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ABSTRACT 

In the fringe-illumination deflectometry based on reverse-Hartmann-test configuration, ray tracing of the modeled testing 
system is performed to reconstruct the test surface error. Careful calibration of system geometry is required to achieve 
high testing accuracy. To realize the high-precision surface testing with reverse Hartmann test, a computer-aided 
geometrical error calibration method is proposed. The aberrations corresponding to various geometrical errors are 
studied. With the aberration weights for various geometrical errors, the computer-aided optimization of system geometry 
with iterative ray tracing is carried out to calibration the geometrical error, and the accuracy in the order of sub-
nanometer is achieved. 

Keywords: surface testing; deflectometry; geometrical error calibration; computer-aided optimization 

 

1. INTRODUCTION  

As an emerging surface type, freeform optical surface has been successfully applied in many applications, such as head-
mounted displays [1], microlens arrays [2] and bionic compound eye [3], etc. The major advantage of freeform surface is 
that it makes optical system more compact and more accurate. Compared with traditional rotational symmetric surfaces 
like spheres and aspheres, freeform surface has higher dynamic range, and it places ultrahigh requirement on the 
accuracy of measurement tools. Interferometry has served as an accurate and noncontact optical metrology in the 
measurement of optical surfaces. However, its dynamic range is too small to meet the requirement of most freeform 
surface to be measured. Besides, complex and expensive compensation optics is generally required in the interferometric 
testing [4-6]. 

As a slope measurement method, likes the Ronchi test and Hartmann test, the deflectometry provides a feasible way for 
freeform surface testing with high dynamic range [7, 8]. By measuring the deflection of reflected beams, the surface 
slope (derivative of surface sag) can be calculated to reconstruct the test surface. A software configurable optical test 
system (SCOTS), which is based on fringe reflection/deflectometry and reverse Hartmann test, has been successfully 
implemented in the testing of large astronomy telescope mirrors and precision X-ray mirrors at the University of 
Arizona. The deflectometry provides a contact-free, high dynamic range, full field metrology method with simple system 
setup and alignment [7, 9-14]. However, the achievable testing precision of deflectometry is mainly determined by 
calibration process. Various approaches have been proposed to achieve accurate calibration of system geometry. Those 
approaches depend on the high-precision 3D measuring instrument. The calibration process is quite laborious, 
complicate and time-consuming [6, 15, 16]. In order to achieve high testing accuracy and loose the requirement on the 
calibration of system geometry, the computer-aided reverse optimization with iterative ray tracing has been proposed. By 
taking the surface error as the global minimum of the departure from its ideal state, the additive systematic error could be 
eliminated [7]. However, small residual error introduced by system geometry miscalibration can still be observed in 
testing results.  
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In this paper, a system geometry calibration method based on Zernike ratio is proposed to lower the requirement on the 
precision of mechanical device and achieve high measurement precision. The aberrations corresponding to various 
calibration errors of each component in testing system are discussed in the measurement of freeform surface with the 
illumination screen and a CCD camera. The rest of this paper is organized as follows: Section 2 presents the principle of 
reflective surface testing method based on reverse Hartmann test, including the system configuration and basic theory of 
system geometric calibration based on Zernike ratio. Section 3 shows the numerical analysis and simulation results about 
the freeform surface testing, and Section 4 draws some concluding remarks. 

2. PRINCIPLE 

2.1 System layout of reverse Hartmann test 

Hartmann test is a traditional slope measurement method. Figure 1(a) shows the traditional Hartmann test configuration. 
According to Fig. 1(a), the point light source, which is placed near the curvature center of test mirror, sends the lights 
through a plate with a number of holes (Hartmann screen) and then the whole test mirror is illuminated. Due to the 
constraint of the Hartmann screen, the lights passing through the given holes are reflected and then received by the 
detector. When certain pixels on the detector are lit up, the incident rays and their reflected rays could be defined 
uniquely. Due to fact that the local surface slopes can be measured by triangulation, the surface image can be obtained 
from the integration of the slopes [7, 12]. 

 

Fig. 1. System layout. (a) Hartmann test, (b) Reverse Hartmann test. 

The basic geometry of testing system based on reverse Hartmann test is similar to Hartmann test, as is shown in Fig. 1(b). 
According to Fig. 1(b), the CCD is employed as the point source in Hartmann test to detect the light reflected from test 
surface. The detector is replaced by an LCD screen. When an illuminating screen pixel is lit up, the image on the CCD 
will show a bright region corresponding to a certain reflection region on test surface. The direction of the incident and 
reflected light is determined by the coordinate of these three points uniquely. To realize the quick obtainment of surface 
normal map, the sinusoidal fringes illumination and phase shifting method is applied [17, 18]. 

In the testing of a polished optical surface, the key point is to obtain the surface departure from its ideal shape. The 
virtual null test can be realized by setting up a ray tracing model, in which the test optics is set to its ideal shape. By ray 
tracing the testing system with ideal surface, an ideal spot distribution ( , )model modelx y  on the image plane can be obtained. 

In the experiment, the actual spot distribution ( , )test testx y  is calculated from the sinusoidal-fringe phase-shifting method. 

According to the transverse ray aberration model, the system wavefront aberration can be approximately equal to the 
transverse ray aberration [10]. The slope differences ( , )x yw wΔ Δ  can be obtained by dividing the spot coordinate 

differences ( , )spot spotx yΔ  Δ  with the mirror-to-screen distance 2m sd ,   
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where ( , )x y  are the exit pupil coordinate of the system, ( , )W x y  refers to the wavefront aberration. With the surface 

integration, the surface error map can be reconstructed from the slope differences ( , )x yw wΔ Δ .  

2.2 Geometrical aberrations in reverse Hartmann test 

In the configuration of reverse Hartmann test, which is an off-axis system setup, both the illumination screen and camera 
are laterally displaced from the optical axis of test surface. The calibration error of the geometrical relations among 
various components in the system, including the tilt angle deviations, lateral and longitudinal displacements, could 
introduce evident residual error in the testing result, even though the measurement accuracy of calibration device can 
reach the order of microns. Taking the lateral displacement and tilt around x axis as examples, they would result in the 
off-axis aberrations including astigmatism, spherical and coma, respectively. As a classical description of wavefront, the 
Zernike polynomials, in which the system wavefront data W  can be expressed with a series of orthonormal polynomials 

( , )iZ ρ θ  with coefficients iC , is applied for the off-axis aberrations analysis [19], 

 ( )
1

= , ,
N

i i

i

W C Z ρ θ
=

⎡ ⎤⎣ ⎦∑  (2) 

where N is the total term number of Zernike polynomials, ( , )ρ θ  are the polar coordinates on the test surface. 

For the convex spherical surface with an aperture diameter of 50.8 mm and curvature radius of 250 mm, Table 1 shows 
that the correspondence between Zernike coefficients and the off-axis aberrations. In traditional methods, the major 
systematic error introduced by system geometrical error can be removed from testing result, simply by setting the 
corresponding low-order Zernike coefficients to zero [20]. However, some residual high-order aberrations can be 
observed in the testing result according to Table 1. 

Table 1. Correspondence between Zernike coefficients and the off-axis aberrations. 

Zernike polynomials Aberrations Zernike coefficients (μm) 

Z4 Astig x -1.9354 

Z5 Astig y 0.8275 

Z6 Coma x -0.6286 

Z7 Coma y 0.9543 

Z8 Primary Spherical -0.1807 

Z9 Trefoil x -0.6577 

Z10 Trefoil y -1.4360 

Z11 Secondary Astigmatism x -0.9443 

Z12 Secondary Astigmatism y -0.7888 

Z13 Secondary Coma x 0.1098 

 

Figure 2 shows the calibration error of the lateral displacement along x axis and tilt deviation around x axis, which would 
introduce significant residual aberrations. According to Fig. 2, the maximum variation of Zernike coefficient 
corresponding to 0.1 mm lateral displacement calibration error reaches 0.1314 μm, and that for 0.1 degree tilt calibration 
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error is about 0.8971 μm. Thus, it is necessary to study the aberrations corresponding to various calibration errors of each 
component in testing system.  

In the previous work, a computer-aided system geometry calibration method based on the ray tracing of the testing 
system was proposed, and the surface error was taken as the global minimum of the departure from its ideal shape [7]. 
However, the diversity and mutual influence of error factors would affect the optimization result, and further calibration 
is required to minimize the residual systematic error. 

 

Fig. 2. Zernike coefficients caused by geometrical error. (a) Lateral displacement along x axis and (b) tilt angle deviation 
around x axis of the convex surface with the 25.4 mm semi-diameter and 250 mm curvature radius. 

2.3 System geometric calibration based on Zernike ratio 

The calibration of system geometrical error can be realized by ray tracing of testing system, as well as to achieve the 
virtual null testing of surface error. Accordingly, the initial measurement result (0)

testW , which is measured in the testing 

system model, can be expressed with a series of orthonormal polynomials ( , )iZ ρ θ  with coefficients (0)
,i testC , 

 ( )(0) (0)
,

1

, ,
N

test geo surf i test i

i

W W W C Z ρ θ
=

⎡ ⎤= + = ⎣ ⎦∑  (3) 

where 
geoW  and 

surfW  are the systematic error introduced by system geometry and test surface error, respectively.  

Due to the fact that the geometrical error is introduced by various system parameters, including the tilts in x, y and z 
directions, decenter in x and y directions, axial displacement of test surface relative to camera aperture, and the same 
errors of illumination screen relative to test surface. It is difficult to separate the geometric error from the measured data. 
To obtain the aberration weights ( )j

ir  for various geometrical errors, an addition deviation of single system parameter 

from its original value was added to the ray-tracing system model, and we have the measurement result 

 ( )( ) ( ) ( )
,

1

+ , ,
N

j j j

test geo surf i test i

i

W W W W C Z ρ θΔ
=

⎡ ⎤= + = ⎣ ⎦∑  (4) 

where j  refers to the thj  single component among system parameters, ( )jWΔ  is the wavefront aberration introduced by 

the increment of the thj  single component. Thus, the wavefront aberration ( )jWΔ  can be fitted to Zernike polynomials as 

 ( ) ( ){ } ( ) ( )( ) (0) ( ) (0)
, ,

1 1

, , ,
N N

j jj j

test test i test i test i i i

i i

W W W C C Z C Zρ θ ρ θΔ
= =

⎡ ⎤⎡ ⎤= − = − = Δ⎣ ⎦ ⎣ ⎦∑ ∑  (5) 

where ( )j

iCΔ  is Zernike coefficients corresponding to the wavefront aberration ( )jWΔ . 
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As is shown in Fig. 2, obvious function correlativity exists between the coefficients of Zernike polynomials and the 
variation of each single component among system parameters. Under the conditions of the freeform surface and small 
working distance, the obvious systematic error due to each thj  single system geometry calibration error jε  could be 

estimated according to the functional relationship , ( )i j jψ ε  between them, where the subscript i  indicates the thi  Zernike 

coefficient of systematic error. Based on linear approximations, the aberration weights ( )j

i
r  for various geometrical 

errors can be expressed as 

 ( ) ( ) ( ) ( ) ( )
3 3 ,j j j j j

i i ir C C C C= = Δ Δ  (6) 

where ( )j

iC  is the thi  coefficient of Zernike polynomials with the influence of the thj  single component. The Zernike 

coefficient ( )j

iCΔ  can be obtained with the differential method in Eq. (5), and we have the aberration weights ( )j

ir  

 ( ) (0) (0)
, , , , 3, 3,+ ( ) + ( ) ,

m m
j

i i test i surf i k k i test surf k k

k j k j

r C C C Cψ ε ψ ε
≠ ≠

⎡ ⎤ ⎡ ⎤
= − −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑  (7) 

where ,i surfC  are the coefficients for the orthogonal polynomials fitting of modeled wavefront aberration introduced by 

surface error, m  is the total number of the components among system parameters.  

With the initial measurement result (0)
testW  and the known functional relationships , ( )i k kψ ε , the measurement result ( )k

testW , 

which is influenced by all the components, can be obtained by adjusting the model parameters. According to the Eq. (7), 

the restrictive condition can be applied to obtain the coefficients { },i surf
C  of Zernike polynomials,  

 ( )
0

(0) (0)
, , 3, , 3, , ,( ) ( ) ,

m
j

i k k i j k k i i test surf i test i surf

k j

r r C C C Cψ ε ψ ε
≠

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = ⋅ − − −⎣ ⎦ ⎣ ⎦⎣ ⎦∑  (8) 

where (0)
, ,i test i surf

C C⎡ ⎤−⎣ ⎦  is the objective and it can be obtained from the overdetermined linear function shown in Eq. (8) 

with the least square method.  

Due to the fact that the original coefficients (0)
,i testC  is known, the modeled coefficient ,i surfC  can be calculated to describe 

the surface error. Under the restrictive condition in Eq. (7), the surface error can be obtained when the geometrical error 
is the global minimum of the departure from its ideal shape. In the reverse optimization method, the geometrical 
parameters of test system can be optimized according to the objective function, 

 ( ) ( )2 2

,
1

( ) min min ,
N

j surf i surf

j

F W c C cε
=

⎡ ⎤⎡ ⎤= + = +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
∑  (9) 

where the parameter c is an additional constraint to restrict the solution space. With the optimal solution jε ∗  after 

optimization, the test surface error surfW  can be estimated as 

 ( ).
surf test geo j

W W W ε ∗= −  (10) 

Figure 3 exhibits the procedure for the geometrical error calibration method based on Zernike ratio. When the 
experimental system is set up, the pre-calibrated system geometrical parameters, which is measured by three-dimensional 
positioning equipment like CMM, can be employed to build a testing system model in the ray-tracing software. 
Approximately, the wavefront aberration (0)

test
W , which is measured in the reverse Hartmann test, can be taken as the 

summation of simulated systematic error geoW  and test surface error surfW . Subsequently, the constant Zernike ratio ( )j

ir  

and the functions , ( )i j jψ ε  are built by constantly adjusting the geometric parameters in the ray-tracing software 

according to Eq. (6). In the optimization procedure, the pre-calibrated system parameters are taken as the original value, 
and the geometrical deviation jε  is employed to update the wavefront in the model with the functions , ( )i j jψ ε . When 
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the objective function ( )jF ε  reaches the threshold δ , the optimal geometrical deviation jε ∗  and the corresponding test 

surface error surfW  can be obtained. 

 

Fig. 3. Procedure for system geometry calibration. 

3. NUMERICAL SIMULATION  

To validate the feasibility and accuracy of the proposed method for the geometrical error calibration in reflective surface 
testing based on reverse Hartmann test, the ray-tracing computer simulation is carried out, in which the wavefront 
aberration is characterized with 37-term Zernike coefficients. A test freeform surface is employed to build a reverse 
Hartmann test system with the configuration shown in Fig. 1(b) in the ray-tracing software (ZEMAX). The actual test 
surface error is shown in Fig. 4(a), whose peak-to-valley (PV) and root-mean-square (RMS) values are 18.5591 μm and 
3.4657 μm, respectively. Figure 4(b) shows the whole surface map of test freeform surface, whose aperture diameter is 
50.8 mm and PV value is 1.2832 mm. The best fit sphere vertex offset of test surface is -6.4021 μm, and the distance 

2m sd  between the mirror and the screen is 151.9310 mm. 

To analyze the effect of system geometry calibration error on the testing result, the systematic error introduced by system 
geometry calibration error is studied in detail. Figure 5 shows the wavefront aberrations corresponding to various 
calibration errors of the lateral displacement mxD  along x axis and tilt mxT  about x axis for the test surface. According to 

Fig. 5, the systematic error grows linearly with the lateral displacement error along x axis and tilt error from its original 
value, respectively. In the freeform surface testing, the RMS value of residual error corresponding to 20 μm lateral 
displacement calibration error is about 0.0069 μm, and that for 0.01 degree tilt calibration error can reach 0.0239 μm.  

In the simulation, an additional deviation of the lateral displacement along x axis 0.06mxD = −  mm and tilt about x axis  

0.103mxT = − o  from its original value are added to the test surface in the ray tracing model, in which the test surface is set 

as an ideal shape. According to the testing method introduced in Section 2, the virtual “null” test of ideal surface can be 
carried out to obtain the initial measurement result (0)

test
W in Eq. (3), as is shown in Fig. 4(c). Figure 4(d) shows the 

residual error of the initial measurement result (0)
testW  (Fig. 4(c)) with respect to the actual surface error (Fig. 4(a)), in 

which a significant residual error with the PV value 6.0458 μm and RMS value 0.9848 μm can be observed. 
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Then the system geometry calibration process introduced in Fig. 3 is performed to remove the system geometry 
calibration error. After the reverse optimization of the system geometry, the optimization result about test surface error is 
shown in Fig. 4(e), and Fig. 4(f) is the corresponding residual error with the PV and RMS values 0.0039 μm and 0.0007 
μm, respectively. The deviation of lateral displacement along x axis mxD  and tilt about x axis mxT  are 0.6 μm and 0.0001 

degree, respectively. Table 2 presents the detailed value about the freeform surface testing results. 

Table 2.  PV and RMS values of surface testing results in the simulation. 

 PV (μm) RMS (μm) 

Actual surface error 18.5591 3.4657 

With system geometric error 

Test surface error  13.9202 3.0257 

Residual error 6.0458 0.9848 

After system geometry calibration 

Test surface error  18.5635 3.4661 

Residual error 0.0041 0.0007 

According to Fig.4 and Table 2, the computer simulation results confirm the accuracy and feasibility of the proposed 
calibration system. Moreover, it provides a high-precision method to measure freeform surface, whose surface departure 
is within the dynamic range of deflectometry. Besides, this method provides a feasible way to lower the requirement on 
the calibration of system geometry, and is of great practicality for the high-precision measurement of freeform surface. 

4. CONCLUSION 

In this paper, the geometric calibration errors in the surface testing based on reverse Hartmann test, including the tilt 
angle deviations, lateral and longitudinal displacements (both test surface and screen), are studied in the ray tracing 
model. According to the analysis, system geometric calibration based on Zernike ratio provides a feasible way to 
improve the measurement accuracy. The numerical simulation has been carried out to demonstrate the feasibility of the 
proposed optimization method, which enables high-precision testing of freeform surfaces. In addition, system geometric 
calibration based on Zernike ratio is a feasible way to loose the requirement on the calibration of system geometry.  
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