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Absrrucr-One of the fundamental aspects of vision is threedimensional 
geometry referring to the relationship between the scene which is de- 
picted and the images which are projections of that scene. This paper 
presents computational theories which deal with geometrical aspects of 
interpreting images as a three-dimensional (3D) scene. The presentation 
covers three levels of descriptions: micro-surface level, volumetric-object 
level, and scene level. The micro-surface level concerns the relationship 
between surface orientations of small surface patches and image proper- 
ties. Theories are presented which provide computational constraints 
for recovering surface orientations from geometrical image properties, 
such as symmetry, texture, shadows, and perspective distortions. The 
volumetric-object level handles shape representations of primitive ob- 
jects: the relationship between 3D shape of an object and its projections 
onto images must be understood. The generalized cylinder is a popular 
volumetric shape representation in vision. We will discuss its formal 
properties. Finally, the scene level aims at constructing and maintaining 
the 3D description of the whole scene. We will present the Incremental 
3D Mosaic system under development at CMU, which incrementally 
constructs the total 3D scene description of the task area from aerial 
photographs. 

I .  IN T R O D U C T I O N  

ISION refers t o  sensing and interpreting of environments 
by means of images. It is widely recognized that  vision V is an important capability in enabling robots t o  behave 

intelligently and flexibly. Vision involves many aspects: appro- 
priate sensors or  cameras must be chosen to pick u p  the  relevant 
physical phenomena ; photometric and radioinetric'aspects must 
be considered in order t o  interpret the iniage intensity values in 
a sensible manner in accordance with the material reflection, 
illumination. and sensor characteristics; iniage-processing tech- 
niques must be developed t o  analyze images and t o  detect  
interesting events; algorithm efficiency is important for im- 
plementation. However, one of the fundamental aspects is 
three-dimensional (3D) geometry referring t o  the  relationship 
between the scene and the images. In fact .  if we consider that  
images are projections of a scene, vision. after  all, amounts  t o  
backprojecting the images t o  the scene or t o  recovering the  
scene from the images. 

I t  seems that  successful applications of vision in robotics so 
far are limited to such tasks and techniques as optical detection 
inspecting two-dimensional (?D) patterns (e .g . .  PC board in- 
spection), locating objects, and binary vision. Also we can note 
that the methods employed are mostly ad hoc and tuned t o  the  
particular tasks by careful engineering. For  example,  the task 
of locating and recogni7ing objects on a table issolved as region 
analysi5 of hinary images (topological and geometrical propcr- 
ties of a region. such as connectivity. hole. and corners). This 
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task is made possible by setting u p  a standard viewing angle 
(most typically overhead view) t o  convert the  task into a 
2 D  problem. and by using careful lighting t o  ensure high- 
contrast shadow-free images which provide a clean silhouette 
of objects after binarization. This type  of technique used in 
today's robotics vision can be said t o  be  oriented toward detec- 
t ion of events by 2D image analysis. While this technique will 
remain useful for  many applications, another orientation we  
must seek as a goal of vision research is the  derivation of 3D 
scene descriptions. A crucial difference between ?D image 
analysis and 3 D  scene description can be understood by con- 
sidering the  task of robot navigation using vision: the 3 D  de- 
scription of the  environment. rather than segmentation of its 
image, is necessary t o  enable the robot t o  move through the  
environment. 

In  order t o  achieve such a capability, which allows derivation 
of 3D descriptions of the  environment, new directions in com- 
puter vision research are currently emerging, most notably in the  
Image Understanding community  [ I ] .  This research pursues 
more systematic and computational approaches than those of 
conventional research. In this paper, we will limit our  discus- 
sion t o  computational theories which deal with geometrical 
aspects of interpreting images as a 3D scene. Also, this presen- 
tation is mostly based o n  the  work done at Carnegie-Mellon 
University, and is not  intended t o  be a survey. 

The  geometrical aspects of vision includes three levels of 
descriptions: micro-surface level, volumetric-object level, and 
scene level. The  micro-surface level concerns the  relationship 
between surface orientations of small surface patches and image 
properties. For example, a typical problem is how t o  estimate 
the  slant and tilt of a surface from texture patterns. Theories 
are presented which provide constraints for recovering surface 
orientations from geometrical image properties, such as sym- 
metry,  texture,  shadows, and perspective distortions, together 
with the  gradient space which is a convenient tool t o  represent 
surface orientations. These theories are local in that  they pro- 
vide surface orientations based o n  the  properties of a small 
portion in the image. 

T h e  volumetric-object level handles shape representations 
of primitive objects. The  surface orientations obtained from 
the  local analysis of an image must be integrated over a region 
t o  produce a shape description of an object, for which more 
global constraints must be imposed, such as smoothness, type  
of surfaces (planer, quadratic, etc) ,  or type of volumes. To ob -  
tain such global constraints computationally, we must first 
establish the  relationship between 3D shape representations and 
their projections o n t o  the  image. The generalized cylinder has 
been a popular volumetric shape representation in vision. We 
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Fig. 1 .  (a) Imaging geometry including the surface, the picture, m d  the 
viewer. (b) Mapping o f  planes to a gradient. 

will discuss its formal properties: specifically about  the silhou- 
et te  of a solid of revolution, which is an  important class of 
the generalized cylinder. 

Finally, the scene level aims at constructing and maintaining 
the 3 D  description of the whole scene. A t  this level, the main 
issues are how t o  combine various inputs of 3 D  information 
into a consistent scene description and how t o  revise it when 
new information is obtained. As an  example of the  systems 
that deal with this level of descriptions, we will present the  
Incremental 3D Mosaic system under development, which 
incrementally construct the total 3D scene description of the  
task area from aerial photographs. 

11. SUKI:ACE ORIENTATIONS FROM IMAGE PROPERTIES 

Historically, there are several annoying image phenomena 
which often cause vision programs t o  fail in image analyses. 
Some of these phenomena are of a geometrical nature: among 
them are deformed shape due t o  slanted views, perspective 
distortions, textural patterns, and shadow. That  they are 
annoying may still be t rue in most applications, but  it has be- 
gun t o  be understood that these are actually rich sources of 
information about  the shape. An interesting class of theories 
has been developed t o  handle these sources. Their common 
nature is that they provide constraints on  local surface orienta- 
tions. This section will introduce such theories and tools which 
allow computational use of constraints obtained from geo- 
metrical properties observable in the image. 

A .  Coordinate System and the Gradient Space 

Let us first define the coordinate sys- 
tem which we will use in this paper. As shown in Fig. 1 ,  the  
x and y axes in the  scene are aligned in the  image(x horizontal, 
y vertical), and the z axis points towards theviewer(i.e.,  aright- 
handed coordinate system) (Fig. 1). The  eye (center of lens) 
is a t  the origin (0, 0, O ) ,  and the image plane is z = - 1:  the focal 
plane is z = 1, but  it is rotated around t h e  origin t o  this image 
plane t o  preserve the sense of “up,” “down,” “left,” and “right” 
f rom the  scene. 

Coordinate System: 

I n  orthographic projection, the  scene point (x ,  y ,  z) is mapped 
o n t o  the image point ( x ,  y ) .  Conversely, the image p o i n t ( x , y )  
can correspond to  the  set of scene points (x, y ,  4 )  for  all values 
of (1. 

In perspective projection, the scene point ( x ,  y ,  z) is mapped 
on to  the  image point (-x/z ,  - y / z ) :  the image point is the point 
a t  which a line through the  origin ( t h e  eye) and the scene point 
(x ,  y ,  z )  intersects the image plane. The  unit of measure in 
the coordinate system is the focal length of the camera lens. 
An image point (x, y )  corresponds to the  set of scene points 
(ax ,  a y ,  - a )  for  all values of a .  

Many image properties are related t o  the 
differential properties of 3 D  shape. F o r  example, light reflec- 
tion is mainly governed by the  surface orientation relative t o  
the  orientation of illumination and the line of sight. Thegrudi- 
ent space, introduced and popularized by Huffman [ 2 ]  and 
Mackworth [ 31,  provides a convenient way t o  represent sur- 
face orientations in relation to the  imaging geometry. Let us 
first define it. In  our  coordinate system defined in Fig. 1, 
consider a surface 

Gradient Space: 

-z = f ( x , y ) .  

T h e  gradient space is defined by ( p ,  q )  where 

That  is, p and q are the rate of change in depth o n  the  surface 
along the x and y direction. We can easily see that  ( p ,  q ,  1) 
has the direction of the surface normal pointing toward the 
viewer; or  ( p / d p 2  + q 2  + 1, 4 / t / p 2  + 4 2  + 1 ,  l/t/p’ + 42 + 1 ) 
is the unit surface normal. Gradients are constant over a planar 
surface, and the  gradient ( p ,  q )  corresponds t o  a set of parallel 
planes 

-z  = p x  + q y  + c  (3)  

where c is arbitrary. 
The  drawback of the  gradient space is that the value of ( p ,  4) 

approaches infinity as the  surface orientation becomes tangen- 
tial such as along occluding contours. There are other  spaces 
that  we can use for  representing surface orientations: such as 
the stereographic space [4] or the  Gaussian sphere 151. Be- 
cause of its simplicity we will use the gradient space through- 
ou t  this paper. 

Connect-Edge Relation Under Orthography: Under ortho- 
graphic projection, the gradients of planes and the  image line 
o n  the  image have an  interesting relationship. Referring t o  
Fig. 2, let t w o  planes P1 and P2 intersect in the  space and let 
the  intersection edge be depicted as a line I in the image. Then 
the  line in the  gradient space connecting the  corresponding 
gradients Ci = ( p i ,  qi) is perpendicular t o  the line 1. This can 
be seen in the following way. T h e  normals of the t w o  surfaces 
have directions nl = ( p l ,  q l ,  1) and n = ( p 2 ,  q 2 ,  1). Their 
cross product nl  X n2 represents the  direction of the intersec- 
tion edge in the space. Since we assume orthographic projec- 
tion, the direction of the line I in the image is given by t h e x  
and y components of this cross product; that is, (41 - q 2 ,  
pz - P I ) .  This vector is obviously perpendicular t o  the  vec- 
to r  C1 - 6 2  = ( p l  - p 2 ,  q 1  - 42)  which connects C1 and G 2 .  
Moreover, if the intersection edge is convex viewed from the 
viewer, then the  positional order of G1 and Gz is the  same as 
the order of the regions in the picutre corresponding t o  P1 and 
Pz ; if the  edge is concave, the  order  is reversed. 

This property of the gradient space has been extensively used 
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Fig. 2 .  Properties o f  dual lines. If t w o  planes meet and the intersection 
edge is projected as a picture line L .  then the gradients of the t w o  
planes are on a gradient-space line which is perpendicular t o  L .  

(a) (b) 
Fig. 3.  (a) A drawing of a “cube.” (b) The constraints on the gradients 

o f  the three surfaces due to  their interconnection: the gradients form 
a triangle in the gradient space whose shape and orientation should be 
as shown, but the location and the size are arbitrary. This means that 
(a)  need n o t  he a cuhe. but can correspond to many shapes. 

for  understanding line drawings of planar surfaced objects 
in orthographic projection, such as polyhedra 131 and the 
Origami-world objects [ 61. As the  simplest example, if t he  
drawing of Fig. 3(a) is interpreted as depicting a convex corner 
(i.e., the  image lines I , .  I , ,  and l 3  are interpreted as convex), 
t he  gradients C ,  , C2, G 3  of the  three surfaces must form a 
triangle in the gradient space shown in Fig. 3(b). Notice tha t  
the  direction and order from G1 to C 1 ,  for example, is con- 
strained by that of l l .  Thus thc shapc and orientation of this 
triangle is constrained. but the  location and the  size are not.  
This constraint exactly represents all the possible shapes that  
Fig. 3(a) can depict. 

B. Skew Syrnnietry 

3,D shapes of regions (i.e.,  projection of surfaces) in the image 
convey information about 3D shape of an object in the  scene. 
This is illustrated by the simple line drawings in Fig. 4 .  Fig.4(a) 
and (b )  are topologically tlie same and the slight difference in 
the  ?D shape of the lower two  regions results in the  viewer see- 
ing one as a cube and the o ther  as a trapezoidal block. In  fact ,  
in terms of surface orientations of tlie three surfaces involved, 
Fig. 4 ( a )  and (h)  has exactly the sanie constraints as those 
shown in Fig. 3(b) .  Furthermore. it is interesting t o  observe 
that even such siniple figures as Fig. 4(c) and (d)  already invoke 
the perception of surface orientations. Certain geometrical 
properties should be the  source of that  perception. These 
phenomena may have been often studied in their psychological 

(C) 
\ 

(e) 
Fig. 4.  (a) (b) Simple line drawings: (a) “cube”;(b) “trapezoidal block”; 

(c) (d) skewed symmetry; (e) axes of the skewed symmetry of (c).  

aspects, bu t  until recently very little has been formulated in a 
manner usable for  machine vision. 

In  a previous paper [ 71, the  author  demonstrated a systematic 
method t o  recover 3D shapes from a single view by mapping 
image properties in to  shape constraints. T h e  2D shape property 
of Fig. 4(c) and (d )  is one  of the  properties that  were studied. 
I t  was named skewed symmetry ,  because such figures are inter- 
preted as symmetric figures viewed obliquely. In o ther  words, 
whereas in the  usual symmetry reflective correspondences are 
found along the  direction perpendicular t o  the  symmetry axis, 
in the  skewed symmetry they are found along the  direction 
not  necessarily perpendicular t o  the  axis, but  a t  a fixed angle 
t o  it. Formally, such shapes can be  defined as 2 D  affine trans- 
forms of real symmetries. 

There is a good body of psychological experiments which 
suggests that  human observers can perceive surface orientations 
from figures with this property.  This is probably because such 
qualitative symmetry in the  image is often due t o  real symmetry 
in the  scene. 

Now let us associate the following assumption with this image 
property:  “ A  skewed symmetry depictsa realsymmetry viewed 
from some unknown view angle.” Note that  the converse of 
this assumption is always true in orthographic projection. A 
skewed symmetry defines t w o  directions: let us call them the 
skewed-symmetry axis and the skewed-transverse axis. As 
shown in Fig. 4(e) that  depicts the two  axes for Fig. 4(c), let 
us denote  their directional angles in the  picture by Q and 8, 
respectively. Fur ther  let C = ( p ,  q )  be the gradient of the 
plane which includes tlie skewed symmetry. In general, the 
9 D  unit vector in the direction 7 is e7 = (cos  7, sin 7). From 
(3). the  3D vector corresponding t o  e on the plane in the space 
is given as 

uy = ( c o s y ,  sin y, - ( p  c o s y  + q sin 7)). (4)  

T h e  assumption about  the  skewed symmetry demands that  the  
t w o  3 D  vectors U, and up be perpendicular in the 3D space: 
that  is, thier inner product vanishes, u, . up = 0 or 

+ q sin 8 )  = 0. ( 5 )  

By rotating the p - q  coordinates by the  amount  A = ( a  + p ) / 2  
into the  p’-q‘ coordinates so that  the  new p‘-q‘ axes are the  
bisectors of t he  angle made by the  skewed-symmetry and 

cos (Q - 0 )  + ( p  cos Q + q  sin a ) ( p  cos 
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Fig. 5 .  The hyperbola of (5) corresponding to  Fig. 4(e). The axis of the 
hyperbola is the bisector of the obtuse angle made by OL and 0. The 
asymptotes make the  same angle as the acute angle made by OL and 0. 
The tips or vertices GT and CT’ of the  hyperbola represent special 
orientations with interesting properties. Especially, since they are 
closest to  the origin of the gradient space, and since in general the  
distance G’. from the origin t o  a gradient (p. 9) represents the 
magnitude of the  surface slant, GT and GT’ correspond t o  the  least 
slanted orientations that can produce the skewed symmetry in the  
picture from a real symmetry in the scene. 

skewed-transverse axes, it is easy t o  show that  (5 )  represents a 
hyperbola in the gradient space shown in Fig. 5. That  is, the 
skewed symmetry defined by a and 0 in the  picture can be a 
projection of real symmetry if and only if its surface gradient 
( p ,  q )  is o n  this hyperbola. The skewed symmetry thus imposes 
a one-dimensional family of constraints o n  the underlying sur- 
face orientation. Fig. 6 illustrates how this skewed symmetry 
constraint can be used t o  recover the  shape of “cube” from 
the image: the  constraint shown in Fig. 3(b) was not strong 
enough t o  uniquely determine the shape, but  the additional 
constraint from the skewed symmetry of the  regions enables 
us t o  determine the shape of the cube. 

T h e  same approach was extended t o  o ther  properties: paral- 
lel lines, affine-transformable patterns, and textures [ 81. We 
can summarize the  assumptions used in these cases: regular 
properties observable in the picture do  not occur b y  accident, 
but are projections of some preferred corresponding 30  prop- 
erties. Fig. 7 lists instances of this principle of nonaccidental 
image regularity and t h e  corresponding theories. Since the  
mapping from the picture domain t o  the scene domain is one- 
to-many (ambiguous), we need t o  rely o n  these types of general 
assumptions which result in useful computational constraints 
in vision. 

C.  Texture 

Perception of depth and surface from texture gradient has 
been studied by psychologists. Kender [ 9 ]  developed a very 
powerful computational paradigm for  deriving shape from tex- 
ture . His central idea is t o  use a normalized texture property 
map (NTPM), which is again for mapping image features ( tex-  
ture in this case) into constraints o n  surface orientations. 

Let us use again a simple example t o  show the NTPM for  
length. Suppose we have a texture pattern shown in Fig. 8, 
which is made u p  of line segments with two  orientations: the 
horizontal ones with length L 2  and the diagonal ones (45”) 

Fig. 6. (a) A simple labeled line drawing: the dotted linesshow the axes 
of skewed symmetry. (b) The hyperbolas shown correspond to the 
skewed symmetries of the three regions. The problem is thus how to  
place the  triangle of Fig. 3(b), by translation and scale change, so that 
each vertex is on the corresponding hyperbola. The location shown is 
proven to  be the  only position, and the  resultant shape is a cube. 

Fig. 7. Instances of the  principle of nonaccidental image regularity. 
Notice that t he  rules are mostly true when going from the scene to 
the  picture, but the  other direction is heuristic. 

/ 

-/ 
Fig. 8 .  A texture image of line segments. When we assume that all the 

line segments are on  a plane surface and that their real lengths are the 
same, what orientations are possible? 
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Flg. 9. A nornializud texture property m a p  (NTPM) for line length, 
LN = L ( 4 S o ,  1). 

with length L , .  Consider, in  general, a line segment in the  
image whose direction is of angle y with the  x axis and whose 
length is 1. I f  that  line segment is o n  a plane whose gradient is 
( p .  q ) ,  what is the  real length of the  3D line in the  scene? From 
(4), lu, is the  corresponding 3D vector, and its 3D length is 

L ( y .  I )  I S  the NTPM for a line segment with s lopey  and length 
1. As with the reflectance map for shape-from-shading [ I O ] ,  
we can represent ( 6 )  as a set of contours in the  gradient space, 
L ( y ,  1 )  = cot i s t ,  each corresponding to such ( p .  4)’s that  the  
3D lines which are o n  the  surface and which will be  projected 
o n t o  the  image as a line of length 1 and angle A are of length 
cotist. Fig. 9 shows the NTPM for y = 45O and I = 1.  In gen- 
eral. the  Nll’M is a function of surface orientations, and its 
value represents a scene property (e.g., 3D line length) that  the  
scene constituent in that  surface orientation should take if the  
observed image property (e.g., 2D line length) comes from it.  
In othcr words, it represents deprojected scene properties f rom 
image. 

I n  Fig. 8 ,  let u s  assume that  all the line segments are on  the 
same length in the space. The  possible orientations of the  sur- 
face can then be obtained by 

( 7 )  

or by graphically intersecting the  two  NTPM surfaces. Inter- 
estingly. this represents a hyperbola in the gradient space, again, 
and thus does not determine the surface orientation uniquely, 
but can be used in combination with o ther  constraints in the 
same way as we did for skewed symmetry. Though this is a very 
simple example,  the same technique can be used t o  estimate 
the surface orientations. for such cases as walls of buildings in  
outdoor  scenes or of mechanical parts with textures. 

D .  Shadow Geometry 
Shadow gives good clues t o  the spatial relationship between 

objects and surfaces. Aerial photo  interpreters make much use 
of it in  estimating. for example, the height of the objects. Lowe 
and Binford [ 1 1 ] demonstrated the reconstructing of the shape 
of an airplane by using shadow information. They first paired 
shadow-making edges and cast-shadow edges on the ground by 
assuming the ground plane and the sun  angle. The height of 
the airplane along the contour  made of shadow-making edges 
was then estimated. and this gave the shape of the airplane. 

Shafer and Kanade [ 1 2 1  investigated a general and compact 
gradient-space representation of geometrical constraints given 
by shadow. Fig. I O  shows a basic shadow problem. I t  con- 
sists of the parallel-light illuniinator I .  the shadow-making 
(occluding) surface S o ,  and the shadow-cast surface S,. The  
problem includes six parameters t o  be computed:  the gradient 

V O S I  

Fig. 10. Basic shadow problem: the suffixes are given to  show the cor - 
respondences; for  example, Eo1 is a shadow making edge and E,1 is a 
corresponding shadow edge. 

C ,  = ( p , ,  q o )  of S o ,  the  gradient of G ,  = ( p , .  q s )  of S,, and 
the  direction of illumination ( P I .  q,). 

This problem can be  studied by considering two  other  sur- 
faces S11 and S12 (and their gradients G I ,  and G I * ) ,  each of 
which includes a pair of shadow-making and cast-shadow edges: 
for  example, EO1 and ES1 define S I l .  Note that S I 1  and S, 
make a concave edge along Es1, and so d o  S12 and S, along 
E S 2 .  Now three constraints are provided from the basic shadow 
problem geometry: I )  the angle C ,  - - C ,  in the gradient 
space should be determined by the angle between E o 1  and E,] 
in  the  image; 2) t he  angle G o  - G I ,  ..- C ,  is determined by the  
angle between E O 2  and ES2 ; 3) the direction of the line Laum 
(containing GI, and G I , )  is determined by the direction of 
E I ~  (line containing the twovertices K,:,,, and I/Si2). We would, 
therefore, expect that  three parameters must be given i n  ad- 
vance, and the  o ther  three can be  computed from the shadow 
information. Fig. 1 1 shows a construction for the case in which 
the  direction of illumination (actually the relative depth  com- 
ponent of illumination vector- one paranicter is given) and 
the orientation of shadow-cast surface (C , )  are known,  

The  basic shadow geometry provides three constraints, and 
thus  three parameters have t o  be  given by other  nieans t o  solve 
the problem. I t  is interesting t o  compare thissituation with the 
situation without shadows an image which only depicts So 
and S, intersecting along E,,. t lere,  there are four parameters 
( C ,  and C, )  t o  compute ,  and o n e  constraint from the  image 
(Eos),  so three pieces of information are still needed in advance. 
With shadows, the  same number of a priori  parameters are 
needed, and in this sense, shadows d o  not make the problem 
easier. However, the  geometrical significance of shadows is 
that  they allow information about  the  light source t o  be  used 
t o  solve the  problem as a substitute for information about  the  
surface orientations themselves. Practically, the information 
about the  light source,  such as t he  sun angle, is more available 
than the  surface orientations in the  scene in question. 

E. Perspective Distortions and Gradient Space 
The  gradient space has proved t o  be a useful tool in analyzing 

image properties in orthographics. I t  also possesses useful and 
interesting properties in perspective projections, such as those 
developed and summarized by Mackworth [ 131 and Shafer, 
Kanade, and Kender [ 141. The  difference between the ortho- 
graphic and perspective projections is that  in perspective pro- 
jection the  backprojection from image t o  scene (i.e., projecting 
the  image properties back t o  scene properties) is position- 
dependent:  that  is, the identical image feature found in a n  im- 
age corresponds t o  different scene properties depending on  the 
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Fig. 1 1 .  The construction in the gradient space for the basic shadow 
problem. Given GI and G,,  the computation o f  Go proceeds as 
follows: 

1) Draw the line parallel to  Et1 through the origin. Plot t T g t v e n  
G I  (it should be o n  this line). Let k be the distance from the o gin t o  
G I .  Draw the line ,Cilium so that it is perpendicular t o  E I ~ .  opposite 
t o  G I  with respect t o  the origin, and at the distance o f  I l k  from the 
origin. 

2)  Plot G,, which was given. Through this point, draw a line per- 
pendicular to  E s t .  Where it intersects ,Cilium must be G I ] .  Through 
G I ~ ,  draw a line perpendicular t o  Eel. Go must lie o n  this line. 

3) I;rom G,, draw a line perpendicular t o  E a .  Where it intersects 
Lglum will be C I ~ .  From there, draw a line perpendicular t o  Eo*. 
Since Go must lie o n  this line, the intersection o f  this line with the 
final line from step  2 )  above  must he Go. 

location of the  feature in the image. The  vanishing point of a 
line and the  vanishing line of a plane are the  fundamental no- 
tions in perspectives. Let us first see how they are related t o  
the gradients. 

In  its original definition, the  gradient ( p ,  q )  means a surface 
orientation whose surface normal vector is ( p ,  q ,  1). In  t he  
following discussion, it is convenient t o  extend this notion and 
think of the  gradient ( p ,  q )  as generally representing an orienta- 
tion vector ( p ,  q ,  l ) ;  that  is, when we have a 3D vector A = 
( A x ,  A y ,  A z ) ,  we can think of 

as representing the direction of A .  ( I n  [ 121, G A  is called a 
vector gradient.) 

Referring t o  Fig. 1 2 ,  suppose a 
3 D  line in the  scene is defined by (x,  y ,  z )  + a ( A x ,  A y ,  A z )  
for all values of a ,  where (x,  y ,  z) is a point o n  the  line and 
( A x ,  A y ,  A z )  is a direction vector of the  line. For  any a ,  the  
corresponding point on the  line is projected o n t o  the  image 
point Pa 

Vanishing Point of a Line: 

- x  - a A x  - y  - a A y  
z + a A z ’  z + a A z  

pa = 

As a grows larger, the  image point Pa converges t o  some point 
P, in the  image if A z  # 0 ( that  is, if the  line is not  parallel to 
the  image plane). 

G - - P m  IMAGE A -  
G R A n l t N T  SPACE 

Fig. 1 2 .  Vanishing point P, of  a line and the vector gradient GA. 

T h e  image point P, = ( x , ,  y,) is called the  vanishing point 
of the  line. 

There are three interesting relationships between gradient 
and vanishing point:  

1) P, = - G A ,  that  is, the  location of vanishing point in the 
image (x-y  plane a t  z = - 1)  for a 3D line is the  same as -GA 
(negative of the  vector gradient) in the  gradient space ( p - q  
plane). 

2)  Since P, depends only o n  the direction vector ( A x ,  A y ,  
A z ) ,  parallel lines have the same vanishing point. Conversely, 
each point in the image is the  vanishing point for a family of 
parallel lines. 

3) Suppose we  have a finite-length 3D line. It is depicted as 
a finite-length image line E.  Obviously, the vanishing point P, 
of the  3 D  line must lie on the  extension of image line E (Fig. 
12). The  vector gradient GA must,  therefore, lie o n  the line 
-E in gradient space, where - E  is the line which is 1) parallel 
t o  E ,  2 )  at  an  equal distance from the  origin as E, and 3) on 
the  opposite side of the origin from E .  However, as shown in 
Fig. 1 2 ,  an  important point here is that  GA cannot lie within 
the  portion directly corresponding t o  E but only within the  
portions corresponding t o  the extensions of E .  This means 
that  the  longer the  image line E ,  the narrower the  range for 
G A .  In o ther  words, in perspectives, by observing a longer 
part of the  3 D  line, we d o  obtain more information about the  
orientation of the line, whereas in orthography the  length of 
the  line does not  provide additional information about the 
orientation of the  line. 

Vanishing Line of a Surface: Suppose a surface S has a 
gradient Gs = ( p s ,  4s). Since any vector A = ( A x .  A y ,  A z )  
on S must be perpendicular t o  its surface normal ( p s ,  qs) ,  
we have a relationship ( p s ,  qs, I )  . ( A x ,  A y ,  A z )  = 0 o r  
G s  . GA = - 1. Since the  vanishing point of A isP, = - G A  

G s  .P, = 1 

or  

(8) 
This equation means tha t  given G s ,  then P, = (x,, y,) moves 
o n  a line in the  image. This line, the  locus of vanishing points 
for all vectors o n  the  surface, is called the vanishing line L ,  of 
the  surface (see Fig. 13).  The  vanishing line L ,  has the  follow- 
ing relationships with the  surface gradient C, : 

- p s x m  +4S.”m - I .  

L ,  is perpendicular t o  the  line from Cs to the  origin; 
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i c ,  
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I ‘\ 
IMAGE GRADIENT SPACE 

Fig. 1 3 .  Vanishing line L ,  o f  a plane and the surface gradient Gs. 

the distance from I,, t o  the origin, l / d m ,  is the  recip- 
rocal of the  distance from CS t o  the  origin; 

L ,  is on the  same side of the  origin as G s .  

Since L ,  depends only on Gs, parallel surfaces have the same 
vanishing line. Thus each line in  the  image is the  vanishing line 
for a family of parallel surfaces. Suppose E is a line in the  im- 
age. There exists a family of parallel surfaces for which E is 
the  vanishing line. These surfaces all have the  same gradient 
(since they are all parallel), which might be called the vanishing 
gradient for E ,  denoted by GF. Let E be defined by the  equa- 
t ion:  l = u x  + b y .  Then by comparing this with (8), we see 
(7; = ( a ,  b ) .  Thus for a line E in the  image, we can determine 
the associated vanishing gradient Cp ( the  gradient of the  sur- 
faces for which E is the vanishing line). Mackworth [ 131 calls 
the surface through E and the origin the plane of interpretation 
of E ;  the  “vanishing gradient” of a line is thus  the gradient of 
its plane of interpretation. 

This interrelationship among the  surface orientation, the  
vanishing line. and the vanishing gradient is a useful concept 
for recovering surface orientations from perspective distortions 
in the image. Most of the image properties due to.perspectives 
give constraints on the vanishing line. However, rather than 
trying to obtain the vanishing line directly, which tends t o  be 
less reliable and t o  be combinatorial, we can use the Hough 
transform technique in order t o  produce a histogram o n  the 
possible vanishing gradients. This type of method has been 
applied to images of convergent lines I I S ]  and to the image of 
textures [ 161. The  Gaussian sphere representation, rather 
than the gradient space, can be  also used for the  same problem 
1171.  

We have seen in 
Section 11-A that  the gradient space has a nice property which 
relates the  orientation of a connect edge in the  image with the  
gradients of constituent surfaces which make the edge in the 
scene. We now consider what constraints we obtain from a 
connect edge in perspective projection. 

Suppose a 3D edge A = ( A x ,  A y ,  A z )  is the intersection of 
t w o  surfaces with gradients G1 and C 2 .  Then  

Connect-Edge Relation Under Perspective: 

. 

GI . G A  = - I  

Gz . G A  = - I .  (9) 

Now also suppose that  A is visible in the image as a line E as 
shown In Fig. 14. By the  definition of GE and (8) 

Gp ‘ G A  = - I .  (10) 

Combining (9) and ( I O ) ,  we obtain 

possible Ga 
GRADIENT SPACE 

IMAGE 

Fig. 14. The connect-edge rule under perspectives. 

so 

Thus  the  vectors G ,  - GE and G2 . (7; are parallel in the  
gradient space; that  is, GF, G I ,  and C2 are collinear and on a 
single line L .  Also, this line I, in the  gradient space which con- 
tain GI, G 2  , and GF must he perpendicular t o  the line through 
the  origin and G A .  Fig. 14 illustrates these relationships. 

There is further an interesting restriction o n  the  position of 
the line L .  It must pass through GF. which 1s completely deter- 
mined by the location of the edge E in the image. Its slope de- 
pends on the gradient G A  . which, as described previously, must 
lie o n  the  line -E, but  not within the portion corresponding t o  
the edge itself. This constrains the orientation of I, such that  
the line passing through the origin and perpendicular t o  L can- 
not pass through the  inhibited portion of -E. Hence. the posi- 
tion and length of an edge in the image constrain the  gradients 
of surfaces containing the  corresponding vector in the scene. 

This  is the  connect-edge relation under perspective; it is t he  
perspective counterpart t o  the rule under orthography in Sec- 
tion 11-A. As for the relative positions of G I  and G 2  o n  the  
line L there is also a specific ordering relation depending o n  
the convexity or concavity of the edge [ 91 ; it is more complex 
than the case of orthography. since the  line of sight ( i ,e . ,  posi- 
tion in the image) must be taken in to  account under perspec- 
tive projection. 

111. TIII:OHY 01. GENEKALIZED C Y L I N D E R S  A N D  
CONTOUK A NALYSIS  

A type of volume description often used in vision is the  
generalized cylinder. I t  was first introduced by Binford 1181. 
Informally, the  generalized cylinders are the volume swept by 
a cross section moving along the  axis(or  the  spine). An ordinary 
cylinder is defined with a circular disc and a straight line axis. 
In  generalized cylinders, the cross section may be some planar 
figure and its size may vary as it moves along the  axis by the  
rule called a sweep function. The  spine may be a space curve. 
By a different combination of cross section, sweep rule, and 
spine curve, we  can represent a fairly large class of shapes as 
generalized cylinders. 

In  spite of their popularity, little work has been done o n  the 
formal properties of generalized cylinders. Shafer and Kanade 
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Fig. 1 5 .  ?he coordinate axe5 w u - - I v  of a Right Circular Straight Grn-  
cralized Cylinder (RCSGC). the vie\ving angle u. and the  viewer’s 
coordinates Y- I’-Z. 

[ 191 recently presented a n  analysis of the generalized cylinders 
based on  a formal definition and classification. 

A .  Right  Circular Straight Generalized Cylinders 

A genera l i~ed cylinder can he  specified by a three tuple ( A ,  
E ,  CY): A = ( x A  , y A  , z A  ) (s) is the axis which is a space curve 
defined with the parameter s; CY is the angle of inclination which 
defines the  u-u plane o f  the cross section relative t o  the  tan- 
gent to the  axis a t  A ( s ) :  E = U E )  ( t . s )  is a planar curve 
which specifies the  cross section with parameter t on the  u-u 
plane at A ( s ) .  While the generalized cylinder, in this general 
definition. can include a large class of shapes, interesting prop- 
erties are found for its subclasses. One such useful subclass is 
a Straight Ilotnogericous (icneralised Cj,linder (S l lGC) .  I n  the  
SHCX,  the  axis A ( s )  I S  a straight line, and the shape of the  cross 
section remains the same while its size may vary. Thus the  
cross section E can be decomposed in to  two  functions by E ( s ,  
t )  = r ( s )  C ( t ) .  where the contour func t ion  C ( t )  = (UC. UC) ( t )  
describes t h e  sliupc of the cross section. and the  radius func- 
tion r ( s )  describes its size. Furthermore. when the  cross sec- 
t ion is always perpendicular t o  the  axis (Le., the  angle of incli- 
na t ion  a = n/Z) and also the  cross section is circular. it is called 
a Right (’irculur Straight Generalized C),lirider ( R C S C C ) .  The 
contour function C ( t )  is given by  

C ( t )  = ( c o s  ? n t ,  sin 2nt) .  (11) 

The  RCSGC is a n  important subclass of generalized cylinder, 
because it represents a shape of revolution which is common in 
industry,  and because it is sufficiently constrained t o  allow in-  
teresting analysis from imagery without additional knowledge 
sources. In  fact. most of the  generalized cylinders used in 
vision are in this subclass [ 2 0 ] - [ 2 4 ] .  Although the formula- 
tions in the  paper by Shafer and Kanade [ 191 are given for 
more general cases, most of our  discussion in this paper will be  
for  t he  case of RCSGC’s. 

For an RCSGC, we can define a natural u-u-s object-centered 
coordinate system as shown in Fig. 15:  the  s-axis is along the  
axis o f  the  generalized cylinder and the  u-u plane defines the  
plane of cross sections; the  u-axis is chosen t o  provide a right- 
handed u-U-s coordinate system. Let us first derive expressions 
of points and surface normals of an RCSGC. 

For any values s and t ,  the point P ( s .  t )  = r ( s )  C ( t )  on the sur- 
face of the RCSGC is represented i n  u-u-s coortlinates(Fig. 15) 
as 

P ( s ,  t )  = ( u c ( t )  r ( s ) .  uc(t) r ( s ) ,  s)l,,s 

= ( r ( s )  cos 2nt. I ( S )  sin 2nt.  s),,,,. (12) 

Thus the  outward-pointing surface-normal vector N ( s ,  t ) 
at P ( s ,  t )  is therefore given by 

B. Contour Generators of  RCSGC’s 
Suppose we are looking at a RCSGC’s from a certain angle. 

A question arises about  what part of the generalized cylinder is 
observed as its contour  or silhouette. In  our  standard viewing 
coordinate shown in Fig. 1 .  the  s-axis and the y-axis are. respec- 
tively, aligned horizontally and vertically on the image plane, 
and the z-axis points towards the eye (or camera). We will 
limit our discussion here t o  orthographic projection. in which 
a world point (x, y .  z),,,~ is mapped onto the image point 

W e  can always assume that  the axis of the generali7ed cylinder 
is horizontal and aligned with the  x-axis in the image. because 
otherwise we can rotate the camera. That  is. we can assume 
the s-axis of the generalized cylinder lies on the x -s  plane. The 
angle from the viewer’s line of sight (z-axis) towards the cylin- 
der’s axis (s-axis) is named the  viewing angle u .  The relation- 
ship between the s- y- z  viewer’s coordinate frame a n d  the 
u-u-s cylinder’s coordinate frame now becomes as shown in 
Fig. 15.  

(x.  Y ) x y  . 

T h e  u-u-s and the x-y-z coordinates are related as 

( u ,  u ,  s ) ~ , ~  = ( u  cos u + s sin u. u ,  - u  sin u + s cos u - d),,,, , 

A point P ( s ,  t )  on  an RCSGC is. therefore. 

W, t )  = ( u c ( t )  r(s). uc(t) r(s),  s)~,,, 

= ( u c ( t )  r ( s )  cos u + s  sin u ,  u ~ ( t )  r ( s ) ,  

- u c ( t )  r ( s )  sin u + S  cos u).~,,,, 

and its image under orthography is 

I ( s ,  t )  = (xP,YP), ,  = ( u c ( t )  r ( s )  cos u + s  sin u ,  u c ( t )  r ( s ) ) s J ,  

In  general, suppose we project an object along the  direction 
of a vector F .  The  contours of those points on the  object 
where the surface is tangent t o  the  line of  projection (Le.. N .  
F = 0) are called contour generators 1 2 5 ) .  A contour of the  
object in t he  image is the  projection of a contour generator. 
(Of course, if the  object is opaque, some part of the contour 
generators may be hidden from view.) Also, if F is the illumi- 
nation direction, the contour  generator is the  self-shadow 
boundary . 

In  our viewing geometry shown in Fig. 15,  the viewing direc- 
tion F is given as 

F = (0, 0, l ) x y z  =(- sin  u, 0, cos u)uvs . (14)  

F r o m  (13), (141, and N . F  = 0, we  obtain the  equation o f  the  
contour  generators for  an  RCSGC in the u-u-s coordinates as 
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follows: 

dr 
ds 

sin u cos 27rt + cos u -- = 0 

that is, 

t = - 1 cos-] ( -cot  u 2). 
2n 

Top View 

showing contow qenerator 

t 
P eye 

This equation represents t ( t h e  parameter of the  cross sec- 
tion) as a function of s ( t h e  parameter of the  axis) along the  
contour generator. In other  words, at a particular point (s) on  
the axis, we can tell which points ( t )  on  the contour  constitute 
the contour  generator. The  po in t sP(s ,  t )  along the contour  
generator can now be specified as P c ~ ( s )  by substituting t in 
(12)  by ( 1 5 )  

dr/ds 
p C G ( s )  = 

Fig. 16.  The contour generator of an KCSGC in its side view. 
1 dr  

- T ( s )  cot u -, T ( S )  dl - cotZ o(dr/ds)’,  s uus. (1 6)  

Thus finally, we have obtained the image contour  of an RCSGC 
(i.e., the image of the contour generator) which is 

( dS 

Top View 

showing c o n l o ~ r  generator 

Icc;(s) = (XCC;, Y C G  Ixy  = 

(17)  

This is the equation of the image contour (or silhouette) of an 
RCSGC when viewed from an angle u with respect t o  the cylin- 
der axis. Note that in (16)  the contour generator is defined 
for such points that  satisfy 

dr ’ 
1 ~ cot’ 2 0 

This condition reveals very interesting properties of contours 
of the RCSGC that are somewhat different from our  intuition. 
To see this, suppose we begin with a side view (a = n/2) of the  
object,  and study the behavior of the  contour generator as we 
rotate the object towards an endview(u  = 0). Figs. 16-19 illus- 
trate how the contour  generators move with the viewing angle 
U .  At the start when u = n/2,  tan u is infinite and I dr/dsl < 
tan u for al l  s .  As shown in Fig. 16,  there is a single continu- 
ous contour generator on  the  object,  which will in fact be planar 
(running along the top  and bot tom of the object). 

As we rotate  the object slightly, u decreases and hence tan U, 

but as long as I drlds I < tan u everywhere, the contour genera- 
tor will still be continuous (Fig. 17). However, it will no longer 
be planar in general. As was defined in (1  l ) ,  the  value of  the  
parameter t specifics the position along the circular cross sec- 
tion: starting from the front ( t  = 0), the  top  ( t  = i), the  rear 
( t  = i), the bot tom ( t  = i), back t o  the front ( t  = 1). From 
(15),  we see that where drlds is 0, t = 4. That  is, where the 
radius of the cylinder is either minimum or maximum the  con- 
tour generator is on  “top” of the  object: in other  words, we 
see the real radius there. Where drJds < 0, t > i and the con- 
tour  generator is pushed away from us; where drlds > 0, the  
contour generator is pulled towards us. 

Let us presume for  the moment  tha t  the  object is thinner a t  

lmaae 

bs d r l d s  

Fig. 1 7 .  The contour generator in a near-side view. 

the near end, Le., dr/ds  < 0 toward the near end. Eventually, 
we rotate  t h e  object so much that drlds = - tan  u at some value 
of s, say s,, where dr/ds  is at a minimum (Fig. 18). At  this 
point, the contour  generator is tangent t o  the line of sight. 

If we rotate the object yet farther, as shown in Fig. 19 ,  
there will be an interval ( sa ,  s b )  around s, in which dr/ds  < 
- tan  U, that  is, for which no  contour  generator points exist. 
What has happened is that the former, single-contour generator 
has been split into t w o  separate contour generators, corre- 
sponding t o  values of s such that s sb and s < s a .  Along the 
contour  for  s 2 s b ,  all points will bevisible in the image. Mean- 
while, along the  contour for  s < sa,  the object itself will occlude 
part of the contour  generator, for  values of s above some value 
sc (where sc <s,)(segment X in Fig. 20). What we have seen 
is a single image contour  splitting into two  parts connected by 
a sort of “T” junct ion;  the split occurred a t  the point a t  which 
t h e  contour generator was tangent t o  the  line of sight. 
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Top v i e w  

showtng contour gmerolor 

I morae 

Fig. 1 8 .  The contour generator when tangent to  the line o f  sight. 

A 

Fig. 19. The contour generator split at a near-end view. 

Fig. 20. Recovery of the radius function from the silhouette. Pieces of 
contour correspond to  the disjoint intervals of s. 

When we look a t  a vase (which is an  RCSGC) we tend t o  
think tha t  t he  silhouette portrays the  fannost points on  the  
diameter a t  each cross section, and thus it represents the radius 
function.  Contrary to this intuitive perception, the phenomena 
illustrated in Figs, 16-20 show that the situation is much more 
complicated. 

C. Contour and Silhouette Analysis for RCSCCS 
Now let us consider the  reverse problem of projecting an  

RCSGC: that  is, the  problem of reconstructing a description of 
the  solid shape portrayed from a given visible (i.e., nonoccluded) 
contours of an  RCSGC such as Fig. 20. 

Recovering the Radius Function; For the  time being, we 
assume that  the  viewing angle u ( the  angle between the line of 
sight and the  axis of the generalized cylinder) is known.  For 
an RCSGC, we need only determine r ( s ) ,  the  radius function,  
t o  have a complete description of the shape. We may be tempted 
t o  simply use the  width of a contour  as representing the radius 
function r ( s ) ,  but  the discussion above on the contour genera- 
tor  has shown that  i t  is wrong t o  d o  so. 

Our  task here is t o  determine s and r ( s )  for any given contour 
point (XCG, yc~)~. in the  image. By doing this for all contour 
points, we can determine as much as possible about r ( s ) .  We 
have shown that  the contour  point ( X C C ; .  .J’,-(;)~. is given by 
(16). 

First, we can determine dr/ds as a function of dycc;/d.ucc; 
by the  following derivation: 

dyCG d y C G  ds dr 
-- - ( l / d s i n 2  u - cos2 u(dr /d s )2 )  -. 
dxCG ds dxCG ds 

Therefore 

dr dJ , ,  

ds dXCG 
- = (sin old1 + cos2 u(dycG/dxcG)Z  ) -. 

This is the relationship between the slope of the contour in 
the  image and the  slope of the  radius function along the axis. 
Now substituting for dr/ds in the definition of )tcG(s) and 
X C G ( S )  and solving them for r ( s )  and s. we obtain 

r ( s )  = YCG(S)  dl + cos2 u(dycc;/dxcG)’ 

XCG(S) - Y c G ( ~ )  cos2 U ( d y c G / d x c c )  
sin u 

S =  

Thus we have expressions for s ,  r ( s ) ,  and  dr /ds ,  in terms of 
X C G ~ ) ,  Y C G ( S ) .  and d ~ c ~ l d x c ~ .  The point (XC<;(S)..V~C;(S)) 
is the  image contour itself, and dycG/dxcc;  is the slope of the 
contour in image, and thus  both  can be measured in the given 
image. Note ,  however, that  the expression for s has a singularity 
when sin u is near 0: that  is, in an end view. 

Of course, as shown in ( I  8). there is a contour generator only 
where Idr/dsl < I tan 01; values of s for which Idr/dsl > I t an  ul, 
therefore, d o  not  correspond to any points on a contour gen- 
erator. Also part of the contour generator may be occluded. 
The  radius function r ( s )  cannot be determined for those values 
by examination of image contours.  Interestingly, however, for 
an interval of s over which r (s )  cannot be computed, say (si, s i ) ,  
we can sti l lcompute r(si). r(s ,) ,  dr/dslSi. and dr/dsl ( the  values 
and slopes of 4 s ) ) .  Therefore. in practical image analysis, it is 
possible t o  interpolate r (s )  over (si, s i )  by fitting a function 
which conforms to these boundary constraints. 

The preceding analysis has presumed that 

si 

Viewing A n g l e :  
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we know the viewing angle a and have aligned the image of the 
axis with the image x-axis. We will now address the  problems 
of aligning the image and determining a. This is in fact a very 
difficult problem. I f  the viewing angle cannot be determined, 
the reconstruction of r ( s )  may contain substantial errors. 

Suppose we are given an image of the contours of an RCSGC, 
arbitrarily scaled, rotated,  and translated, and viewed from an 
unknown angle. We can immediately determine the  image of 
the axis, since this will be an axis of symmetry in the image. 
By rotating and translating the image, this axis can be n a d e  t o  
line up with the x-axis. The  use of the  axis of the  pr$)jected 
image contour  is actually done in a few systems. ACRONYM 
[ 2 4 )  uses the axis of an image contour ,  which is called a ribbon, 
t o  align the image with the object model. Marr and Nishihara 
[ 2 3 ]  also use the  axes for object matching. Extremely fore- 
shortened images seem t o  b e  difficult for  perception even by 
humans because they d o  not provide this cue of axis or ier tat ion.  

For  determining the viewing angle (5 together with knowing 
which end is closer, the image of the  cross section at either end, 
if available, provides much information. If  the  closer end of 
the object is flat (i.e., r (  1) > 0 ) ,  then the edge of the cross sec- 
tion a t  that  end will produce a contour  in the  image, which 
will be a n  elongated ellipse. We then know that the center of 
the ellipse must be the image of the axis endpoint A (  1). Fur- 
ther, we can compute the  viewing angle a from the eccentricity 
of the ellipse, using cos u = b / a ,  where a and b are the semi- 
major a n d  semiminor axis lengths, respectively. I f  the farther 
end of the object is flat and not  occluded (Le., ~ ( 0 )  > 0 and 
dr/dslo < tan a), then we will see half of an ellipse, which can 
be analyled as above to  determine the image of A ( 0 )  and a. 

I f  neither cnd can be analyzed in this manner, outside infor- 
mation must be used. In practice, there are several potential 
sources for sufficient information t o  determine the viewing 
angle, or at least its range, such as knowledge of the permissible 
object's length or  width. This is in fact what ACRONYM [ 241 
does in estimating the object parameters. 

1V. CONSTHUCTION 01,' 3D DESCRIPTIONS 

The theories presented in the previous section extract natural 
geometrical constraints under reasonable, mostly task-indepen- 
dent assumptions, However, the information they provide is 
fragmental in  the sense that it is about  the orientations of local 
surfaces o r  about  the  shape of individual objects. 

The goal of the visual process, however, is to  construct a 
complete description of the scene which is sensed by visual 
methods. It must be recognized that  this goal is different from 
classifying parts of an image, detecting the object existence, o r  
segmenting the images. The difference is most easily under- 
stood in the scenario of robot  navigation where classification 
or  detection is not enough t o  plan actions of the robot:  it must 
have a 3D description of  its environment. 

A .  Incremental Acquisition of 30  Descriptions 

At Carnegie-Mellon University, Herman and Kanade 126) are 
developing a system called Incremental 3D Mosaic, which builds 
a scene description from a sequence of (stereo) images. I t  is 
currently applied t o  an urban scene f o r  building a 3D model o f  
the  task area from low-altitude aerial photos. The  reason for  
building the description incrementally is that a single pair of 
stereo photos can give only partial information about  the scene: 
only limited portions are visible in bo th  images and the stereo 
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Fig. 21.  The flowchart of the Incremental 3D Mosaic system, showing 
major modules (boxes) and data structures (ellipses). 

system cannot be perfect anyway. As new images become 
available, new information must be incrementally added t o  a 
current description, while maintaining consistency: the infor- 
mation on  the portions of the scene which become visible should 
be added, and the  information o n  the previously known por- 
tion should be used to  improve the description, either by cor- 
recting errors or  by increasing the precision of the description. 
Also important  is that the partial description still provides 
knowledge which is usable for interpreting the new images o r  
planning actions. 

Fig. 21 shows the general flow of the  system. The  system 
has the following components: a junction-based stereo analyzer 
that generates a 3D wireframe representation of the scene; a 
3D model builder and modifier that  takes the wireframe repre- 
sentation and constructs a surface-based description of the 
scene; and a view generator that synthesizes natural-looking 
images of the  scene from the model, given an arbitrary viewing 
angle. 

B. Edge and Corner Findings from Images 
Given a stereo pair of images, the first thing to d o  is to  ex- 

tract 3D information from them. Fig. 22(a) shows examples 
of input stereo images. First, lines and junctions are extracted 
from them. The results are shown in Fig. 22(b). Then,  junc- 
tions and lines are matched. They are mostly corners and edges 
of buildings. Here we use the fact that buildings are mostly 
block-shaped, and that they have vertical (gravitational) edges. 
This allows one t o  hypothesize the changes of junction appear- 
ances along the epipolar line of stereo, and to  cope with the 
difficulty inmatching wide-angle stereo images that include large 
disparity jumps, such as urban scenes. We can compute the 3D 
locations of the matched junctions and lines. As a result, we 
obtain 3D wireframes. Fig. 22(c) shows their perspective view. 

C. Representation of Model: Structure Graph 
The wireframe representation does not yet identify surfaces. 

The next step is t o  perform reasoning on the surfaces. This is 
done by assigning planar surfaces so that an enclosed object is 
obtained with the wireframes as edges. The process is similar 
t o  obtaining solid objects from wireframes [ 271, but since we 
assume that our  wireframes are not always complete, we must 
combine edges if they are close, generate web faces from a set of 
edges which partially enclose, merge partial faces, hypothesize 
vertical faces if necessary, etc. There are mutual relationships 
and constraints among the edges and faces concerning which 
evidence supports which hypothesis. In order to  maintain such 
relationships, constraints on  3D structure are represented in 
the form of  a graph, called the  structure graph. This graph is 
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(C) 

Fig. 22.  Image analyses in Incremental 3D Mosaic. (a) Images of right 
and left views. (b) Line segments extracted. (c) Perspective view o f  
3D wireframes which are made by edges obtained by stereo matching. 

incrementally constructed through the addition of topological 
and geometrical constraints which are represented by the nodes 
and links. As constraints are accumulated in the  graph, their 
effects are propagated t o  other  parts of the graph so as t o  ob -  
tain globally consistent interpretations. 

The current structure-graph representation models surfaces 
in the scene as polyhedra whose components are the  faces, 
edges, and vertices. We distinguish the topology of the poly- 
hedral components  from their geometry (281, (291.  The 
geometry involves the  physical dimensions and location in 
3D space of each component ,  while the topology involves 
connections between the  components.  

In the structure graph, nodes represent either primitive topo- 
logical elements (faces, edges, vertices, objects, and edge groups 
which are rings of edges on  faces), or primitive geometric ele- 
ments (planes, lines, and points). Vertex, face, and edge nodes 
are t a s e d  as either confirmed or unconfirmed. Confirmed 
means that the element represented by the node has been de- 
rived directly from the images. Unconfirmed means that the 
element has only been hypothesized. 

T h e  primitive geometric elements serve t o  constrain the 3D 
locations of faces, edges, and vertices. Plane and line nodes 
contain plane and line equations, respectively. Point nodes 
contain coordinate values. The graph contains two types of 
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Flg. 2 3 .  Propagation o f  constraints in modifying the structure graph. 

Rectangular boxes indicate geometric constraints on topological nodes. 
Arrows indicate direction o f  propagation o f  constraints. 

links: the part-of link, representing the  part/whole relation be- 
tween t w o  topological nodes, and the geometric constraint 
link, representing the constraint relation between a geometric 
and topological node. 

D. Modifications to Model 
Modifications t o  the model will occur as part of the process 

of incremental construction. Deletions and changes are made 
when new information is found t o  conflict with information 
currently contained in the model. This happens most of ten 
with portions of the model that have been hypothesized. 
Additions to the model are made t o  incorporate the  new 
information. 

Modifications t o  the  structure graph are made by adding o r  
deleting nodes and links, or changing the equations of  line and 
plane nodes, or  the coordinates of point nodes. All effects o f  
modifications are propagated t o  other  parts of the  graph. 

As an example, consider adding o r  deleting a geometric con- 
straint link between a geometric and topological node. Any of  
the three geometric nodes- points, lines, and planes-may con- 
strain any of the three topological nodes-vertices, edges, and 
faces. Fig. 23  shows how a constraint on  one node may propa- 
gate t o  others. The arrows in the  figure indicate the  direction 
of propagation. For example, if a point constrains a vertex, it 
must also constrain all edges and faces containing that vertex. 
Similarly, a point that constrains an edge also constrains all 
faces containing that edge. 

When a geometric constraint link is deleted, the  rest of the  
structure graph must be made consistent with this change. Our 
approach to  this problem is based on  the TMS system [ 301 ,  
using the notion that when an assertion is deleted, all assertions 
implying it and all assertions implied by it should also be de- 
leted, unless they have other  support.  Assertions that  imply a 
given assertion are obtained by following backwards along the  
arrows in Fig. 23.  Assertions implied by a given assertion in- 
volve following forward along the arrows. 

E. Display 
I n  our examples, the 3D description of the buildings in the  

area is constructed as a set of polyhedra. A perspective view 
of the model is displayed as shown in Fig. 24(a). Once we 
have such a surface description, we can crop image patches 
from original images t o  know the normalized appearances of 
surfaces (e.g., window patterns). A natural looking display can 
be generated for the scene viewed from any angle by appropri- 
ately transforming such appearances according t o  surface orien- 
tations. Fig. 24(b) is an  example of such synthesized images. 
In such a synthesized image, parts of surfaces which were not  
visible in the  original images are displayed distinctively as such. 

This kind of description is useful, for example, for  planning 

(b) 
Fig. 24. The scene model from Incremental 3D Mosaic. (a) Plane- 

surfaced models o f  buildings. (b) Synthesized image o f  the scene 
from the angle different from the original angle. 

the angles that the  next images should take: it is generally 
better to  cover as much of the  nonvisible portions as possible t o  
increase the  knowledge of  the task area. This scenario of 
Incremental 3D Mosaic is applicable t o  robot navigation and 
t o  change detection in a scene. 

V. CONCLUSION 

We have identified 3D geometrical aspects as a crucial issue 
in vision. The  key feature t o  be achieved is the capability t o  
construct scene descriptions from images. Theories and sys- 
tem, which deal with 3D shape information in three different 
levels-surface patch, volumetric-object shape, and scene de- 
scription-were presented. Throughout the discussion, em- 
phasis has been put on: 

computational aspects of vision t o  handle the reaitionship 
between 3D shape and images; 

converting the  knowledge of projective geometry into con- 
straint expressions in the appropriate representation space ; 

obtaining scene descriptions as the goal of an image-under- 
standing program 

Noteworthy is that  the  higher the  level of description, the 
more it tends t o  use the task-specific knowledge: the theories 
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in the surface-patch level mostly depend o n  the task-indepen- 
dent physical-level knowledge such as projective geometry, 
whereas the  Incremental 3D Mosaic system also relies o n  the  
domain knowledge such as polyhedral buildings in the  urban 
scenes. 

The  techniques and approaches in obtaining and representing 
geometrical constraints from the  physical level of knowledge 
are very important.  The  key idea is to model t h e  projection 
process and represent it in a form that  can b e  used for  inverse 
projection in conjunction with other  constraints involved in 
interpretation. I t  is noteworthy that  t h e  forward projection 
rules are simple and fairly well understood. But they are of ten 
so local or microscopic that  their direct application may result 
in huge equations that are difficult t o  manipulate. Appropriate 
representational spaces, such as gradient space, enable them t o  
be applied in a macroscopic manner. 
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