

∂x
, ∂ϕ

∂y
are calculated at the point (ξ (Ti),η(Ti)) and P+ = P(ξ (T+

i ),

η(T+
i )),Q+ =Q(ξ (T+

i ),η(T
+
i )).

In this paper, we assume that the condition c ≤ rbx holds. Based on the biological sig-

nificance of system (), we only consider D = {(x, y)|x≥ , y≥ }.

3 Existence of order-1 periodic solution

In this section, the existence of order- periodic solution of system () is investigated by

using the differential equation geometry theory and Bendixson theorem of impulsive dif-

ferential equations. Here we denote

M =

{
(x, y)

∣∣∣x = h,  ≤ y≤
a

b

}
,

M =
{
(x, y)|x = h, y≥ 

}
,

N = I(M) =

{
(x, y)

∣∣∣x = h,
a

b
< y ≤

a

b
+ q

}
,

N = I(M) =
{
(x, y)|x = ( – α)h, y ≥ δ

}
,

where the linesM andM are the first impulsive set and the second impulsive set of sys-

tem (), respectively, the lines N and N are the phase set corresponding to the impulsive

setM and the impulsive setM, respectively.
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Isoclinic lines of system () are denoted as follows:

L =

{
(x, y)

∣∣∣y = a

b
,  ≤ x ≤ x

}
,

L =

{
(x, y)

∣∣∣x = c

rb
, ≤ x ≤ x, y ≥ 

}
,

L =

{
(x, y)

∣∣∣y = a

bx
x,x > x, y≥

a

b

}
.

For convenience, the coordinate of any pointC is defined as (xc,yc). If the pointQ(h, yQ) ∈
M, pulse occurs at the point Q, the impulsive function transfers the point Q into Q+ ∈N .

By Lemma ., the orbit with any initiating point ofD = {(x, y)|x≥ , y ≥ }will intersect
the set N or N with time increasing; therefore, we consider the following cases.

3.1 The orbit starting from the point of N1

In this case, we have x≤ x,  < h <
c
rb
< x. For convenience, we denote the intersection of

L and L by E(
c
rb
, a
b
), and the point F(h,

a
b
) is the intersection of L andN. The orbitŴ of

system () passes through the point B(h,
a
b
+ ε) ∈N above F, where ε > , and intersects

with the pulse setM at B(h, yB ). Then the orbit jumps back to N at B
+
 (h, yB + q) from

M due to the pulse action.

By regulating q, the position of B+
 has the following three subcases.

Case I yB < yB + q.

In this case, the point B+
 is above B, thus the successor function of B is f (B) = yB + q –

( a
b
+ ε) > . On the other hand, the orbit Ŵ passing through the point B+

 intersects with

M at B(h, yB ) because any two orbits are disjoint, then we have yB < yB <
a
b
. The point

B is mapped to B+
 (h, yB + q) after impulsive effect. The point B+

 is located above F and

under B+
 , thus the successor function of B+

 is f (B+
 ) = yB + q – (yB + q) < . Therefore,

f (B)f (B+
 ) < .

From the above discussion, it is easy to know that the region G encircled by the closed

curve ̂B+
BBB is a positive invariant set of system () and it contains no equilibriumpoint.

By Lemma ., there exists an order- periodic solution of system () (see Figure (a)).

Case II yB = yB + q.

In this case, the successor point B+
 is exactly B, then f (B) = yB + q– ( a

b
+ ε) = , thus the

curve B̂BB
+
 forms a periodic solution of system () (see Figure (b)).

Figure 2 The orbit starting from the phase set N1 (cases in Section 3.1). (a) Case I. (b) Case II. (c) Case III.
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Case III yB > yB + q.

In this case, the point B+
 is below the point B, thus the successor function of B is f (B) =

yB +q–(
a
b
+ε) < . On the other hand, the orbitŴ passing through the point B

+
 intersects

withM at B(h, yB ) because any two orbits are disjoint, then we have yB < yB <
a
b
. The

point B ismapped to B+
 (h, yB +q) after impulsive effect. The point B+

 is located above F

and under B+
 , then the successor function of B

+
 is f (B

+
 ) = yB +q–(yB +q) > . Therefore,

f (B)f (B+
 ) < . Thus there exists an order- periodic solution of system () by Lemma .

(see Figure (c)).

Based on the above analysis, we get the following theorem.

Theorem . If x ≤ x and  < h <
c
rb

< x, there exists an order- periodic solution of

system ().

3.2 The orbit starting from the point of N2

In this subsection, we assume the line L intersects with L, N andM at points E(
c
rb
, a
b
),

B(( – α)h,
a
b
) and F(h,

a
b
), respectively. By Lemma . and qualitative analysis, there

exists a unique closed orbit Ŵ of system () which contains the point E and tangents toM

at the point F. There is an orbit Ŵ that tangents to N at the point B and intersects M

at the point B(h, yB ). The orbit Ŵ jumps back to B+
 (( – α)h, ( – β)yB + δ) ∈ N after

impulsive effect. By regulating δ, if ( – α)h ≤ h, the case can be discussed like the case

in Section .. And if ( – α)h > h, two cases should be discussed.

Case I The orbit Ŵ and the phase set N are disjoint and x≤ x,  < h < ( – α)h <
c
rb
<

h ≤ x. For this case, we have three subcases to be discussed.

Case I(a) yB + q < yB.

If the point B+
 is below the point B, we have f (B) = yB+ – yB < . Then we choose another

orbit Ŵ which is very close to the x axis and intersects with N at one point denoted

by C(( – α)h, yC), then intersects with M at the point B(h, yB ). The orbit Ŵ jumps

back to B+
 (( – α)h, ( – β)yB + δ) ∈ N after a pulse action, and it is above C, then the

successor function of point C is f (C) = yB+ – yC > . Therefore, f (B)f (C) < . According

to Lemma ., there must be Q which meets yC < Q < yB in the phase set N to make

f (Q) = yQ+ –yQ = , then there is an order- periodic solution of system () (see Figure (a)).

Case I(b) yB + q = yB.

In this subcase, the successor point B+
 is exactly B, then f (B) = yB+ – yB = , thus the

curve B̂BB
+
 forms a periodic solution of system () (see Figure (b)).

Case I(c) yB + q > yB.

If the point B+
 lies above the point B, there is f (B) = yB+ – yB > . We select the orbit

Ŵ which tangents to F and intersects with N andM at C(( – α)h, yC) and B(h, yB ).

The point B is influenced by pulse to B
+
 (h, yB +q) ∈N. By the existence and uniqueness

of impulsive differential equations, we have yB < yB . Then we get f (C) = yB+ – (yC) < .

Thus, f (B)f (B+
 ) < . According to Lemma ., there must be Q which meets yB < Q < yC

in the phase set N to make f (Q) = yQ+ – yQ = , then there is an order- periodic solution

of system () (see Figure (c)).

Case II The orbit Ŵ crosses the phase set N and x≤ x,  < h < ( –α)h <
c
rb
< h ≤ x.

In this case, we assume Ŵ intersects N at P(( – α)h, yP ) and P(( – α)h, yP ), where

yP > yP , and tangents toM at the point F, then jumps back to N at one point denoted

by F+
 . According to the position of the point F+

 , the following subcases are given.
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Figure 3 The orbit starting from the phase set N2 (cases in Section 3.2). (a) Case I(a). (b) Case I(b).

(c) Case I(c). (d) Case II(a). (e) Case II(b). (f) Case II(c). (g) Case III(a). (h) Case III(b). (i) Case III(c). (j) Case IV(a).

(k) Case IV(b). (l) Case IV(c).

Case II(a) yF+ < yP or yF+ > yP .

In this subcase, the point F+
 is below P or above P. By following similar analysis as that

in Case I(a) or Case I(c), we can prove there exists an order- periodic solution of system

() (see Figure (d)).

Case II(b) yF+ = yP or yF+ = yP .
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In this subcase, the point F+
 coincides with P or P, then we get f (P) = yF+ – yP = 

or f (P) = yF+ – yP = , thus an order- periodic solution of system () is existent (see

Figure (e)).

Case II(c) yP < yF+ < yP .

If the point F+
 is between P and P, because any two trajectories are disjoint, then the

orbit Ŵ crosses the phase set N at F+
 and does not intersect with the impulse set M,

thus there is no order- periodic solution. According to the biological background, there

are not a lot of pests in the farmland, crop damage is very small, therefore, it does not need

pulse (see Figure (f )).

On the other hand, the line L intersects with L and N at points E( c
rb
, a
b
) and B(( –

α)h,
a
b
), respectively, the line L intersects withM at F(h,

ah
bx

). According to Lemma .

and qualitative analysis, there exists a unique closed orbit Ŵ of system () which contains

the point E and tangents toM at the point F. There is an orbit Ŵ that tangents to N at

the point B and intersects M at the point B(h, yB ). The orbit Ŵ jumps back to B+
 (( –

α)h, ( – β)yB + δ) ∈ N after impulsive effect. By regulating δ, if ( – α)h ≤ h, the case

can be discussed like the case in Section .. And if ( – α)h > h, we have two subcases

to be discussed as follows.

Case III The orbit Ŵ and the phase setN are disjoint and x > x,  < h < (–α)h <
c
rb

≤
x < h.

The method of proof is similar to Case I, here we omit it (see Figures (g), (h) and (i)).

Case IV The orbit Ŵ crosses the phase setN and x > x,  < h < (–α)h <
c
rb

≤ x < h.

The method of proof is similar to that in Case II, here we omit it (see Figures (j), (k)

and (l)).

Moreover, if x < x,  < h < ( – α)h < h <
c
rb

≤ x, the proof process is similar to that

in Case I, there is no longer detailed description and graphic analysis.

From the above analysis, we get the following theorems.

Theorem .

() If the orbit Ŵ and the phase set N are disjoint and x ≤ x,

 < h < ( –α)h <
c
rb
< h ≤ x, there exists an order- periodic solution of system ().

() If the orbit Ŵ crosses the phase set N and x≤ x,  < h < ( – α)h <
c
rb
< h ≤ x,

there are the following two conditions:

(i) when yF+ ≥ yP or yF+ ≤ yP , an order- periodic solution of system () is existent;

(ii) when yP < yF+ < yP , there is no order- periodic solution of system ().

Theorem .

() If the orbit Ŵ and the phase set N are disjoint and x > x,

 < h < ( –α)h <
c
rb

≤ x < h, there exists an order- periodic solution of system ().

() If the orbit Ŵ crosses the phase set N and x > x,  < h < ( – α)h <
c
rb

≤ x < h,

there are the following two conditions:

(i) when yF+ ≥ yP or yF+ ≤ yP , an order- periodic solution in system () is existent;

(ii) when yP < yF+ < yP , there is no order- periodic solution of system ().

Theorem . If x < x,  < h < ( – α)h < h <
c
rb

≤ x, there exists an order- periodic

solution in system ().
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4 Stability of order-1 periodic solution

In this section, under the existence condition of periodic solution of system (), we discuss

its stability by Lemma ..

4.1 The orbit starting from the phase set N1

Let x = ξ (t), y = η(t) be a T-periodic solution of system () and ξ = ξ (T),η = η(T); ξ =

ξ (),η = η(); ξ+
 = ξ (T+),η+

 = η(T+), then we have

ξ+
 = ξ = h, η+

 = η = η + q.

Let P(x, y) = x(t)(a – by(t)),Q(x, y) = y(t)(–c + rbx(t)),U(x, y) = ,V (x, y) = q,ϕ(x, y) = x –

h. Then

∂U

∂x
=

∂V

∂x
= ,

∂U

∂y
=

∂V

∂y
= ,

∂ϕ

∂x
= ,

∂ϕ

∂y
= ,

� =
P+(

∂V
∂y

∂ϕ

∂x
– ∂V

∂x
∂ϕ

∂y
+ ∂ϕ

∂x
) +Q+(

∂U
∂x

∂ϕ

∂y
– ∂U

∂y
∂ϕ

∂x
+ ∂ϕ

∂y
)

P ∂ϕ

∂x
+Q ∂ϕ

∂y

=
P(ξ+

 ,η
+
 )(×  – ×  + ) +Q(ξ+

 ,η
+
 )(×  – ×  + )

P(ξ,η)×  +Q(ξ,η)× 

=
ξ(a – bη)

ξ(a – bη)

and

∫ T



(
∂P

∂x
+

∂Q

∂y

)
dt =

∫ T



[
a – by(t) + rbx(t) – c

]
dt

=

∫ T



[
ẋ

x(t)
+

ẏ

y(t)

]
dt

=

∫ T



d lnx(t)y(t)

= ln
x(T)y(T)

x()y()
.

Therefore,

μ = � exp

∫ T



[
∂P

∂x

(
ξ (t),η(t)

)
+

∂Q

∂y

(
ξ (t),η(t)

)]
dt

=
ξ(a – bη)

ξ(a – bη)
× exp

(
x(T)y(T)

x()y()

)

=
ξ(a – bη)

ξ(a – bη)
×

ξη

ξη

=
(η – q)(a – bη)

η[a – b(η – q)]
.

Thus we get the following theorem.
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Theorem . If c < rbx and
a+bq–

√
a+bq

b
≤ η ≤ a+bq+

√
a+bq

b
hold, then the order-

periodic solution of system () is stable.

4.2 The orbit starting from the phase set N2

Let x = u(t), y = v(t) be a T-periodic solution of system () and u = u(T) = h, v =

v(T);u = u(), v = v();u+ = u(T+), v+ = v(T+), then we have

u+ = u = ( – α)h, v+ = v = ( – β)v + δ.

Let P(x, y) = x(t)(a – by(t)),Q(x, y) = y(t)(–c + rbx(t)),U(x, y) = –αx,V (x, y) = –βy +

δ,ϕ(x, y) = x – h.

Then

∂U

∂x
= –α,

∂V

∂x
= ,

∂U

∂y
= ,

∂V

∂y
= –β ,

∂ϕ

∂x
= ,

∂ϕ

∂y
= ,

� =
P+(

∂V
∂y

∂ϕ

∂x
– ∂V

∂x
∂ϕ

∂y
+ ∂ϕ

∂x
) +Q+(

∂U
∂x

∂ϕ

∂y
– ∂U

∂y
∂ϕ

∂x
+ ∂ϕ

∂y
)

P ∂ϕ

∂x
+Q ∂ϕ

∂y

=
P(u+ , v

+
 )(–β ×  – ×  + ) +Q(u+ , v

+
 )(–α ×  + ×  + )

P(u, v)×  +Q(u, v)× 

=
u( – β)(a – bv)

u(a – bv)
,

and

∫ T



(
∂P

∂x
+

∂Q

∂y

)
dt =

∫ T



[
a – by(t) + rbx(t) – c

]
dt

=

∫ T



[
ẋ

x(t)
+

ẏ

y(t)

]
dt

=

∫ T



d lnx(t)y(t)

= ln
x(T)y(T)

x()y()
.

Thus

μ = � exp

∫ T



[
∂P

∂x

(
x(t), y(t)

)
+

∂Q

∂y

(
x(t), y(t)

)]
dt

=
u( – β)(a – bv)

u(a – bv)
× exp

(
ln

x(T)y(T)

x()y()

)

=
v( – β)(a – bv)

v(a – bv)
.

The following theorem is obtained.

Theorem. If c < rbx and
ω–

√
ω–abδ(–β)(–β)

b(–β)
< v <

ω+
√

ω–abδ(–β)(–β)
b(–β)

hold,whereω =

a( – β) + bδ( – β), then the order- periodic solution of system () is stable.
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Figure 4 Numerical simulation of Example 1. (a) Phase portrait of x(t) and y(t) on h1 = 0.6. (b) Time series

of x(t). (c) Time series of y(t).

5 Numerical simulations and optimization

5.1 Numerical simulations

In this section, specific examples are given to verify the feasibility of the conclusions. Let

a = ., b = c = r = ., x = ., h = ., αmax = ., βmax = ., δmax = ., δmin = .,

then the equilibrium point of free system is E(., ). Inserting these parameter values

into system (), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = .x(t) – .x(t)y(t),

y′(t) = –.y(t) + .x(t)y(t),

⎫
⎬
⎭ x ≤ .,

x′(t) = .x(t) – .y(t),

y′(t) = .y(t),

⎫
⎬
⎭ x > .,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

x �= h or x = h, y > y∗,

�x(t) = ,

�y(t) = q,

⎫
⎬
⎭ x = h, y ≤ y∗,

�x(t) = –α(x)x(t),

�y(t) = –β(x)y(t) + δ(x),

⎫
⎬
⎭ x = h.

()

Example  Let q = ., h = . and the initial value be (., .). Figures (a), (b) and

(c) show that system () has an order- periodic solution which is stable.

Example  Let h = . and the initial value be (., .). By a direct calculation, we have

α = ., β = . and δ = .. Figures (a), (b) and (c) show that system () has a

stable order- periodic solution. By observing carefully from Figure (b), we can estimate

that the period of order- periodic solution is T = ..

Example  When h = , let the initial value be (, .), then α = ., β = . and δ = ..

Figures (a), (b) and (c) show that system () has an order- periodic solution with

period T = . which is stable.

Example  Let h =  and the initial value (., .) be given. By a direct computation, we

have α = ., β = . and δ = .. The phase diagram and time series diagram of

x(t) and y(t) are shown in Figure . Figures (a), (b) and (c) show that system () has a
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Figure 5 Numerical simulation of Example 2. (a) Phase portrait of x(t) and y(t) on h2 = 1.88. (b) Time series

of x(t). (c) Time series of y(t).

Figure 6 Numerical simulation of Example 3. (a) Phase portrait of x(t) and y(t) on h2 = 5. (b) Time series of

x(t). (c) Time series of y(t).

Figure 7 Numerical simulation of Example 4. (a) Phase portrait of x(t) and y(t) on h2 = 1. (b) Time series of

x(t). (c) Time series of y(t).

stable order- periodic solution. By observing carefully from Figure (b), we can estimate

that the period of order- periodic solution is T = ..

5.2 Determination and optimization of economic threshold h2

The integrated control method of spraying pesticides and releasing natural enemies not

only speeds up the death rate of pests, but also avoids the excessive damage to the crops;

at the same time, the ecological balance is ensured. In order to ensure the best use of the

material, the shortest time and the highest efficiency, the following optimal problem is

investigated to find the best economic threshold.

Assume that d is the unit cost of the use of pesticides and the damage to crops, d is the

unit cost of releases of natural enemy. Our objective is to maximize the control of pests

and reduce unit costs in the process of integrated pest control. Let F be the total cost in

a period of system () under the control of economic threshold h, which is a function
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Figure 8 The change in the period T and the cost per unit time F/T on the economic threshold h2 .

(a) The change in the period T on the economic threshold h2 . (b) The cost per unit time F/T on the economic

threshold h2 .

of intensity of pesticide spraying α(h), and the released amount of natural enemies are

given by δ(h). Then we have F(h) = dα(h) + dδ(h), and the optimization model is

established as follows:

min
F(h)

T(h)

s.t. h ≤ h ≤ h.

The objective function is solved to find out the best economic threshold h∗
, so as to obtain

the optimal pesticide control intensity δ∗ = δ(h∗
), to find an optimal release amount of nat-

ural enemies α∗ = α(h∗
), and to find an optimal control period of pest T∗ = T(h∗

). Figure 

illustrates the variation of period T and the cost per unit time F/T with the economic

threshold h, where d = d = ,, i.e., d/d = . From Figures (a) and (b), we can see

that the optimal economic threshold is h∗
 = ., the optimal pesticide control intensity

is α∗ = ., the optimal release amount of natural enemy is δ∗ = ., and the optimal

control period of the pest is T∗ = ..

6 Conclusion

In this paper, according to the different degrees of damage on crops, feedback control

with two state dependent impulses is adopted on the pest management. When the den-

sity of pests reaches the slightly harmful threshold h, only the biological control method

is adopted; when the density of pests reaches the economic threshold h, the method of

combining biological and chemical control is used, which can make the density of pests

less than a given threshold and maintain the ecological balance. Analysis shows that this

method is effective. Finally, numerical simulations are carried out to verify effectiveness

of the control strategy. In addition, an optimization problem is proposed and solved, the

optimal economic threshold is determined under the condition that the total cost is min-

imum. However, there are some deviations in the results, which need to be improved.
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