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A simple iterative model is introduced quantifying the interaction of saturable gain and nonlinear loss in a
mode-locked laser cavity. The resulting geometrical description of the laser dynamics completely characterizes
the generic multi-pulsing instability observed in experiments. The model further shows that the onset of multi-
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The results suggest ways to engineer the nonlinear losses in the cavity in order to achieve an enhanced
performance. © 2010 Optical Society of America
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1. INTRODUCTION
The onset of multi-pulsing as a function of increasing la-
ser cavity energy is a well-known physical phenomenon
[1,2] that has been observed in a myriad of theoretical
and experimental mode-locking studies in both passive
and active laser cavities [3–17]. Aside from two purely
theoretical (computational) studies [3,4], the bulk of these
observations has been almost exclusively experimental in
nature. Specifically, each of these experiments demon-
strates that as the gain pumping is increased, the number
of mode-locked pulses in the cavity increases in an ap-
proximately linear and discrete manner with the cavity
saturation energy. This observation is independent of the
specific mode-locking mechanism used, whether it is non-
linear polarization rotation, nonlinear interferometry,
quantum saturable absorbers, etc. Thus the phenomenon
is ubiquitous to mode-locked laser cavities. One of the ear-
liest theoretical descriptions of the multi-pulsing dynam-
ics was by Namiki et al. [3], in which energy rate equa-
tions were derived for the averaged cavity dynamics.
More recently, a full stability analysis of the mode-locking
solutions was performed, showing that the transition dy-
namics between N and N+1 pulses in the cavity exhibited
a more complex and subtle behavior than previously sug-
gested [4]. Indeed, the theory predicted, and it has been
confirmed experimentally since, that near the multi-
pulsing transitions, both periodic and chaotic behavior
could be observed as operating states of the laser cavity
for a narrow range of parameter space [4–7]. In this pa-
per, we generalize the energy rate equation approach [3]
and develop an iterative technique that provides a simple
geometrical description of the entire multi-pulsing transi-
tion behavior as a function of increasing cavity energy.
The model captures all the key features observed in ex-
periment, including the periodic and chaotic mode-locking
regions [5], and it further provides valuable insight into

laser cavity engineering for maximizing the performance,
i.e., enhancing the mode-locked pulse energy.

The multi-pulsing instability arises from the competi-
tion between the laser cavities’ bandwidth constraints
and the energy quantization associated with the resulting
mode-locked pulses, i.e., the so-called soliton area theo-
rem [3]. Specifically, as the cavity energy is increased, the
resulting mode-locked pulse has increasing peak power
and spectral bandwidth. The increase in the mode-locked
spectral bandwidth, however, reaches its limit once it is
commensurate with the gain bandwidth of the cavity.
Further increasing the cavity energy pushes the mode-
locked pulse to an energetically unfavorable situation
where the pulse spectrum exceeds the gain bandwidth,
thereby incurring a spectral attenuation penalty. In con-
trast, by bifurcating to a two-pulse per round trip configu-
ration, the pulse energy is then divided equally between
two pulses whose spectral bandwidths are well contained
within the gain bandwidth window. Figure 1 illustrates
the concept as a function of increasing gain.

To theoretically characterize the multi-pulsing transi-
tion, a model is needed that is capable of capturing the
dynamic competition between the various multi-pulse so-
lution branches. Often it is the case that various of these
branches are stable at the same time, thus leading to bi-
stable behavior in the system [3–17]. Starting from initial
white noise in the laser cavity, an effective model must se-
lect which branch of solutions is selected in the mode-
locking process. In the model constructed here, a minimal
set of assumptions are made. First, the cavity is assumed
to have a nonlinear loss due to the cavities’ saturable ab-
sorption. Second, the cavity is subject to bandwidth lim-
ited saturable gain. Third, upon undergoing a multi-
pulsing bifurcation, the resulting pulses are well-
separated in time. With these three assumptions, a
geometrical iteration picture can be constructed of the
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multi-pulsing dynamics by considering the intersection of
the gain and loss curves that are applied once per round
trip. It is a simple model that yields tremendous insight
into the more subtle and complex issues of the multi-
pulsing dynamics observed theoretically and experimen-
tally [4,5,7]. Further, it is a much simpler analytical
framework to understand than previous theoretical find-
ings [3,4].

The paper is outlined as follows: In Section 2, the prin-
ciple of operation is outlined for the multi-pulsing analy-
sis. This is the key section of the paper, highlighting the
geometrical viewpoint of the multi-pulsing bifurcation
analysis. Section 3 considers explicit numerical simula-
tions of the geometrical model for the three key satura-
tion curves of physical interest. This gives a quantitative
measure of the multi-pulsing instability. Section 4 dis-
cusses a method by which the nonlinear losses can be en-
gineered to achieve key mode-locking characteristics such
as high-energy pulses or self-starting. A review of the
findings and concluding remarks are found in Section 5.

2. PRINCIPLE OF OPERATION

The aim of this section is to provide a high-level overview
of the formal theoretical framework needed to capture the
multi-pulsing mode-locking dynamics. The discussion will
evolve around a geometrical representation of the dynam-
ics, and three key papers are of critical importance [3–5].
The simplified theoretical framework considered here in-
volves a balance between two dominant physical effects:
the nonlinear loss and the saturating gain. Figure 2 illus-
trates the simplified cavity that is driven by the saturat-
ing gain and nonlinear losses. The remaining physical ef-
fects, discussed in what follows, are balanced in the
formation of the mode-locked pulse [3].

The primary modeling component in the paper by
Namiki et al. [3] is the development of an energy rate
equation. In this formulation, the mode-locked pulse en-
ergy is computed over one round trip. The exact form of

the mode-locked pulse solution is unimportant, and it is
assumed that the effects of chromatic dispersion, self-
phase modulation, nonlinear gain, and the bandwidth
gain limitations effectively balance each other to form the
mode-locked pulse solution [3]. Indeed, the fundamental
premise of mode-locking is that a localized pulse solution
exists for a given balance of dispersive and dissipative ef-
fects [1,2]. For more on such dissipative solitons, see
Akhmediev and Ankiewics [18]. Unlike the work of
Namiki et al. [3], the model formulation established here
treats the cavity as a discrete loss-gain system so that the
cavity dynamics are understood from an underlying itera-
tion scheme.

Before proceeding to the analysis, a few comments are
made about the variable naming conventions used in the
paper and their relation to Fig. 2. The variable E will rep-
resent the cavity energy. However, it will rarely appear
without superscripts or subscripts when referring to the
laser cavity. The subscript in or out will refer to the en-
ergy at the input or output of a laser cavity element, re-
spectively. The superscripts loss and gain will refer to the
laser cavity element under consideration. For instance,
the expression Eout

gain refers to the output energy of the
gain element. Additionally, the expression Ej refers to the
energy of the jth pulse at the output coupler (see Fig. 2),
and Etotal is the sum of energies of all the pulses. The final
term, Esat, is the saturation energy of the gain medium
which is modified in practice as the gain pumping is ad-
justed in the laser cavity.

A. Saturating Gain
We will make the same assumptions as those laid out by
Namiki et al. [3] and will simply consider a model for the
saturating gain as well as the nonlinear cavity losses. Fig-
ure 2 shows the basic laser cavity configuration consid-
ered. The two primary components of loss and gain are in-
cluded. The saturating gain dynamics results in the
following differential equation for the gain [1–3]:

dEj

dZ
=

g0

1 + �j=1
N Ej/Esat

Ej, �1�

where Ej is the energy of the jth pulse �j=1,2, . . . ,N�, g0

measures the gain pumping strength, and Esat is the satu-
ration energy of the cavity. The total gain in the cavity
can be controlled by adjusting the parameter g0 or Esat. In
what follows here, the cavity energy will be increased by
simply increasing the cavity saturation parameter Esat.
This increase in the cavity gain can equivalently be con-
trolled by adjusting g0. These are generic physical param-
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Fig. 1. Multi-pulsing bifurcation dynamics as a function of in-
creasing gain. As the gain is increased, the mode-locked pulse
peak power and spectral width (bold lines) are increased beyond
the gain bandwidth (dashed line), leading to the formation of two
mode-locked pulses whose spectra are within the gain
bandwidth.

����
��������	

��



����

Fig. 2. Simple cavity configuration involving a saturable gain
element and a nonlinear loss element that gives the cavity satu-
rable absorption. The remaining physical effects are assumed to
balance each other in the formation of a mode-locked pulse.
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eters that are common to all laser cavities, but which can
vary significantly from one cavity design to another. The
parameter N is the number of pulses in the cavity [4].
This parameter, which is critical in the following analysis,
helps to capture the saturation energy received by each
individual pulse. Note that this equation can be solved ex-
actly using standard methods of differential equations.
However, the resulting solution is given in an implicit
form.

B. Nonlinear Loss (Saturable Absorption)
The nonlinear loss in the cavity, i.e., the saturable absorp-
tion or saturation fluency curve, will be modeled by a
simple transmission function:

Eout = T�Ein�Ein. �2�

The actual form of the transmission function T�Ein� can
vary significantly from experiment to experiment, espe-
cially for very high input energies. For instance, for mode-
locking using nonlinear polarization rotation, the result-
ing transmission curve is known to generate a periodic
structure at higher intensities. Alternatively, an idealized
saturation fluency curve can be modified at high energies
due to higher-order physical effects. As an example, in
mode-locked cavities using waveguide arrays [4], the
saturation fluency curve can turn over at high energies
due to the effects of three-photon absorption, for instance.
As a final note, this transmittance function is commonly
referred to in the literature as the cavity’s nonlinear loss
or saturable absorption [1–3]. In what follows, the terms
nonlinear loss and transmission curves will be used inter-
changeably.

A number of specific nonlinear loss curves will be con-
sidered in the next section. For the moment, however,
consider the rather generic saturation curve as displayed
in Fig. 3. This shows the output energy as a function of
the input energy. It is assumed, for illustrative purposes,
that some higher-order nonlinear effects cause the satu-
ration curve to turn over at high energies. This curve de-
scribes the nonlinear losses in the cavity as a function of
increasing input energy for N mode-locked pulses. Also
plotted in Fig. 3 is an analytically calculated line that
gives a threshold value for multi-pulsing operation. The

threshold is the small signal loss (constant loss of the cav-
ity) that limits the amplification of small signals. In laser
cavities, any signal with a gain larger than the loss is am-
plified. For small signals, only the linear part of the non-
linear loss will take effect, and if the gain in the cavity is
larger than this constant loss, the small signals will be
amplified. When there is already a large pulse in the cav-
ity, due to gain saturation, the gain value can be smaller
than the constant loss. Because the pulses in same round
trip are assumed to see the same gain, i.e., the slow satu-
ration assumption, then any perturbation (small pulses)
will be suppressed, because the gain is less than the loss
for them. With the increase of the parameter Esat, the
gain for the larger pulses increases. Since it is larger than
the constant loss, the perturbations (small pulses) in the
cavity will be amplified to large pulses, and more pulses
will be generated. As more pulses join the multi-pulsing
configuration, the entire gain in the cavity will be satu-
rated again and drop to lower than the constant loss. This
new stable configuration will remain stable until the
saturated energy Esat is further increased.

C. Iterative Cavity Dynamics
The generic loss curve illustrated in Fig. 3 along with the
saturable gain as a function of the number of pulses [Eq.
(1)] are the only two elements required to completely
characterize the multi-pulsing transition dynamics and
bifurcation. When considering the cavity configuration in
Fig. 2, the alternating action of saturating gain and non-
linear loss produces an iteration map which only has
pulses whose loss and gain balance is stabilized in the
cavity. Specifically, the output of the gain is the input of
the nonlinear loss, and vice versa. This is much like the
logistic equation iterative mapping for which a rich set of
dynamics can be observed with a simple nonlinearity
[19,20]. Indeed, the behavior of the multi-pulsing system
is qualitatively similar to the logistic map with steady-
state, periodic, and chaotic behavior all potentially ob-
served in practice.

In addition to the connection with the logistic equation
framework, two additional features are particular to our
problem formulation. First, we have multiple branches of
stable solutions, i.e., the one-pulse, two-pulse, three-
pulse, etc. Second, the loss curve exceeds the threshold
energy as shown in Fig. 3. Figure 4 is the key figure of the

paper and exhibits all the critical features of our multi-

pulsing model. Exhibited in this model are the input and
output relationships for the gain and loss elements of Fig.
2. Three gain curves are illustrated for Eq. (1) with N=1,
N=2, and N=3. These correspond to the one-pulse, two-
pulse, and three-pulse per round trip solutions, respec-
tively. The intersection of the loss curve with a gain curve
represents the mode-locked solutions. These two curves
are the ones on which the iteration procedure occurs
[19,20]. As the gain is increased through the cavity satu-
ration energy Esat, the gain solution curves move to the
right in the graph, producing steady-state (a), periodic, (b)
and chaotic (c) behavior (see Fig. 5 for how the iteration
generates these types of behavior). Such differing types of
behavior are common to nonlinear iteration maps [19,20].
In the current scenario, the one-pulse solution branch has
reached a point in the solution space where the iteration
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Fig. 3. Generic nonlinear loss (or saturable absorption or satu-
rable fluency) curve (bold line) showing the standard effect of
saturable absorption at high energies along with a fold-over due
to higher-order nonlinear loss processes. The dashed line is the
analytically computed threshold curve. Once the input energy is
increased above the threshold point, any perturbation will cause
the growth of an additional pulse, so the cavity jumps from N to
N+1 pulses. Note that the small and large signal transmission
curves (dashed and solid lines, respectively) coalesce for low in-
put energies.
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between the gain and loss dynamics produces chaotic en-
ergy fluctuations in the laser cavity. If the gain is further
increased, the one-pulse solution branch moves past the
threshold point, and no one-pulse per round trip solutions
are stable any longer. Instead, the mode-locking moves to
a multi-pulsing configuration with a higher number of
pulses.

Generically, this process of increasing the gain shows
explicitly how the mode-locked laser jumps from N to N

+1 pulses per round trip. It is simply a consequence of the
N solution branch exceeding the threshold point of the
nonlinear loss curve where that particular solution no
longer is stable. This forces the dynamics to a higher
number of pulses per round trip. Moreover, depending on
the curvature of the nonlinear loss curve for high-energy,
the transition dynamics can exhibit periodic (b) and cha-
otic dynamics (c) before the onset of steady-state multi-
pulsing (a).

Figure 5 demonstrates the iterative process for the ge-
neric gain and loss curves illustrated in Fig. 4. Specifi-
cally, the production of steady-state [Fig. 5(a)], periodic
[Fig. 5(b)], and chaotic [Fig. 5(c)] behavior in the system is
illustrated. These curves are standard iteration curves
produced when considering, for instance, the logistic
equation [19,20].

As stated previously in the paper, the onset of multi-
pulsing behavior through periodic and chaotic regions has
been verified through both experiment [5] and direct nu-
merical simulations of a full laser cavity model based on
waveguide arrays [4]. To explicitly make connection to the
laser cavity pulse dynamics, Fig. 6 illustrates the behav-
ior in the laser cavity as a function of increasing cavity
saturation energy Esat. As Esat is increased through four
successively higher values, the stable one-pulse solution
[corresponding to (a) in Fig. 5] first undergoes a Hopf bi-
furcation to a periodic breather [corresponding to (b) in
Fig. 5] before becoming chaotic [corresponding to (c) in

Fig. 5] and finally achieving the stable two-pulse solution
[corresponding once again to (a) for the two-pulse branch
in Fig. 5]. Details of the parameters and model used for
this simulation are found in [4].

This concludes our section on the principle of operation.
Once the graph in Fig. 4 is understood, the transition that
processes from N to N+1 can be understood along with
the potential periodic and chaotic dynamics preceding the
transition. In what follows, various explicit forms of the
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Fig. 4. Nonlinear loss and saturating gain curves for one-pulse
�N=1�, two-pulse �N=2�, and three-pulse �N=3� per round trip
configurations. The intersection of the gain and loss curves rep-
resents the mode-locked solution states of interest. As the gain
parameter g0 is increased, the gain curves shift to the right. The
one-pulse solution first becomes periodic (b), and then chaotic (c)
before ceasing to exist since it no longer intersects the loss curve.
The solution then jumps to the next most energetically favorable
configuration of two pulses per round trip (a). This qualitative
picture describes the entire N to N+1 pulse transition.

Fig. 5. Iteration map dynamics for the nonlinear loss and satu-
rating gain behavior. Possible iteration behaviors are (a) a
steady-state solution, (b) a periodic solution, and (c) a chaotic dy-
namics. The interpretation of the periodic and chaotic dynamics
in the mode-locking is given in Fig. 6. Note that the periodic and
chaotic dynamics arise before the onset of multi-pulsing for the
nonlinear loss curve chosen here.
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loss curve will be considered. By appropriate engineering
of the nonlinear loss curve, the periodic and chaotic tran-
sition effects can be mitigated.

3. MULTI-PULSING TRANSITION
DYNAMICS

Until now, the figures presented demonstrate the qualita-
tive picture of the underlying dynamics associated with
the onset of multi-pulsing. In this section, several specific
transmission (nonlinear loss) curves will be constructed,
and their dynamics will be investigated. The key observa-
tion is that engineering of the nonlinear loss curve can
have significant impact on the laser cavity dynamics.
Thus although the nonlinear loss curves do not necessar-
ily correspond to any real laser cavity, one can imagine
that by engineering a laser cavity, one can potentially ob-
serve all of the dynamics demonstrated in what follows.

To be more explicit about the simulations presented,
the iteration algorithm used in what follows is outlined.
Thus the simulation results are carried out as follows:

(i) The cavity saturation parameter Esat is scanned
starting from an initial value of Esat=0.001�1. It is as-
sumed that initially there are a total of N=10 pulses of
small amplitude �Ej�O�10−8�� in the cavity. Note that the
resulting pulse separation dynamics is not considered in
the analysis [3].

(ii) Input the initial signal field into the governing
saturable gain equation (1). Solve this equation with a

standard time-integration method, such as fourth-order
Runge–Kutta, or solve for Ej from the exact implicit solu-
tion representation.

(iii) Input the signal from the gain element into the
nonlinear loss element [Eq. (2)]. Mathematically, this ac-
tion is represented by its transmission function.

(iv) Iterate Steps (ii) and (iii) until the output con-
verges. If the solution fails to converge to a fixed point,
i.e., when the iteration produces periodic or chaotic dy-
namics, use the last 256 iterations as a representation of
the dynamics. The last iteration of the Ej values is used as
the seed for the next value of increasing Esat.

(v) Increase Esat by �Esat=0.001. Add small perturba-
tions to the Ej values obtained from the previous Esat it-
eration in step (iv). These are the new initial values for Ej

in Eq. (1).
(vi) Repeat Steps (iv) and (v).

With N=10, this simple algorithm allows us to fully ex-
plore the transition dynamics until ten pulses are gener-
ated in the cavity. Note that N is chosen arbitrarily and
could be made much larger than 10. However, in the re-
sults presented here, we do not consider any simulations
where more than ten pulses are generated per round trip.

A. Example 1: Transition without Chaos
To begin, an example of a transmission curve will be con-
sidered that mitigates any periodic or chaotic mode-
locking in the cavity. For this case, Eq. (1) is considered
with N=10 and for a propagation distance of Z=1. For
convenience, the gain pumping strength is held fixed at
g0=log�100�. To adjust the effective cavity energy, the
saturation energy Esat of the cavity is modified. Recall
that the overall gain can be modified through either g0 or
Esat. The specific form of the transmission considered is
given by

T�E� = 0.5e−�1�E − �2�8
+ 0.1e−�1�E − �2�2

, �3�

with �1=0.5 and �2=0.8.

Fig. 7. Nonlinear loss and saturating gain curves for one-pulse,
two-pulse, and three-pulse per round trip configurations. The in-
tersection of the gain and loss curves represents the mode-locked
solution states of interest. As the cavity energy is increased, the
gain curves shift to the right. For this case, the one-pulse solu-
tion ceases to exist beyond the threshold point indicated by the
bold circle. Thus no periodic or chaotic behavior arises. The solu-
tion then jumps to the most energetically favorable configuration
of two pulses per round trip.
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Fig. 6. Mode-locked cavity simulation where the saturable ab-
sorption is provided by waveguide arrays [4]. Shown is the inten-
sity of the mode-locked field as a function of normalized propa-
gation distance Z and time T. As the cavity gain is increased via
g0, the stable one-pulse configuration first bifurcates to a periodic
solution, and then bifurcates again to a chaotic solution, before
finally going to the two-pulse configuration.
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Figure 7 gives the quantitative versions of the curves
qualitatively represented in Fig. 4. Specifically, the non-
linear loss curve along with the gain curves of the one-
pulse, two-pulse, and three-pulse mode-locked solutions
are given along with the threshold point. As the cavity en-
ergy is increased through an increasing value of Esat, the
one-pulse solution becomes unstable to the two-pulse so-
lution as expected. In this case, the computed threshold
value does not extend down the loss curve to where the
periodic and chaotic branches of solutions occur; thus no
periodic and chaotic dynamics are observed. Rather, a
clean multi-pulsing bifurcation occurs as depicted in Fig.
8. In this case, the total cavity energy along with the
single pulse’s energy is depicted as a function of increas-
ing gain. This curve is in complete agreement with nu-
merous experimental and theoretical findings [3–17]. Spe-
cifically, each of these experiments demonstrates that as
the gain pumping is increased, the number of pulses in
the cavity increases in an approximately linear and dis-
crete manner as demonstrated in Fig. 8.

B. Example 2: Transition with Chaos
A more interesting and subtle behavior can occur in the
multi-pulse bifurcation structure with only a slight
change to the transmission function in Eq. (2). Consider
changing a single parameter by 25% so that the param-
eter �2=1 in Eq. (2). This slight change completely
changes the nature of the bifurcation structure observed
in Figs. 7 and 8.

Figure 9 now gives the quantitative versions of the
curves qualitatively presented in Fig. 4. Specifically, the
nonlinear loss curve along with the gain curves of the one-
pulse, two-pulse, and three-pulse mode-locked solutions
are given along with the threshold point as before. As the
cavity energy is increased through an increasing value of
Esat, the one-pulse solution becomes unstable to the two-
pulse solution as expected. In this case, the computed
threshold value does extend down the loss curve to where
the periodic and chaotic branches of solutions occur, thus
allowing for the observation of periodic and chaotic dy-
namics. The multi-pulsing bifurcation occurs as depicted
in Fig. 10. The total cavity energy along with the single

pulse’s energy is depicted as a function of increasing gain.
For this case, which is only a slight modification of the
previous dynamics, the solution first undergoes a Hopf bi-
furcation to a periodic solution. Through a process of pe-
riod doubling reminiscent of the logistic map [19,20], the
solution goes chaotic before eventually transitioning to
the two-pulse per solution branch. This process repeats it-
self with the transition from N to N+1 pulses generating
periodic and then chaotic behavior before the transition is
complete. This curve is in complete agreement with re-
cent experimental and theoretical findings [4–6], thus
validating the predicted dynamics.

One of the more interesting consequences of the tran-
sition with chaos is the randomness that is introduced in
the multi-pulsing bifurcation. In particular, the chaotic
behavior does not guarantee a transition from N to N+1

Fig. 8. Iteration map dynamics for the nonlinear loss and satu-
rating gain behavior of Fig. 7. Shown is the total cavity energy
Eout (top panel) and the individual pulse energy E1 (bottom
panel) as functions of the cavity saturation energy Esat. The tran-
sition dynamics between multi-pulse operations produces a dis-
crete jump in the cavity energy. In this case, no periodic or cha-
otic dynamics is observed.

Fig. 9. Nonlinear loss and saturating gain curves for one-pulse,
two-pulse, and three-pulse per round trip configurations. The in-
tersection of the gain and loss curves represents the mode-locked
solution states of interest. As the cavity energy is increased, the
gain curves shift to the right. Unlike Fig. 7, the one-pulse solu-
tion first experiences periodic and chaotic behavior before ceas-
ing to exist beyond the threshold point indicated by the right-
most bold circle. The solution then jumps to the next most
energetically favorable configuration of two pulses per round
trip.

Fig. 10. Iteration map dynamics for the nonlinear loss and satu-
rating gain behavior of Fig. 9. Shown is the total cavity energy
Eout (top panel) and the individual pulse energy E1 (bottom
panel) as functions of the cavity saturation energy Esat. The tran-
sition dynamics between multi-pulse operations produces a dis-
crete jump in the cavity energy. In this case, both periodic and
chaotic dynamics are observed preceding the multi-pulsing tran-
sition. This is consistent with recent theoretical and experimen-
tal findings [4–6].
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pulses. Rather, a transition from N to N+m pulses occurs.
As different realizations of this numerical experiment are
run, the N to N+m random transition is easily observed,
especially for a higher number of pulses in the cavity. Fig-
ure 11 demonstrates two simulations for increasing satu-
ration energy. Note that in both cases, for a higher num-
ber of pulses in the cavity, the transition is not from N to
N+1 pulses, but rather from N to N+m pulses. It should
be noted that this behavior is in contrast to laser cavities
that do not have a chaotic transition region. Indeed, in
such laser cavities where transition occurs without chaos,
the transition is always from N to N+1 pulses.

C. Example 3: Periodic Nonlinear Loss
Finally, a periodic transmission profile is considered. This
transmission profile is inspired by laser cavities mode-
locked through the process of nonlinear polarization rota-
tion. In such cases, the transmission curve is known to be
periodic in nature. To model the transmission profile, we
consider the transmission function of the form

T�E� = 0.1 + 0.2�1 + cos�2E − 0.8���, �4�

where T�E� now has a periodic component as might be ex-
pected in a nonlinear polarization rotation based laser.

Figure 12 gives the quantitative versions of the curves
qualitatively presented in Fig. 4, but now extended for
large values of energy due to the periodic nature of the
transmission. Specifically, the nonlinear loss curve along
with the gain curves of the one-pulse, two-pulse, and

three-pulse mode-locked solutions are given along with
the threshold points. The periodic nature of the solution
suggests that higher-energy solutions may be accessible
in the mode-locking process. As the cavity energy is in-
creased through an increasing value of Esat, the one-pulse
solution becomes unstable to the two-pulse solution as ex-
pected. In this case, the computed threshold value only
extends down the loss curve to where the periodic branch
of solutions occurs; thus no chaotic dynamics are observed
in the first transition to a periodic or chaotic two-pulse so-
lution. As previously, the total cavity energy along with
the single pulse’s energy is depicted as a function of in-
creasing gain in Fig. 13.

4. ENGINEERING CAVITY LOSSES

The three examples given in the preceding section high-
light the three transition behaviors that can occur: (i)

Fig. 11. Iteration map dynamics for the periodic nonlinear loss
and saturating gain behavior of Fig. 9. Shown is the total cavity
energy Eout (top panel) and the individual pulse energy E1 (bot-
tom panel) as functions of the cavity saturation energy Esat for
two simulations. The transition dynamics shows that the chaotic
behavior generates a more generic N to N+m pulses bifurcation.

Fig. 12. Periodic nonlinear loss and saturating gain curves for
one-pulse, two-pulse, and three-pulse per round trip configura-
tions. The intersection of the gain and loss curves represents the
mode-locked solution states of interest. As the cavity energy is in-
creased, the gain curves shift to the right. The one-pulse solution
first experiences periodic and chaotic behavior before ceasing to
exist beyond the threshold point indicated by the rightmost bold
circle. The solution then jumps to the next most energetically fa-
vorable configuration of two pulses per round trip. However, a
high-energy one-pulse solution can also exist.

Fig. 13. Iteration map dynamics for the periodic nonlinear loss
and saturating gain behavior of Fig. 12. Shown is the total cavity
energy Eout (top panel) and the individual pulse energy E1 (bot-
tom panel) as functions of the cavity saturation energy Esat. The
transition dynamics between multi-pulse operations produces a
discrete jump in the cavity energy. In this case, periodic dynam-
ics is observed preceding the multi-pulsing transition to chaotic
two-pulse solutions.
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multi-pulsing transition without periodic or chaotic be-
havior, (ii) multi-pulsing transition with periodic but not
chaotic behavior, and (iii) multi-pulsing transition with
both periodic and chaotic transitions. Only small changes
to the nonlinear loss curve can generate all three sce-
narios.

The sensitivity to all three scenarios suggests that en-
gineering of the nonlinear gain in the cavity, i.e., the
transmission curve [Eq. (2)], can potentially lead to gains
in the performance or larger operating regimes. But what
is of greatest interest is an observation associated with
example 3 considered above. It is interesting to note that
a higher-energy solution now exists for the one-pulse per
round trip configuration due to the periodic nature of the
transmission curve. Thus it is possible to jump to this so-
lution rather than the two-pulse per round trip scenario.
However, the interplay of total cavity energy and the non-
linear loss typically forces the cavity to select the most en-
ergetically favorable operating regime. This would be the
two-pulse per round trip scenario versus the high-energy
one-pulse per round trip scenario. However, the high-
energy branch of solutions is accessible provided the laser
cavity initial conditions are prepared carefully. This is
typically not done since the laser cavity is self-starting
from white noise.

However, one can always ask the following question: is
it possible to engineer the cavity such that the higher-
energy solution branch is favored over multi-pulsing? We
show that indeed this can be done. Two examples are
given of nonlinear loss curves that generate the high-
energy one-pulse solutions as functions of increasing cav-
ity energy. In the first example, illustrated in Figs. 14 and
15, a discrete jump is observed in the cavity energy much
like the multi-pulsing transition. However, the discrete
jump is to a higher-energy one-pulse per round trip con-
figuration. Thus instead of the pulse bifurcating to multi-
pulsing solutions, the desired high-energy pulse is cleanly
achieved. For this example, the transmission function
was taken to be

T�E� = 0.02E + 0.1 + 0.2�1 + cos��2 − �0E�E − 0.8���,

�5�

where �0=0.08. Note that the high-energy one-pulse solu-
tion has on average approximately three times the energy
of the low-energy solution. Thus the laser cavity perfor-
mance can be significantly enhanced with a passive
means by proper engineering of the nonlinear loss curves.

A slight change in the transmission curve alters the
ideal energy enhancement illustrated in Figs. 14 and 15.
Simply changing the parameter �0 to zero yields the tran-
sition behavior shown in Figs. 16 and 17. In this case, a
jump from the low-energy one-pulse solution to the high-
energy one-pulse solution occurs with a chaotic then peri-
odic behavior. This is the reverse of the standard periodic
to chaotic transmission. However, Fig. 16 exactly shows
how this occurs in practice. In this case, as the one-pulse
gain line jumps from the first period of the nonlinear loss
to the second period, it begins by intersecting the chaotic
dynamics region. As the gain is increased it then goes
through a periodic region followed by the steady-state re-

Fig. 14. Periodic nonlinear loss and saturating gain curves for
one-pulse, two-pulse, and three-pulse per round trip configura-
tions. The intersection of the gain and loss curves represents the
mode-locked solution states of interest. As the cavity energy is in-
creased, the gain curves shift to the right. The low-energy one-
pulse solution ceases to exist beyond the threshold point forcing
the solution to jump to a high-energy one-pulse solution.

Fig. 15. Iteration map dynamics for the periodic nonlinear loss
and saturating gain behavior of Fig. 14. Shown is the total cavity
energy in the one-pulse solution. Note the jump to the high-
energy branch.

Fig. 16. Periodic nonlinear loss and saturating gain curves for
one-pulse, two-pulse, and three-pulse per round trip configura-
tions. The intersection of the gain and loss curves represents the
mode-locked solution states of interest. As the cavity energy is in-
creased, the gain curves shift to the right. The low-energy one-
pulse solution ceases to exist beyond the threshold point forcing
the solution to jump to a high-energy one-pulse solution. The so-
lution jumps to a chaotic state.
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gion. The desired steady-state mode-locking achieved in
this case is essentially the same for Figs. 15 and 17. The
routes to getting to the high-energy one-pulse solution,
however, are quite different. Such simple geometrical
modeling of the system conveys the practical power of the
analysis and illustrates its impact on laser cavity design.

5. CONCLUSIONS

The multi-pulsing phenomenon is a ubiquitous instability
of mode-locked laser cavities. Despite this well-known
phenomenon, theoretical models capturing the transition
dynamics and its associated bifurcations have been lim-
ited. The early work of Namiki et al. [3] was the first en-
ergy quantization approach used in computing the tran-
sition dynamics. This model presented a continuous
picture of the multi-pulsing dynamics. More recent theo-
retical [4] and experimental [5,6] findings suggested the
transition dynamics that displayed a behavior not consid-
ered by the original energy model formulation [3]. In this
work, we have constructed a simple geometrical approach
to quantifying the multi-pulse transition behavior. Only
two equations are involved: the saturating gain [Eq. (1)]
and the nonlinear losses described by a transmission
function [Eq. (2)]. By iterating alternatively on these two
effects, a complete multi-pulse transition picture can be
constructed. The theory shows that the transition be-
tween N and N+1 pulses can be preceded by periodic and
chaotic behavior as observed in recent experiments [5,6]
and as suggested in theory [4].

The multi-pulsing instability ultimately is detrimental
or undesirable for many applications where high-energy
pulses are desired. Indeed, instead of achieving high-
energy pulses as a consequence of increasing pump power,
a multi-pulsing configuration is achieved with many
pulses all of low energy. However, with the simple model
presented here, it is easy to see that the laser cavity dy-
namics can be engineered simply by modifying the non-
linear loss curve. Of course, modification of the loss curve
is trivial to do in theory, but may be difficult to achieve in
practice. Regardless, the potential for an enhanced perfor-
mance suggests that experimental modification of the
nonlinear losses merits serious consideration and effort.

Specifically, we have demonstrated one potential periodic
loss curve which suggests that instead of the cavity going
through the multi-pulsing instability, it alternatively
jumps to a high-energy solution branch, which is highly
desired in practice. Indeed, a threefold increase in energy
is demonstrated on average from a single jump in solution
states. This essentially circumvents the limitations on
pulse energy imposed by the multi-pulsing instability. In
future work, we hope to use quantitative cavity models
[21] to pursue a more careful study of the nonlinear loss
curves generated from physically realistic cavity param-
eters.
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