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Abstract

In generating models of vascular trees, the method of Constrained Constructive
Optimization (CCO) draws on the assumption that optimization criterions can
be utilized to derive the geometrical and structural features of the tree models,
without using informations from topographic anatomy. The boundary
conditions imposed describe pressures and flows at the inlet and outlets of the
binary branching model tree as well as the ratios of radii at a bifurcation
("power-law" for bifurcations).

During phylogenesis of species, bifurcation laws, tree geometry and tree
topology have most likely been simultaneously optimized. In contrast, a
supposed optimum form of bifurcation law is prescribed in the CCO-simulation,
and geometry together with structure are optimized "within" that frame.

It is shown that CCO trees optimized under different bifurcation laws initially
show slightly different geometries but identical topological structures. At a
certain stage of development, however, accumulated geometric deviations lead
to changes in topology as a result of optimization. From there on we observe
different “evolutionary paths" of tree development.
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Finally we demonstrate that each fully developed tree can be rescaled to any
given bifurcation law in order to be compared to another model tree actually
optimized under the respective form of bifurcation law. Quantitative differences
are evaluated and discussed.

Introduction

Vascular trees fulfill the crucial task of carrying blood to the tissue and
removing metabolic endproducts therefrom. Many efforts have been made to
gain a thorough understanding of the hemodynamic details of blood transport
for both improved diagnosis and therapy. Over the last decade computer
simulation has emerged as a potent tool to model blood flow, based on
mechanical models of the respective arterial trees.

The first and most simple approach was a compartmental representation, where
properties (resistances, compliances) of whole classes of vessel segments are
lumped into several compartments (Bruinsma [1]). Evidently such models
cannot represent details in structure and lend themselves only for obtaining
global results. A second approach is the “anatomical” modeling (Rooz [2]) of
small portions of arterial trees, where topographic information is directly
represented by corresponding models of arterial segments. These models are
“accurate” in detail, they cannot represent the complete vascular system of an
organ, however. A third approach, namely self similar arterial tree models offer
detailed structures which also reproduce the features of real arterial trees in a
statistical sense (West [3], Pelosi [4], Dawant [5], Levin [6]). However, the
geometrical arrangement of vessel segments in these “fractal” models follows
ab initio rules rather than being adapted to the physiological needs of blood

supply.

We therefore established a new method of generating dichotomously branching
models for arterial trees combining the benefits of the approaches discussed
above. This method, called Constrained Constructive Optimization (CCO),
starts from first principles:

e Blood should be distributed as evenly as possible over the whole part of
tissue to be perfused.

e A given pressure (p.rm) should be available to perfuse the microcirculation
distal to the CCO-model.

e At each bifurcation the radii of vessel segments should fulfill a “bifurcation
law” adapted to results found in real arterial trees (Arts [7], Zamir [8],
Sherman [9], Zamir [10]). We choose y = 2.55 for the so called “bifurcation
exponent” (Zamir [11], Zamir [12]).

e Structure and geometry of the CCO-model tree should be designed such that
a given optimization target function, being calculated from the model tree as
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a whole, is minimized (Thompson [13], Cohn [14], Cohn [15], Zamir [16],
Lefevre [17], In the present work we select total intravascular volume as
optimization target (Sherman [9], Kamiya [18]).

In principle, CCO generates the model tree by successively adding new terminal
segments while preserving all constraints throughout the process of model
growth. Each step of growth is governed by geometrical optimization nested
within structural optimization, both types of optimization being performed
according to the same target function. Details of the method and the algorithm
have been reported in previous papers (Schreiner [19], Schreiner [20]).

Method of CCO

The model itself consists of straight cylindrical tubes, rooting at the boundary of
the perfusion area and bifurcating so as to spread all over the perfusion area.
The entrance to the network (root segment) is perfused by a pressure pperr With
the flow QOper whereas each terminal segment yields the same flow
(Qrerm = Qpert/Nierm) (CCO-boundary conditions). Segment radii are chosen to
have resistances according to POISEUILLE’S law (Fung [21]) which entail exactly
the flow distribution described above.

At each bifurcation the radii of the parent segment (#;) and the radii of the larger
(r1) and smaller (r,) daughter fulfill a ,,bifurcation law*

Vo W y eq. 1
v=n"+r q

The bifurcation exponent is chosen as y =3 according to morphometrical
measurements in human coronary arteries (Zamir [8]). Note that the method of
CCO is feasible for any choice of y> 0, with reasonable values lying in the
range 2.5 <y < 3. It can be shown that the boundary conditions together with the
bifurcation law can be implemented in any dichotomously branching tree,
regardless of its connective structure and geometry.

A second prerequisite - besides the possibility of implementing the boundary
conditions - is the selection of an optimization target function characterizing the
degree of optimality of the model. The most well-known candidate is the total
intravascular volume which will be used throughout the present work. In more
general terms (and disregarding constant factors irrelevant for optimization) we
may define

N,

fol

(Y= - eq. 2

i=1



S@_ Transactions on the Built Environment vol 28, © 1997 WIT Press, www.witpress.com, ISSN 1743-3509
374 Computer Aided Optimum Design of Structures V

For A = 2 this target is proportional to the intravasal volume (except for a factor
m), for A = 1 the target is proportional to the vascular surface (except for a factor
2-m), for A = 0 eq. 2 represents the total sum of segment lengths. A =3 and A = 4
represent "hypervolumes" which have no direct interpretation but can easily be
constructed as extensions of the concept. The differences in morphometric
properties of the respective CCO trees have extensively been discussed before
(Schreiner [22]).

Minimizing the total volume has been motivated by theoretical arguments
(Sherman [9]) and will be used in generating the ,,reference tree* for the present
work. For a given connective structure and geometrical location of the segments
the target function has a precisely defined value, provided the boundary
conditions and the bifurcation law have been implemented. Any geometrical
displacement of a bifurcation, even if all other segments tree remain at their
positions, changes the value of the target function. This is easily seen by
considering the fact that (in general) the three segments of the displaced
bifurcation change in lengths. In order to reimplement boundary conditions and
the bifurcation law, radii have to be rescaled in all segments along the path
towards the root. This adjustment of radii together with changes in lengths of
course changes the target function, cf. eq. 2.

Based on the above described prerequisites, the constructive element of CCO
can be implemented as follows. Given a tree of £ segments, which fulfills the
boundary conditions and the bifurcation law, the next terminal segment is added
as follows: The location of its distal end is drawn from a pseudo random
number sequence and the segment is tentatively connected to its nearest
neighbour. The new bifurcation is then optimized geometrically by a gradient
method, the boundary conditions and bifurcation law being reimplemented after
each incremental step of optimization. Then the new connection is desolved. In
the same way the new terminal is testwise connected to each of its neighbours
and the value of the target function for the optimized positions are compared.
Finally that connection which yields the lowest minimum is made permanent.

This process of geometrical optimization, nested within a ,search where to
connect the new segment”, grows the model tree by two new segments.

Repetition of this procedure is capable of growing very realistic models of
arterial trees even on medium size computing facilities.

3 Results

3.1 Small Geometrical Differences Devide further Growth

The bifurcation exponent y exerts a large influence on relative segment radii
and, as a consequence, also determines the value of the optimization target
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function for a given geometry and topology. Hence the coordinates to which
geometrical optimization converges for a particular bifurcation depend (slightly)
on y (even for identical locations of the distal ends of the terminal segments). In
order to evaluate the consequences of this effect we generated two CCO trees
with parameters totally identical except for the value of y. In Figure 1 the small
differences in segment locations can be noticed at careful inspection even by the
naked eye in a tree with only seven terminal segments (upper panels). Yet the
topologies (i.e. the connective structure) of both trees is still identical. Adding
the 8" terminal segment, however, shifts a switch: The optimum connection
sites are found at different segments (shown in dark grey tone in the upper
panels of Figure 1,) in the two trees with different v, thereby initiating diverging
future developments of both trees. In fact, the topological difference is much
more striking than differences in geometric location. It is evident that totally
different evolutionary paths are the consequence. The fully developed trees
(with Nierm = 2000) are shown in Figure 2.

A

Figure 1: Early stages of development of CCO trees with different bifurcation
laws. Left panels: y = 2, right panels: y =3, cf. eq. 1. In both cases minimum
intravasal volume is the optimization target. Up to 7 terminal segments
topologies are equal (upper panels) while geometries differ slightly. When
adding the 8" terminal segment topologies (and as a consequence) also
geometries diverge.
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3.2 Rescaling a CCO Tree to a Different Bifurcation Exponent

The algorithm of CCO is based on the fact that radii in any binary tree can be
scaled so as to fulfill CCO boundary conditions. Even more, this can be
achieved for arbitrary values of y>0. Besides generating CCO trees with
different y we may also change the bifurcation law a posteriori, as described in
the following interesting investigation:

As a starting point we take a reference CCO model tree generated for y = 3. For
this particular topology and geometry we may re-calculate all radii (i.e. balance
all bifurcation ratios (Schreiner [19])) in order to fulfill the very same boundary
conditions regarding pressures and flows, but for a different value of y # 3.
This is always possible by starting at the terminals and in a post order traversal
algorithm proceeding towards the root. In the process of tree generation, the
balancing of bifurcation ratios is restricted to the respective path from the newly
added segment towards the root. In the present investigation it extends over the
whole tree but the method itself is (exactly) identical. CCO-trees thus offer the
unique possibility to study the ner-impact of different bifurcation exponents
within trees of identical structures and segment coordinates.
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Figure 3: Shear stress under rescaling the bifurcation exponent. Within the
topology and geometry of the CCO reference tree radii were rescaled to fulfill
different bifurcation laws with y=2.0, 2.1, ... 4.0. The median shear
stress [N/m?] (y-axis) is displayed separately for each STRAHLER order as a
function of the bifurcation exponent y [dimensionless] (x-axis). For symbols see
the legend.
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The result is displayed in Figure 3 for the shear stress between the blood and the
vessel wall. Generally, rescaling radii to a different bifurcation law redistributes
shear stresses drastically (roughly speaking) between large and small segments.
For small segments (belonging to low STRAHLER orders) shear stress declines as
y is increased, cf. Figure 3. Conversely for large segments (belonging to high
STRAHLER orders) shear stress increases with y. The reason is simply that
increasing y makes small segments thicker on the expense of large ones, so as to
keep overall resistance constant.

4 Discussion

Shear stress between blood and the arterial wall is attributed a key role in the
activation of thrombocytes proceeding possible thrombus formation. Hence
considerable engineering skills have been invested so as to avoid exceedingly
high shear stress rates in any manmade device being implanted into the vascular
system and directly exposed to the blood stream. Thus we may speculate that
nature, during the evolution of species, also has optimized vascular geometry so
as to reduce shear stress whenever possible, or at least to achieve a fairly
homogeneous distribution.

The interest of people generating vascular models was therefore always
attracted by the fact that only a bifurcation law with y =3 is able to permit
totally uniform shear stress in the parent and daughter segments of a
bifurcation. y =3 may be considered a kind of optimum selection. In CCO
models for example, this optimum selection of the bifurcation law can be
plugged in as a constraint rather than being a result of the optimization proper.
However, since y=3 is only a necessary but not a sufficient condition for
uniform shear stress, we encounter a spectrum of shear stress rather than a
unique value. Thus, optimality regarding shear stress can only be judged
according to the width of its spectrum, i.e. the range of values in Figure 3.

Rescaling for different values of y shows clearly that median shear stresses in all
STRAHLER orders are most close together around y = 3. This finding indicates
that the necessary condition (for uniform shear stress) is indeed also the most
optimum one in terms of yielding the least possible spread of shear stress.
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