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Geometrical aspects of possibility measures on finite
domain MV-clans

Tommaso Flaminio · Llúıs Godo · Enrico Marchioni

Abstract In this paper we study generalized possibil-

ity and necessity measures on MV-algebras of [0, 1]-

valued functions (MV-clans) in the framework of idem-

potent mathematics, where the usual field of reals R is

replaced by the max-plus semiring Rmax. We prove re-

sults about extendability of partial assessments to pos-

sibility and necessity measures, and we characterize the

geometrical properties of the space of homogeneous pos-

sibility measures. The aim of the present paper is also

to support the idea that idempotent mathematics is the

natural framework where to develop the theory of possi-

bility and necessity measures, in the same way classical

mathematics serves as a natural setting for probability

theory.

Keywords Possibility measures, MV-algebras,

Idempotent mathematics, Max-plus convexity.

1 Introduction and motivation

Possibility and necessity measures [9,31] on a Boolean

algebra B = (B,∧,∨,¬, 1B , 0B) are [0, 1]-valued, non-

additive mappings µ : B → [0, 1] that can be framed

in the context of plausibility measures [17] (also called

Sugeno or fuzzy measures [29]). A plausibility measure

µ : B → [0, 1] is just a normalized (µ(1B) = 1, and

µ(0B) = 0) and monotone (for all u, v ∈ B such that

u ≤ v, then µ(u) ≤ µ(v)) mapping. Then,

– a possibility measure on B is a plausibility measure

Π : B → [0, 1] satisfying

Π(u ∨ v) = max{Π(u), Π(v)},
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and

– a necessity measure on B is a plausibility measure

N : B → [0, 1] such that

N(u ∧ v) = min{N(u), N(v)}.

In [10] (see also [11]), we consider possibility and neces-

sity measures on (finite) MV-algebras [6,4] as a natural

generalization of classical possibility and necessity mea-

sure on Boolean algebras. Indeed, any Boolean algebra

is an MV-algebra, and moreover, in any MV-algebra

A, the set of idempotent elements is the domain of a

Boolean subalgebra of A. In this sense, MV-algebraic

possibilities and necessities generalize the classical mea-

sures.

In Section 2, we recall the basic definition and the

properties of possibility and necessity measures on MV-

algebras. In particular, we concentrate on a representa-

tion theorem for homogeneous possibilities and necessi-

ties on MV-clans, in terms of a quasi Sugeno integral,

as shown in [10, Theorem 3.3]. Sugeno, and general-

ized Sugeno integrals, can be regarded as the analogous

versions of Riemann integral within the framework of

idempotent mathematics (see [22] for a basic survey).

Idempotent mathematics is based on the idea of replac-

ing the usual arithmetic operations on reals by a new

set of operations in such a way that the usual addi-

tion is substituted by an idempotent binary operation

(usually max or min). The typical example, which is in

fact crucial for the understanding of this paper, is the

following: let R be the field of real numbers; then the

max-plus idempotent version of R is the semiring Rmax,

whose domain is R∪{−∞}, and where the operation of

sum is replaced by max, and product between reals is

replaced by the usual sum. The semiring Rmax can be

regarded as the transformation of the real field R via

the Maslov dequantization, which is related to the well-

known logarithmic transformation that was used, e.g.,
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in the classical papers by Schrödinger [28] and Hopf

[19]. It is worth noticing that the semiring Rmin, ob-

tained by replacing max by min in Rmax, is the idem-

potent semiring which the rapidly growing discipline

named tropical mathematics is built on [8,27]1.

In this paper we follow the intuition that the real

idempotent semiring Rmax is the natural framework to

study possibility measures, while Rmin is appropriate

for necessity measures on MV-algebras; in an analogous

form, the real field R is the natural setting to study

states (probabilities) on MV-algebras [23]. Indeed we

are going to prove that the algebraic and geometrical

properties that hold for states, and that allow to extend

de Finetti’s coherence criterion to MV-algebras (cf. [21,

24]), naturally hold as well for possibility and necessity

measures, when framed in the algebraic and geometrical

setting of idempotent mathematics.

In fact, after this introduction and some prelim-

inaries in next section, in Section 3 we characterize

those partial and finite assessments that can be ex-

tended to possibility and necessity measures. Then, in

Section 4, we focus on geometrical properties of the

space π([0, 1]X) of homogeneous possibility measures

defined over a finitely generated MV-clan [0, 1]X . In

particular, we prove that π([0, 1]X) is max-plus convex

(i.e. convex in the sense of Rmax), and we show that

the class of its extremal points coincides with the class

Hom([0, 1]X , [0, 1]) of real valued MV-homomorphisms

of [0, 1]X , that, in turn, coincides with the class of ex-

tremal states over [0, 1]X [23, Theorem 2.5]. Since any

convex, max-plus convex, and min-plus convex set is

fully characterized by its extremal elements, this last

characterization indirectly proves that different uncer-

tainty measures such as states, possibilities and necessi-

ties are characterized by the mathematical framework

we choose to represent the nature of the uncertainty

we are dealing with, rather than the way we choose to

evaluate the information (i.e. the way we interpret the

extremal measures).

This last consideration sheds a new light on uncer-

tainty theories whose consequences we plan to investi-

gate in our future work.

Finally, we would like to point out that the results

we are going to present naturally apply to possibility

1 Papers on idempotent and tropical mathematics, usually
adopt the following notation: the idempotent operation is de-
noted by ⊕, while � denotes the usual sum. This notation
is justified because the idempotent operation substitutes the
sum, and the sum substitutes the product in the real field
R. In this paper, conversely, we will not adopt this notation
because it would be misleading with respect to those used in
many-valued logic (see Section 2), where ⊕ and � represent
respectively a t-conorm, and a t-norm. For this reason, we
will keep the standard notation for max, min, +, and ·.

and necessity measures defined on Boolean algebras as

well. To the best of our knowledge the characterizations

we provide are new, even for the classical case.

2 Preliminaries: MV-algebras, states and

possibility measures

The language of  Lukasiewicz logic  L (cf. [6,16]), consists

of a countable set of propositional variables {p1, p2, . . .},
the binary connective →, and the truth constant ⊥.

Formulas are defined by the usual inductive clauses.

The following formulas provide an axiomatization for

 L:

( L1) ϕ→ (ψ → ϕ)

( L2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

( L3) ((ϕ→ ⊥)→ (ψ → ⊥))→ (ψ → ϕ)

( L4) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

The rule of inference of  L is modus ponens: from ϕ and

ϕ→ ψ, deduce ψ.

Further connectives in  L are definable as follows:

¬ϕ = ϕ → ⊥; ϕ⊕ ψ = ¬ϕ → ψ; ϕ� ψ = ¬(ϕ → ¬ψ);

ϕ ∨ ψ = (ϕ→ ψ)→ ψ; ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ); > = ¬⊥.

 Lukasiewicz logic is an algebraizable logic in the

sense of Blok and Pigozzi [1], and its equivalent al-

gebraic semantics is constituted by the class of MV-

algebras [4,6]. In algebraic terms, an MV-algebra is a

structure A = (A,⊕,¬, 0A) of type (2, 1, 0) satisfying

the following equations:

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(MV2) x⊕ y = y ⊕ x,

(MV3) x⊕ 0A = x,

(MV4) ¬¬x = x,
(MV5) x⊕ ¬0A = ¬0A,

(MV6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

Further (definable) operations can be defined from ⊕,¬
and 0 in a similar way as for the logical connectives

above. In particular: x � y = ¬(¬x ⊕ ¬y); x ∨ y =

¬(¬x⊕ y)⊕ y; x ∧ y = ¬(¬x ∨ ¬y); 1A = ¬0A.

The class of MV-algebras forms a variety that we

denote by MV.

Example 1 The following are four relevant examples of

MV-algebras:

(1) Every Boolean algebra is an MV-algebra, and more-

over for every MV-algebra A, the set B(A) = {x ∈
A : x ⊕ x = x} of its idempotent elements is the

domain of the largest Boolean subalgebra of A. The

algebra having B(A) as universe is usually called

the Boolean skeleton of A.

(2) Define on the real unit interval [0, 1] the operations

⊕ and ¬ as follows: for all x, y ∈ [0, 1],



Geometrical aspects of possibility measures on finite domain MV-clans 3

x⊕ y = min{1, x+ y}, and ¬x = 1− x.

Then the structure [0, 1]MV = ([0, 1],⊕,¬, 0) is an

MV-algebra. The MV-algebra [0, 1]MV is generic for

the variety of MV-algebras (i.e. it generates the whole

variety) and is usually called the standard MV-algebra.

In equivalent terms,  Lukasiewicz logic is complete

with respect to the semantics defined by the stan-

dard MV-algebra.

(3) Fix a k ∈ N, and let F (k) be the set of all the

McNaughton functions (cf. [6]) from the hypercube

[0, 1]k into [0, 1]. In other words, F (k) is the set of

all those functions f : [0, 1]k → [0, 1] which are con-

tinuous, piecewise linear and such that each piece

has integer coefficients. The following pointwise op-

erations defined on F (k),

(f ⊕ g)(x) = min{1, f(x) + g(x)}, and

(¬f)(x) = 1− f(x),

make the structure F(k) = (F (k),⊕,¬, 0) into an

MV-algebra, where 0 clearly denotes the function

constantly equal to 0. Actually, F(k) is the free MV-

algebra over k generators.

(4) Let X be a non-empty set, and let [0, 1]X the set of

all functions form X into [0, 1], endowed with oper-

ations defined by the pointwise application of those

in [0, 1]MV . The structure [0, 1]X is clearly MV-

algebra. Every MV-subalgebra of [0, 1]X is called an

MV-clan (cf. [2,25]).

It is worth noticing that in [0, 1]MV , the standard in-

terpretation of the lattice operations of ∧ and ∨, is re-

spectively in terms of min and max. Therefore, we will

henceforth use both the notations ∧ and min, and ∨
and max, without danger of confusion.

In this paper we will concentrate on MV-algebras

which are MV-clans [0, 1]X defined over a finite set X.

These algebras can be identified with those being a fi-

nite direct product of [0, 1]MV . In what follows, to stress

the fact that the elements in [0, 1]X are functions de-

fined over a finite domain, we will call those algebras

finite domain MV-clans.

2.1 States on MV-algebras

By a state on an MV-algebra A (cf. [23]) we mean a

map s : A→ [0, 1] satisfying the following:

(i) s(1A) = 1,

(ii) for every x, y ∈ A such that x� y = 0A, s(x⊕ y) =

s(x) + s(y).

We denote by S(A) the subset of [0, 1]A whose elements

are the states on A.

The restriction of every state s to B(A), the Boolean

skeleton of A, is a finitely additive probability measure.

Vice versa, states on MV-algebras can be represented

by means of the Lebesgue integral of regular Borel prob-

ability measures. The following representation theorem

was independently proved by Kroupa [20, Theorem 28]

and Panti [26, Proposition 1.1]2.

Theorem 1 (Kroupa-Panti) For every MV-algebra

A, there exists a canonical bijective correspondence be-

tween S(A) and the set P(Hom(A, [0, 1]MV )) of regular

Borel probability measures on the set Hom(A, [0, 1]MV )

of homomorphims of A into [0, 1]MV .

States on MV-algebras enjoy a similar characteri-

zation in terms of reversible betting schemes as in the

case of finite additive probabilities on Boolean events

by means of the so-called de Finetti’s coherence crite-

rion. According to de Finetti (cf. [7]), a [0, 1]-valued

assessment χ : χ(ϕ1) = α1, . . . , χ(ϕn) = αn of classi-

cal events ϕ1, . . . , ϕn (represented as formulas of clas-

sical Boolean logic) is said to be coherent iff there is

no system of reversible bets on the events which leads

to a sure win independently of the truth status of the

events ϕ1, . . . , ϕn. In other words, the assessment χ is

coherent iff for every λ1, . . . , λn ∈ R, there is a classical

{0, 1}-valued truth-evaluation V such that∑n
i=1 λi(αi − V (ϕi)) ≥ 0. (C)

The celebrated de Finetti’s Theorem states that an

assessment is coherent iff it can be extended to a finitely

additive measure on the Boolean algebra of formulas.

In other words, χ : ϕi 7→ αi is coherent iff there exists

a finitely additive measure P on formulas such that

P (ϕi) = αi for each i.
In [24], Mundici extends de Finetti’s coherence cri-

terion to formulas of the infinitely-valued  Lukasiewicz

calculus. In this setting, the notion of a coherent assign-

ment is exactly as above, but requires the existence of a

[0, 1]-valued  Lukasiewicz truth-evaluation V instead of

the existence of a Boolean truth-evaluation V in con-

dition (C) . In particular, Mundici proves the following

theorem. 3

2 It is worth noticing that, while Kroupa proved the follow-
ing Theorem 1 in the case of semisimple MV-algebras, Panti
showed that the hypothesis on the semisimplicity of the MV-
algebra can be relaxed, since, for every MV-algebra A, there
is a canonical bijection between the class S(A) of all the states
on A, and the class S(A/Rad(A)) of all the states on its most
general semisimple quotient A/Rad(A)
3 It is worth noticing that Kühr and Mundici [21, Corollary

4.3] extend de Finetti’s coherence criterion to any algebraiz-
able (cf. [1]) logic LΩ whose equivalent algebraic semantics
is given by the algebraic variety generated by the algebra
([0, 1], Ω), where Ω denotes a set of continuous operations on
[0, 1]. Therefore the following theorem can be reasonably seen
as a particular case of [21, Corollary 4.3].
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Theorem 2 Let ϕ1, . . . , ϕn be formulas in the language

of  L, and let χ : ϕi 7→ αi be a [0, 1]-valued assessment.

Then the following are equivalent:

(1) χ is coherent,

(2) χ extends to a state on F(k) (where k is the number

of propositional variables occurring in the ϕi’s),

(3) χ extends to a convex combination of at most n+ 1

homomorphisms of F(k) into [0, 1]MV

Notice that the equivalence (1)-(3) of above theorem

establishes that, if ϕ1, . . . , ϕn are formulas of  L, then

an assessment χ : ϕi 7→ αi (for i = 1, . . . , n) is coherent

iff there exist at most n+ 1 homomorphisms h1, . . . , ht
into [0, 1]MV and t real numbers λ1, . . . , λt, such that

t∑
i=1

λi = 1, and for all j ∈ {1, . . . , n},

αj =

t∑
i=1

λi · hi(ϕj).

2.2 Possibility and necessity measures on MV-algebras

Recall from Section 1 that a possibility measure on a

Boolean algebra B is a plausibility measure Π : B →
[0, 1] such that the following ∨-decomposition property

Π(u1 ∨ u2) = max(Π(u1), Π(u2))

holds, while a necessity measure is a plausibility mea-

sure N : B → [0, 1] satisfying the ∧-decomposition

property

N(u1 ∧ u2) = min(N(u1), N(u2)).

Possibility and necessity are dual classes of measures,
in the sense that if Π is a possibility measure, then the

function

N(u) = 1−Π(¬u) (1)

is a necessity measure, and vice versa. If B is the power

set of a set X, then any dual pair of measures (Π,N) on

B is induced by a normalized possibility distribution, i.e.

a mapping π : X → [0, 1] such that, supx∈X π(x) = 1,

and, for any S ⊆ X,

Π(S) = sup{π(x) | x ∈ S} and

N(S) = inf{1− π(x) | x 6∈ S}.
with the usual assumption that sup ∅ = 0 and inf ∅ = 1.

In [10], we considered natural extensions of the no-

tion of possibility and necessity measures on MV-algebras4.

4 In [10], we actually introduced the slightly more gen-
eral notion of L-valued possibility (necessity) measure on an
MV-algebra, where L is in any MV-chain. In this paper, we
concentrate on [0, 1]-valued maps, and hence we will simply
speak about “possibility” (resp. “necessity”) measures, with-
out specifying that [0, 1]MV serves as range for the measures.

Definition 1 ([10]) Let A = (A,⊕,¬, 0A) be an MV-

algebra. A map µ : A→ [0, 1] such that µ(1A) = 1, and

µ(0A) = 0 is said to be:

(i) a possibility measure on A (and we will denote it by

Π), provided that µ(u ∨ v) = max{µ(u), µ(v)} for

any u, v ∈ A;

(ii) a necessity measure on A (and we will denote it by

N), provided that µ(u ∧ v) = min{µ(u), µ(v)} for

any u, v ∈ A.

Clearly, the decomposition property for µ in terms of

the max (resp. min) operator shows that possibility

(necessity) measures are monotone maps. Moreover, it

is worth noticing that possibility and necessity mea-

sures remain dual as in the classical case: if Π is a

possibility measure on A, then the map N , defined as

N(u) = 1 − Π(¬u), is a necessity measure on A (and

vice cersa).

Key examples of possibility and necessity measures

over finite domain MV-clans are the following. Let X

be a finite set, let [0, 1]X be the corresponding finite

domain MV-clan, and let π : X → [0, 1] be a normalized

possibility distribution over X (i.e. π is any mapping for

which there exists at least an x ∈ X, with π(x) = 1).

Consider the following maps from [0, 1]X into [0, 1]: for

every f ∈ [0, 1]X ,

Π(f) = max
x∈X

π(x)� f(x), and

N(f) = min
x∈X

(1− π(x))⊕ f(x).
(2)

In a similar way (probabilistic) states are related to

Lebesgue integrals, this kind of possibility and necessity

measures over MV-clans are related to a class of gener-

alized Sugeno integrals [29]. Indeed, given a plausibility

measure µ : 2X → [0, 1], the �-quasi Sugeno integral of

a function f : X → [0, 1] with respect to µ [30,15] is

defined as

S
∫
f dµ = max

i=1,...,n
f(xσ(i))� µ(Aσ(i)) (3)

where σ is a permutation of the indices such that

f(xσ(1)) ≥ f(xσ(2)) ≥ . . . ≥ f(xσ(n)),

and Aσ(i) = {xσ(1), . . . , xσ(i)}. When µ is a (classical)

possibility measure on 2X induced by a (normalized)

possibility distribution π : X → [0, 1], i.e. when µ(A) =

max{π(x) | x ∈ A} for every A ⊆ X, then the above

expression of the generalized Sugeno integral becomes

(see e.g. [3])

S
∫
f dπ = max

x∈X
π(x)� f(x) = Π(f). (4)

Let L ⊆ [0, 1]. Then, a necessity measure N on

[0, 1]X is said to be L-homogenous provided that for
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every r ∈ L, and for every f ∈ [0, 1]X , N(r ⊕ f) =

r⊕N(f), where r ∈ [0, 1]X denotes the function that is

constantly equal to r. A possibility measure Π : A →
[0, 1] is said to be L-homogenous provided that its dual

necessity N defined as in (2) is L-homogenous, or in

other words, such that Π(r � f) = r � Π(f). A pos-

sibility (necessity) measure which is [0, 1]-homogenous

is simply said to be homogenous. The class of all the

homogenous possibility measures over [0, 1]X will be

henceforth denoted by π([0, 1]X).

The next theorem offers an axiomatic characteriza-

tion of those measures for which there exists a possi-

bility distribution that allows a representation in terms

of a generalized Sugeno integral. The formulation we

provide here is very general and makes only use of

the structure of De Morgan triplets5 over the real unit

interval. The following result applies therefore to the

specific De Morgan triplet (�,⊕,¬) where [0, 1]MV =

([0, 1],⊕,¬, 0) is the standard MV-algbera.

Theorem 3 ([11]) Let X be a finite set, let (�̂, ⊕̂,¬)

be a De Morgan triplet, and let N,Π : [0, 1]X → [0, 1]

be a necessity and a possibility measure (respectively)

that are dual, i.e. they satisfy N(f) = ¬Π(¬f) for each

f ∈ [0, 1]X . Then, Π and N are homogeneous

if and only if there exists π : X → [0, 1] such that

Π(f) = maxx∈X π(x) �̂ f(x) and N(f) = minx∈X ¬π(x) ⊕̂ f(x).

Proof Suppose N is such that N(r ⊕̂ f) = r ⊕̂N(f) for

every f ∈ [0, 1]X and r ∈ [0, 1]. It is easy to check that

every f ∈ [0, 1]X can be written as

f =
∧
x∈X

xc ⊕̂ f(x),

where xc : X → [0, 1] is the characteristic function of

the complement of the singleton {x}, i.e. xc(y) = 1 if

y 6= x and xc(x) = 0, and f(x) stands for the constant

function of value f(x).

Now, by applying the axioms of a necessity mea-

sure and the assumption that N(r ⊕̂ f) = r ⊕̂N(f), we

obtain that

N(f) = N

( ∧
x∈X

xc ⊕̂ f(x)

)
= min

x∈X
N
(
xc ⊕̂ f(x)

)
= min

x∈X
N(xc) ⊕̂ f(x).

Finally, by putting π(x) = 1−N(xc), we finally get

N(f) = min
x∈X

(1− π(x)) ⊕̂ f(x),

5 A De Morgan triplet (see e.g. [12]) is a 3-tuple (�̂, ⊕̂,¬)
where �̂ is a t-norm, ⊕̂ a t-conorm, ¬ a strong negation func-
tion such that x ⊕̂ y = ¬(¬x �̂ ¬y) for all x, y ∈ [0, 1].

which, of course, by duality implies that

Π(f) = max
x∈X

π(x) �̂ f(x)

The converse is easy. �

It is worth noticing that in the above Theorem 3, when

¬ is the standard negation ¬ : x ∈ [0, 1] 7→ 1− x, then

the possibility and the necessity measures Π and N are

dual in the sense of (2).

3 Extension theorem for possibility measures

via max-plus convex sets

In this section we will first introduce the necessary no-

tions from max-plus convexity theory. We invite the

reader to consult [13,32] and the references therein for

a more complete treatment. The main structures we

need for our investigation are defined as follows: ex-

pand the real line R by −∞, and consider the structures

Rmax = (R ∪ {−∞},∨,+,−∞, 0) and Rmin = (R ∪
{−∞},∧,+,−∞, 0). Rmax and Rmin, where ∨ and ∧
denote the max and min operators respectively, are re-

spectively called the max-plus, and the min-plus semir-

ing, and they serve as standard setting for the develop-

ment of idempotent mathematics. Although it might be

redundant, we will henceforth adopt the same notation

of [13,32], and we will write x ∈ Rmax (or x ∈ Rmin)

to say that x is an element of the max-plus (min-plus)

semiring.

We will limit our treatment to the case of Rmax, and

all the notions we are going to introduce (in particular:

max-plus segment, and max-plus convex hull) can be

easily rephrased in the framework of Rmin (and so ob-

taining the notions of min-plus segment, and min-plus

convex-hull).

For every point x = (x(1), . . . , x(n)) ∈ Rnmax, and

every scalar λ ∈ Rmax, we respectively denote by λ+ x

and λ ∨ x the vectors in Rnmax with entries λ + x(j),

and λ∨ x(j) (for all j = 1, . . . , n). For x, y ∈ Rnmax, the

max-plus segment S(x, y) joining x and y, is the set of

all vectors of the form (α + x) ∨ (β + y), where α and

β are scalars satisfying α ∨ β = 0. Figure 1 shows how

segments in R2
max and R2

min look like). A subset C of

Rnmax is said to be max-plus convex if C contains every

max-plus segment joining two of its points.

Definition 2 Fix x1, . . . , xs ∈ Rnmax. A point x ∈ Rnmax

is a max-plus convex combination of x1, . . . , xs if there

exist α1, . . . αn ∈ Rmax with
∨
i≤s αi = 0 and such that

x =
∨
i≤s

(αi + xi), (5)
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A

D A

B

D

C

Fig. 1 Consider the points A = (1/6, 1/2), B =
(1/2, 2/3), C = (1, 1/2) and D = (2/3, 0). The above lines
represents the segments S(A,D), S(A,B), and S(D,C) in
the Max-Plus (continuous line), and Min-Plus (dashed line)
semirings. Compare this picture with the first two pictures in
Figure 2
.

A

B

D

C A

B

D

C

A

B

D
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Fig. 2 Fixing the four points A = (1/6, 1/2), B =
(1/2, 2/3), C = (1, 1/2) and D = (2/3, 0), the above pictures
represent respectively, the subsets of [0, 1]2 which are the
max-plus (left), the min-plus (center), and the usual (right)
convex hulls generated by {A,B,C,D}.

The mp-convex hull of {x1, . . . , xs}, that we denote by

mp-co({x1, . . . , xs}), is the set of all points in Rnmax

which are max-plus convex combinations of x1, . . . , xs.

Clearly any mp-convex subset C ⊆ Rnmax is closed under

finite mp-convex combinations, that is, for every choice

of x1, . . . , xs ∈ C, mp-co({x1, . . . , xs}) ⊆ C.

In Figure 2, we show three examples of a max-

plus, min-plus, and usual convex hull generated by four

points of R2
max.

The following presents a result that, although easy

to prove, will be important for the rest of this paper.

Proposition 1 For every n ∈ N, the cube [0, 1]n is

mp-convex. In particular [0, 1]n is closed under finite

mp-convex combinations.

Proof Let s ∈ N and let i0 ∈ {1, . . . , s} be such that

αi0 = 0. Then αi0 + xi0 = xi0 ∈ [0, 1]n, i.e. for all

j = 1, . . . , n, (αi0 + xi0)(j) = xi0(j) ≥ 0. Hence, for all

j = 1, . . . , n, we have(
s∨
i=1

αi + xi

)
(j) ≥ αi0 + xi0(j) = xi0(j) ≥ 0. (6)

Since αi ≤ 0 for all i, and since xi(j) ≤ 1 for all i and

for all j, then αi + xi(j) ≤ 1 for all i and for all j, in

other words,(
s∨
i=1

αi + xi

)
(j) ≤ 1. (7)

Therefore, by (6) and (7),
∨s
i=1 αi + xi ∈ [0, 1]n, and

the claim is proved. �

Consider now a finite set {f1, . . . , fn} of functions

in the MV-algebra [0, 1]X . The following theorem char-

acterizes, in terms of max-plus convex sets, those map-

pings B : fi 7→ βi sending the fi’s into [0, 1] that can

be extended to a possibility measure Π on [0, 1]X .

Theorem 4 Let f1, . . . , fn ∈ [0, 1]X , consider the map

B : {f1, . . . , fn} → [0, 1], and write B(fi) = βi for

i = 1, . . . , n. Then the following are equivalent:

1. There exists an homogeneous possibility measure Π :

[0, 1]X → [0, 1] that agrees with B over {f1, . . . , fn}.
2. There exists a normalized possibility distribution π :

X → [0, 1] such that, for every i = 1 . . . , n,

βi = S
∫
X

fi dπ =
∨
x∈X

π(x)� fi(x).

3. (β1, . . . , βn) ∈ mp-co ({(f1(x), . . . , fn(x)) : x ∈ X}).

Proof (1)⇔(2) is Theorem 3.

(2)⇒(3). Let π : X → [0, 1] satisfy
∨
x∈X π(x) = 1.

Then by hypothesis, for every i = 1, . . . , n,

βi = S
∫
X

fi dπ

=
∨
x∈X

π(x)� fi(x)

=
∨
x∈X

max{0, π(x) + fi(x)− 1}.

It is clear that, for each i,∨
x∈X max{0, π(x) + fi(x)− 1} =

= max{0,
∨
x∈X π(x) + fi(x)− 1},

and since
∨
x∈X(π(x) − 1) =

(∨
x∈X π(x)

)
− 1 = 0,

and since for all x ∈ X, fi(x) ∈ [0, 1], from the above

Proposition 1,
∨
x∈X(π(x)−1+fi(x)) ∈ [0, 1], and hence

βi = max{0,
∨
x∈X

π(x)+fi(x)−1} =
∨
x∈X

π(x)−1+fi(x).
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So (β1, . . . , βn) ∈ mp-co ({(f1(x), . . . , fn(x)) : x ∈ X}).

(3)⇒(2). Assume that

(β1, . . . , βn) ∈ mp-co ({(f1(x), . . . , fn(x)) : x ∈ X}) .

Therefore, for each x ∈ X there is λx ∈ Rmax such that∨
x∈X λx = 0, and

(β1, . . . , βn) =
∨
x∈X

λx + (f1(x), . . . , fn(x))

that is, for every i = 1, . . . , n, βi =
∨
x∈X λx + fi(x).

Since both βi, fi(x) ∈ [0, 1], we actually have

βi =
∨
x∈X

max(λx,−1) + fi(x).

Finally, for every x ∈ X, define π(x) = max(λx,−1) +

1 = max(λx+1, 0). Then,
∨
x∈X π(x) = 1, 0 ≤ π(x) ≤ 1

for each x ∈ X, and

βi =
∨
x∈X

π(x)− 1 + fi(x)

=
∨
x∈X

max{0, π(x) + fi(x)− 1}

= S
∫
X

fi dπ.

Therefore the claim is proved. �

Remark 1 Theorem 4 establishes a one-to-one corre-

spondence Ψ between normalized distributions over X

and possibility measures over [0, 1]X . Notice that Ψ

is Max-Plus affine in the sense that it preserves mp-

convex combinations.

4 The space of possibility measures

In this section we are going to describe geometrical as-

pects of π([0, 1]X) as subset of [0, 1][0,1]
X

. Notice that

the unit interval [0, 1] is endowed with the interval-

topology inherited by R and, in turn, [0, 1][0,1]
X

is en-

dowed with the usual product topology defined from

the one of [0, 1].

Lemma 1 For Π1, Π2 ∈ π([0, 1]X), the mp-segment

S(Π1, Π2) is contained in π([0, 1]X), i.e. π([0, 1]X) is

a mp-convex subset of [0, 1][0,1]
X

.

Proof Let Π1, Π2 ∈ π([0, 1]X), let α, β ∈ R such that

max(α, β) = 0, and let Π : [0, 1]X → [0, 1] be defined

as

Π = (α+Π1) ∨ (β +Π2). (8)

Then, for every f, g ∈ [0, 1]X ,

Π(f ∨ g) = (α+Π1(f ∨ g)) ∨ (β +Π2(f ∨ g))

= (α+ max{Π1(f), Π1(g)})∨
(β + max{Π2(f), Π2(g)})

= max{α+Π1(f), α+Π1(g)}∨
max{β +Π2(f), β +Π2(g)}

= max{α+Π1(f), β +Π2(f)}∨
max{α+Π1(g), β +Π2(g)}

= Π(f) ∨Π(g).

Let now r be a real number in [0, 1], and let f ∈ [0, 1]X .

Then, by (8), we get

r �Π(f) = max{0,max{α+ r − 1 +Π1(f),

β + r − 1 +Π2(f)}}. (9)

On the other hand, Π(r�f) = (α+r�Π1(f))∨(β+r�
Π2(f)) = (α+max{0, r+Π1(f)−1})∨ (β+max{0, r+

Π2(f)− 1}). Now we distinguish the following cases:

1. Assume r � Π1(f) > 0 and r � Π2(f) > 0. Then,

for i = 1, 2, r �Πi(f) = r + Πi(f) − 1, and hence

Π(r�f) = (α+r+Π1(f)−1)∨(β+r+Π2(f)−1) =

[r−1+(α+Π1(f))]∨ [r−1+(β+Π2(f))] = r−1+

[(α+Π1(f))∨(β+Π2(f))] = r−1+Π(f) = r�Π(f).

2. If r�Π1(f) = 0 and r�Π2(f) > 0, then Π(r�f) =

α ∨ (β + r − 1 + Π2(f)), where r − 1 + Π2(f) > 0.

Now we distinguish:

(a) If α ≤ 0, and β = 0, then Π(r � f) = r − 1 +

Π2(f), and from (9), the claim follows.

(b) If α = 0, and 0 ≤ β ≤ −(r − 1 + Π2(f)), then

β+ r−1 +Π2(f) ≤ 0, and hence Π(r�f) = α = 0.

From (9), r �Π(f) = 0 as well.

(c) Finally if α = 0, and −β ≤ r − 1 + Π2(f),

then β + r − 1 +Π2(f) ≥ 0, and hence Π(r � f) =

β + r − 1 + Π2(f). Again, (9) ensures r � Π(f) =

max{0,max{0, β+r−1+Π2(f)}} = β+r−1+Π2(f).

3. The case r �Π1(f) > 0 and r �Π2(f) = 0 is dual

to the above one, and omitted.

4. If r � Π1(f) = r � Π2(f) = 0, then for i = 1, 2,

Πi(f) ≤ 1−r. Moreover, since α∨β = 0, Π(r�f) =

0. By (8), Π(f) = (α+Π1(f))∨ (β+Π2(f)). Since

α, β ≤ 0, Π(f) ≤ max{Π1(f), Π2(f)} ≤ 1 − r, and

consequently r �Π(f) = Π(r � f) = 0.

Therefore Π ∈ π([0, 1]X), and the claim is proved. �

Theorem 5 The set π([0, 1]X) of homogeneous possi-

bility measures on the MV-algebra [0, 1]X is closed by

finite mp-convex combinations.

Proof As we already noticed in Definition 2, every mp-

convex set C is closed under finite mp-convex combi-

nation. This remark and Lemma 1 prove the claim. In

what follows we are going to provide a direct proof.
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The case with two elements Π1, Π2 ∈ π([0, 1]X)

is solved in Lemma 1. Now, we proceed by induction

on the (finite) number of the elements in π([0, 1]X) in-

volved in the definition of the finite mp-convex combi-

nation. Take Π1, . . . ,Πn ∈ π([0, 1]X) (with n ≥ 3), and

let α1, . . . , αn ∈ Rmax such that
∨
i αi = 0. Without

loss of generality, assume that α1 = 0. Then,

Π =
∨n
i=1(αi +Πi)

= [δ + ((α1 +Π1) ∨ (α2 +Π2))] ∨ [
∨n
i=3(αi +Πi)] ,

where δ = 0. Therefore from Lemma 1, and since α1 =

0, Π ′ = (α1 +Π1) ∨ (α2 +Π2) ∈ π([0, 1]X), and hence

Π =

n∨
i=1

(αi +Πi) = (δ +Π ′) ∨

(
n∨
i=3

(αi +Πi)

)
.

Since δ ∨
∨n
i=3 αi = 0, the inductive hypothesis ensures

that Π ∈ π([0, 1]X). �

Definition 3 (Extreme point) Let C be a max-plus

convex subset of Rnmax. An element c ∈ C is an extreme

point of C if for all y, z ∈ C and for all α, β ∈ Rmax

such that max{α, β} = 0, the condition

if c = (y + α) ∨ (z + β), then c = y or c = z, (10)

is satisfied. We denote by ext(C) the set of extreme

points of C.

Now we concentrate on providing a characterization

for the set of extreme points of π([0, 1]X) in terms of

MV-homomorphisms of [0, 1]X into the standard MV-

algebra [0, 1]. Indeed, notice that, from [23, Theorem

2.5], a map h : [0, 1]X → [0, 1] is an MV-homomorphism

iff {f ∈ [0, 1]X : h(f) = 1} is a maximal MV-filter of

[0, 1]X iff, by Chang-Belluce representation theorem for

semisimple MV-algebras (cf. [5,6], see also [23, Theorem

1.2]), there exists a y ∈ X such that, for every f ∈
[0, 1]X , h(f) = f(y). This general result implies the

following proposition that, nevertheless, we are going to

prove to make the paper as self-contained as possible.

Proposition 2 Consider a Π ∈ π([0, 1]X). Then Π ∈
Hom([0, 1]X , [0, 1]) iff there exists x0 ∈ X such that,

for every f ∈ [0, 1]X , Π(f) = f(x0).

Proof The left-to-right direction is clear and omitted.

Conversely, if Π ∈ π([0, 1]X), by Theorem 3, there

exists a possibility distribution π : X → [0, 1] such

that, for every f ∈ [0, 1]X , Π(f) =
∨
x∈X π(x) � f(x).

Let x0 ∈ X be such that π(x0) = 1, and let fx0
∈

[0, 1]X the function defined by putting fx0(x) = 1 if

x = x0 and fx0
(x) = 0 otherwise. Then it is clear

that Π(fx0
) = π(x0) and Π(1 − fx0

) = max{π(x) |
x 6= x0}. If Π is an MV-homomorphism, in partic-

ular, it must verify that Π(1 − fx0
) = 1 − Π(fx0

),

hence 0 = 1 − π(x0) = max{π(x) | x 6= x0}, that

is, it must be π(x) = 0 for all x 6= x0. Therefore,

Π(f) =
∨
x∈X π(x)� f(x) = π(x0)� f(x0) = f(x0). �

Proposition 3 Consider a Π ∈ π([0, 1]X). If Π ∈
Hom([0, 1]X , [0, 1]) then Π ∈ ext(π([0, 1]X).

Proof Let Π be an homogeneous possibility measure on

[0, 1]X . Assume Π is a mp-convex combination of two

homogeneous possibility measures, that is, there exist

distinct Π1, Π2 ∈ π([0, 1]X) and α, β ∈ R such that

Π = (α + Π1) ∨ (β + Π2) with max(α, β) = 0. By

Proposition 2 there exists x0 ∈ X such that, for any f ,

Π(f) = f(x0). For any x ∈ X, consider the functions fx
defined as fx(y) = 1 if y = x0 and fx(y) = 0 otherwise.

Then we have:

1 = fx0
(x0) = Π(fx0

)

= max(α+ π1(x0), β + π2(x0))
(11)

and, if y 6= x0,

0 = fy(x0) = Π(fy)

= max(α+ π1(y), β + π2(y)),
(12)

where π1 and π2 are the corresponding possibility distri-

butions of Π1 and Π2 respectively. Since max(α, β) = 0,

we can assume without loss of generality that α = 0,

and hence:

1. If β < 0, then π1(x0) = 1 by (11), and (12) implies

π1(y) = 0 for all y 6= x0. In this case, for any f ,

Π1(f) =
∨
x∈X π1(x) � f(x) = f(x0) = Π(f), i.e.

Π1 = Π.

2. If also β = 0, then since by (12) π1(y) = π2(y) = 0
for all y 6= x0, then either π1(x0) = 1, and hence

Π(f) = Π1(f) for all f , or π2(x0) = 1, and hence

for all f , Π(f) = Π2(f). Also notice that, since we

are assuming Π1 6= Π2, then it cannot happen that

both π1(x0) = π2(x0) = 1.

Therefore, in any case, either Π = Π1 or Π = Π2.

Consequently, Π is extremal. �

Lemma 2 Let Π ∈ π([0, 1]X) and let π be its corre-

sponding possibility distribution. If the set {x ∈ X |
π(x) > 0} has at least two elements, then Π is not

extremal.

Proof Since π is normalized, there exists x0 such that

π(x0) = 1, and by hypothesis there exists another ele-

ment y0 such that π(y0) > 0. Consider two possibility

distributions π1 and π2 defined as follows:

π1(x) =

{
1, if x = y0
0, otherwise

π2(x) =

{
0, if x = y0
π(x), otherwise

.
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Then, if Π1 and Π2 are the corresponding possibil-

ity measures defined from π1 and π2 and letting α =

π(y0)− 1, it is easy to check that

Π = (α+Π1) ∨Π2

and since Π 6= Π1 and Π 6= Π2, Π is not extremal. �

As a consequence, the only candidateΠ ∈ π([0, 1]X)

to be extremal are those defined as Sugeno integrals

from a possibility distribution π such that, for some

x0 ∈ X, π(x0) = 1 and π(x) = 0 for x 6= x0, and hence

Π(f) = f(x0) for any f ∈ [0, 1]X . By Proposition 2,

these Π are precisely those Π ∈ π([0, 1]X) that are

MV-homomorphisms. Therefore we have the following

corollary.

Theorem 6 Π ∈ ext(π([0, 1]X) if and only if Π ∈
Hom([0, 1]X , [0, 1]).

Consequently, a map Π in [0, 1][0,1]
X

is an extremal

homogeneous possibility measure iff Π is a homomor-

phism of [0, 1]X into the standard MV-algebra [0, 1] iff,

from [23, Theorem 2.5] (also see [14, Theorem 12.18,

Corollary 12.20]) the set {f ∈ [0, 1]X : Π(f) = 1} is a

maximal MV-filter of [0, 1]X . Even more precisely, The-

orem 6, together with [23, Theorem 2.5], implies that

the space of extremal homogeneous possibility measures

on [0, 1]X , endowed with the product topology inherited

by [0, 1][0,1]
X

is a non-empty compact Hausdorff space

which is homeomorphic to the space of maximal MV-

filters of [0, 1]X , endowed with the spectral topology,

that, in turn, is homeomorphic to X with the topology

having for basis (of clopen) the class of its subsets.

Now, we concentrate on finitely generated mp-convex

sets. Since by Theorem 4, an assessment B on a finite

subset A′ of [0, 1]X is extendable to possibility measure

on [0, 1]X iff B belongs to the mp-convex hull generated

by the values of the functions in A′, the results we are

going to show will offer a refinement of the extension

theorem proved in Section 3.

Lemma 3 For every f1, . . . , fn ∈ [0, 1]X , we have:

ext(mp-co{(f1(x), . . . , fn(x)) : x ∈ X}) ⊆
⊆ {(f1(x), . . . , fn(x)) : x ∈ X}).

Proof Assume b ∈ ext(mp-co{(f1(x), . . . , fn(x)) : x ∈
X}). Therefore there exist α1, . . . , αm ∈ Rmax with∨m
i=1 αi = 0, such that

b =

m∨
i=1

αi + Fi.

where we denote by Fi the vector (f1(xi), . . . , fn(xi))

(with i = 1, . . . ,m). We now prove that, for some i,

b = Fi. We proceed by induction on m. If m = 2 the

claim is clearly proved by definition of extreme point.

Conversely, assume m > 2. Then

b = (α1 + F1) ∨

(
m∨
i=2

αi + Fi

)
.

We can assume (after renaming the indexes) that∨m
i=2 αi = 0, and hence

F ′ =

m∨
i=2

αi + Fi ∈ mp-co{(f1(x), . . . , fn(x)) : x ∈ X}.

Letting δ′ = 0, b = (α1+F1)∨(δ′+F ′) with α1∨δ′ = 0.

Then, since b is extremal, either b = F1, or b = F ′. If

b = F1, we are done. Conversely, if b = F ′ =
∨m
i=2 αi +

Fi, the inductive hypothesis ensures that b = Fi for

some i = 2, . . . ,m. �

Since the operations max and � are continuous with

respect to the usual topology over [0, 1], it is clear that

the class π([0, 1]X) is a closed subset of [0, 1][0,1]
X

. In

fact, let Π ∈ [0, 1][0,1]
X

such that Π = limiΠi where

Π1, Π2, Π3 . . . ∈ π([0, 1]X). Then, for every f1, f2 ∈
[0, 1]X and for every r ∈ [0, 1], one has:

(a) limiΠi(f1 ∨ f2) = limi max(Πi(f1), Πi(f2)) =

max(limiΠi(f1), limiΠi(f2));

(b) limiΠi(f1� r) = limi(Πi(f1)� r) = (limiΠi(f1))�
r;

(c) limiΠi(1) = limi 1 = 1.

Hence Π = limiΠi ∈ π([0, 1]X).

Therefore, being [0, 1] a compact space, and since

the product topology preserves compactness, the fol-
lowing lemma immediately holds.

Lemma 4 The class of homogeneous possibility mea-

sures π([0, 1]X) is compact. Therefore, in particular, for

f1, . . . , fn ∈ [0, 1]X , the set mp-co({(f1(x), . . . , fn(x)) :

x ∈ X}) is a compact subset of [0, 1]n.

Finally, the following result provides a refinement of

Theorem 4.

Theorem 7 For every f1, . . . , fn ∈ [0, 1]X , every [0, 1]-

valued assessment B : fi 7→ βi extends to a homoge-

neous possibility measure on [0, 1]X iff there are m ≤
n+ 1 elements x1, . . . , xm ∈ X such that

(β1, . . . , βn) ∈ mp-co({(f1(xi), . . . , fn(xi)) : i = 1, . . . ,m}).

Proof From Theorem 4, B extends to a Π ∈ π([0, 1]X)

iff (β1, . . . , βn) ∈ mp-co({(f1(x), . . . , fn(x)) : x ∈ X}).
From Lemma 4, mp-co({(f1(x), . . . , fn(x)) : x ∈ X})
is a compact subset of Rnmax and therefore from the

mp-version of Minkowski Theorem [13, Theorem 3.2],
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there are m ≤ n + 1 points e1, . . . , em belonging to

ext(mp-co({(f1(x), . . . , fn(x)) : x ∈ X})) such that

mp-co({(f1(x), . . . , fn(x)) : x ∈ X}) =

= mp-co({e1, . . . , em}).

Then the claim follows from Lemma 3. �

For every x ∈ X, the map h : [0, 1]X → [0, 1] de-

fined as h(f) = f(x) is an MV-homomorphism of [0, 1]X

into [0, 1]MV . Therefore, whenever we fix f1, . . . , fn ∈
[0, 1]X , and x1, . . . , xm ∈ X, there are h1, . . . , hm ∈
Hom([0, 1]X , [0, 1]) such that, for every i = 1, . . . , n,

and every j = 1, . . . ,m, hj(fi) = fi(xj). Therefore the

following result is an immediate consequence of Theo-

rem 7 (compare it with Theorem 2).

Corollary 1 Let f1, . . . , fn ∈ [0, 1]X . A [0, 1]-valued

assessment B : fi 7→ βi ∈ [0, 1] extends to a possibility

measure Π ∈ π([0, 1]X) iff B coincides with the restric-

tion to f1, . . . , fn of an mp-convex combination of at

most n+ 1 homomorphisms of [0, 1]X in [0, 1].

5 Concluding remarks

In this paper we have been concerned with geometrical

aspects of a class of generalized possibility and necessity

measures on MV-algebras of functions [0, 1]X , where X

is a finite set, in the setting of idempotent mathemat-

ics. We have shown that suitable counterparts of known

results for the case of finite-additive measures on MV-

algebras also hold for possibility and necessity measures

when the real field R is appropriately replaced by the

well-known max-plus and min-plus semiring structures
Rmax and Rmin. Further research will focus on general-

izing the results to MV-clans [0, 1]X when X is infinite,

and, in particular, to semisimple MV-algebras, which

can be represented as MV-algebras of continuous and

real-valued functions defined on a compact and Haus-

dorff space X.

Our future work will also concern with generaliza-

tions of possibility and necessity measures in the con-

text of Gödel and product algebras (cf. [16]). Although

we do not know yet if those measures could have a geo-

metrical characterization like the one we have presented

in this paper, we believe that, at least for the case of

possibility (necessity) measures on Gödel algebras, a

similar treatment could be provided.
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21. J. Kühr, D. Mundici, De Finetti theorem and Borel states

in [0, 1]-valued algebraic logic, International Journal of
Approximate Reasoning 46 (3) 605–616, 2007.

22. G. L. Litvinov. Maslov Dequantization, Idempotent and
Tropical Mathematics: a Brief Introduction. Journal of
Mathematical Science 140 (3), 426–444, 2007.

23. D. Mundici. Averaging the Truth-value in  Lukasiewicz
Logic. Studia Logica 55(1), 113–127,1995.

24. D. Mundici. Bookmaking over infinite-valuede vents, In-

ternational Journal of Approximate Reasoning 43, 223–240,
2006.

25. M. Navara. Triangular norms and measures of fuzzy sets.
In E.P. Klement and R. Mesiar, editors, Logical, Algebraic,
Analytic, and Probabilistic Aspects of Triangular Norms,
345–390. Elsevier, 2005.

26. G. Panti. Invariant measures on free MV-algebras. Com-
munications in Algebra 36(8), 2849–2861, 2008.

27. J. Richter-Gebert, B. Sturmfels, T. Theobald. First steps
in tropical geometry, in “Idempotent Mathematics and
Mathematical Physics”, Proceedings Vienna 2003, (edi-
tors G.L. Litvinov and V.P. Maslov), American Mathe-
matical Society, Contemporary Mathematics 377, 289–317,
2005.

28. E. Schrödinger. Quantization as an eigenvalue problem.
Ann. Phys. 364, 361–376, 1926.

29. M. Sugeno, Theory of fuzzy integrals and its applications.
Phd. Dissertation, Tokyo Institute of Technology, Tokyo,
Japan, 1974.

30. S. Weber. ⊥-decomposable measures integrals for
Archimedean t-conorms ⊥. J. Math. Anal. Appl.101, 114–
138, 1984.

31. L. A. Zadeh, Fuzzy Sets as the Basis for a Theory of
Possibility. Fuzzy Sets and Systems 1, pp. 3–28, 1978.

32. U. Zimmermann. Linear and combinatorial optimiza-
tion in ordered algebraic structures. Ann. Discrete Math.,
10:viii+380, 1981.


