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Abstract Binary mixtures represent the simplest case of
polydisperse particulate systems which exhibit interesting
and, in some cases, incomprehensive behavior. In this study,
experimental and numerical investigations were conducted
to examine the effect of particle size ratio and the ratio of
volume fraction comprising small particles to the volume
of all spheres (volume fraction) on geometrical properties
of binary granular mixtures. The size ratio was chosen not
smaller than 0.4 to prevent small particles from percolating
through bedding and be trapped in the tetrahedron or octa-
hedron made with large contacting spheres. Both, numerical
tests and experiments showed an increase in the influence
of the volume fraction of small particles on packing density
in binary mixtures with an increasing ratio between small
and large particles’ diameters. In packings with the particle
size ratio not larger than 0.7, the solid fraction reached max-
imum when the volume fraction of small spheres was 0.6,
which was not observed in samples with higher degree of
particle size homogeneity. The average coordination num-
ber and packing density followed the same paths with the
increasing contribution of small particles in mixtures, indi-
cating a strong relationship between parameters. Detailed
analysis of the coordination numbers for contacts between
different types of particles showed that, average coordina-
tion number in binary mixtures was determined mainly by
contacts between large and small particles. The composition
of bidisperse samples was also found to strongly affect their
spatial structure described in this study by means of the radial
distribution function.
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1 Introduction

Handling and processing of granular materials is crucial
to a wide range of industries. Many of these display dif-
ficult handling behavior, posing considerable challenges in
the design and operation of processing plants. The scien-
tific insight into mechanical behavior of granular materials
facilitate optimization of conveying, handling and process-
ing systems. The up to date theory of granular mechanics
mainly considered bulk material as a monodisperse system,
however most particle packings involved in industrial and
natural processes are composed of particles of a broad range
of particle sizes. Granular packings may be composed of
one, two, three or more components. Binary mixtures rep-
resent the simplest case of polydisperse particulate systems
which exhibit interesting and, in some cases, incomprehen-
sive behavior. Understanding of such behavior could pave the
way for a more rapid and accurate interpretation of effects
observed in more complex packings of non-uniformly sized
grains. It has been widely reported that a degree of particle
polydispersity strongly affects packing density of granular
mixtures [1–3] and arrangement of particles in the granular
system [4]. Experimental [1,2], theoretical [2–4] and numer-
ical [5–8] studies have been conducted to determine packing
density of particulate beds, which is of prime importance to
scientists and engineers. The packing density of the granular
system was found to be sensitive to mechanical and geo-
metrical properties of particles (e.g. friction [9,10] and the
particle size ratio [1,6,11–14]), the degree of particle size
heterogeneity [7] and the volume fraction of small particles
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[1–3,6,11,15]. Mixing particles of various sizes with differ-
ent volume fraction is a common way to increase the density
of granular packings; however, an increase is observed in
mixtures with the ratio of the diameter of large and small
spheres far from unity. In close-packed binary mixtures, two
basic types of particle arrangement are produced: tetrahe-
dral and octahedral [16]. When the ratio of the diameter of
small and large spheres is smaller than 0.225, small spheres
may be trapped in the tetrahedron made with four large con-
tacting spheres, which increases the density of the sample
without a change in its volume. In the case of octahedron
made by six identical spheres, a smaller sphere is trapped
when the diameter of small particle is smaller than 0.414 of
the diameter of the large sphere. For more homogeneous sam-
ples with size ratios close to unity packing density decreases
[17].

McGeary [1] observed an increase in the packing density
of binary mixtures comprising steel shots with size ratios
varying from 1 to 19 with an increase in the number fraction
of smaller particles up to above 60 %. A further increase in
contribution of small shots in mixture resulted in a decrease in
the packing density of samples. An experimental and theoret-
ical study on the packing density of bidisperse mixtures with
large size ratios, conducted by Rassously [2], confirmed find-
ings of McGeary. The detailed characterization of packing
structures of binary granular assemblies with different size
ratios, conducted by Isola [4], indicated a strong influence of
contribution of small particles in bedding on the radial dis-
tribution function (RDF), which provides information about
the organization of particles in the system and long range
interparticle correlations. As the packing density affects the
number of contacts between particles, the number fraction of
small particles in binary granular mixtures was also found to
influence a coordination number [12,18]. A numerical study
prepared by Skrinjar and Larsson [12,18] indicated that an
increase in the number fraction of small particles in bimodal
mixtures decreased the average coordination number and the
presence of small particles in the sample reduced the coordi-
nation number, in comparison to the monodisperse packing.
An experimental study conducted by Pinson et al. [19] on
binary granular mixtures indicated that increasing the volume
fraction of a small component increased contacts between
small and large and small particles and decreased the small-
to-large and large-to-large contacts. The changes were more
significant for samples with a large size difference. Wiącek
and Molenda [8] observed a decrease in the average coordina-
tion number with an increase in the degree of polydispersity
of granular mixtures, due to the increase in the number of
small particles percolating through the bedding. Dutt and
Elliot [20] reported that the ratio of the smallest to the largest
particle diameter in the granular packing must be larger than(√

2 − 1
) = 0.41 to prevent grains from percolating through

the sample.

Heterogeneity in the particle size strongly influences
mechanical properties of the granular packings [1,7,8,21,
22], which affects engineering processes to which materials
are subjected. The degree of particle size heterogeneity deter-
mines the mechanical response of particulate systems to shear
[22,23] and compaction [3,7,8,11,12,24,25], and affects the
flow of particle mixtures during mixing, discharge and other
processes [14,26]. Granular packings composed of non-
uniformly sized grains reveal a high tendency towards strong
segregation, which is undesirable for many solids handling
processes [27–29]. Zhou et al. [3] reported strong depen-
dence of the packing density, modulus of volume expansion
and drag force of mixtures of different sized white alu-
minum oxide granules subjected to compression and drag
experiments on the mass fractions. For each type of mix-
ture, density and drag force approached a maximum when
the mass percentage of larger particles was about 70–80 %,
while modulus of volume expansion reached maximum at
mass fraction of 30–50 %. The discrete element simulations
of compaction of binary powder mixtures with size ratio
higher than 4, conducted by Martin and Bouvart [11], have
shown that bimodality of mixtures determined stiffness of
mixtures affecting compaction and unloading stages.

The review of literature shows that extensive studies have
been performed on the properties of bidisperse particulate
packings; however, more detailed investigations address-
ing structural properties of mixtures with a various size
ratio and a contribution of respective fractions to assem-
bly, being of high interest to engineers and technological
process designers, are still required. Thus, the objective of
the presented project was to examine the dependence of
structural properties of granular mixtures on the volume
fraction of small particles in mixtures with particle size
ratios larger than 0.4, wherein percolation of small spheres
downwards between large grains does not take place. Experi-
mental tests were completed by numerical simulations which
allowed the author to analyze the transition from fully homo-
geneous monodisperse packings to heterogeneous systems
with an increasing volume fraction of smaller particles. The
application of the discrete element method (DEM) provided
knowledge about structural properties of granular packings
(the number of interparticle contacts and RDF), which so far
remained unattainable using the experimental methods.

2 Materials and methods

2.1 Experimental method

The series of laboratory tests were conducted using an uni-
axial compression apparatus of rectangular cross-section of
0.12 m × 0.12 m and 0.1 m thick. The dimensions of the
apparatus chamber were not smaller than 15 mean particle
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diameters which was found by the author as a representa-
tive elementary volume [30]. The elements of tester were
machined from 6 mm thick galvanized steel, giving an essen-
tially rigid boundary. The apparatus was equipped with steel
top platen weighing 8.5 N.

The test materials were monodisperse and binary samples
of steel beads. The binary mixtures were described by parti-
cle size ratio (g), defined as a diameter ratio of small (Ds)

and large (Dl) beads, and volume fraction ( f ), defined as a
volume ratio of smaller particles and the volume of all parti-
cles in bedding. In each binary assembly, one of the fractions
comprised beads of the diameter of 8 mm and the second
fraction was composed of steel beads with the diameter of
7.144, 6.35, 5.556, 4.762 or 4 mm. The size ratios of bidis-
perse mixtures ranged from 0.5 to 0.9. In this study, the size
ratio was chosen not smaller than 0.4 to prevent small objects
from percolating through bedding. In monodisperse packings
containing the largest and the smallest beads, the number of
elements varied from 3000 to 52,000, respectively. In bidis-
perse samples, the number of steel beads was determined by
the volume fraction of smaller spheres, ranging from 0.2 to
0.8.

The steel beads were poured into the apparatus chamber
with sprinkle filling. Next, samples were covered through the
top platen which lay freely on the surface of the sample. The
top platen exerted a pressure of 0.75 kPa on the uppermost
beads, which equaled about 1 % of vertical pressure exerted
by the sample on the bottom of the apparatus. Three replica-
tions were performed for each type of packing.

2.2 Numerical simulations

In this study, three-dimensional simulations were conducted
using DEM. DEM [31], is a common numerical technique for
the detailed investigation of mechanical behavior of granular
systems. The simplified viscous-elastic non-linear Hertz–
Mindlin contact model was used. The detection of contacts
between particles is followed by calculating normal and tan-
gential contact forces at each incremental time step, which is
set small to allow one to assume a constancy of translational
and rotational accelerations. The motion of each particle in
the system is given by Newton’s equations. The integration
of the equations of motion provides information regarding
the particle’s position, velocity and resultant forces. The rigid
particles are allowed to overlap locally at contact points using
a soft contact approach. The detection of contacts between
particles is followed by calculation of the normal (Fn) and
tangential (Ft ) contact forces at each incremental time step,
given by:

Fn = knδ
3
2
n , (1)

Ft = −ktδt , (2)

Table 1 DEM input parameters

Parameter Steel

Poisson’s ratio, ν 0.3

Shear modulus (GPa), G 77

Density (kg/m3), ρ 7804

Coefficient of restitution, e Particle–particle Particle-wall

0.4 0.4

Coefficient of static friction, μs Particle–particle Particle-wall

0.321 0.216

Coefficient of rolling friction, μr Particle–particle Particle-wall

0.01 0.01

where kn and kt are normal and tangential stiffness coef-
ficients, and δn and δt are normal and cumulative shear
displacements. The stiffness coefficient may be expressed
as:

kn = 4

3
Y ∗√R∗, (3)

kt = 8G∗√R∗δn, (4)

where Y ∗ is an equivalent of Young’s modulus; R∗ is an
effective radius of contacting particles; and G∗ is an equiva-
lent shear modulus. The elastic constants, Young’s modulus
Y and shear modulus G, are related to each other as fol-
lows:

G = E

2 (1 + ν)
, (5)

where ν is a Poisson’s ratio.
The tangential contact force is limited by Coulomb’s fric-

tion law

Ft < μs
∣∣Fn

∣∣ , (6)

which assumes that particles slide over each other when the
tangential force is at the limiting friction. The μs is a coeffi-
cient of the static friction.

Numerical tests have been carried out using EDEM soft-
ware [32]. The experimentally determined input parameters
for steel beads and steel walls of the chamber are listed in
Table 1.

The spherical particles with random initial coordinates
were generated in the box 0.12 m wide, 0.06 m high and
0.1 m thick placed above the model chamber of the uniax-
ial compression apparatus. Spheres settled down onto the
bottom of the box measuring 0.12 × 0.12 × 0.1 m under
gravitational force (Fig. 1). Rigid and frictional walls did
not deform under the applied load. As soon as a total
kinetic energy of particles decreased below 10−5 J, which
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Fig. 1 The initial configuration of the binary mixture with the size
ratio of 0.4 and the volume fraction of 0.4

was considered an equilibrium state, spheres were com-
pressed through the top cover of the chamber that moved
vertically downwards at a constant velocity of 3 m/min.
The maximum vertical force of 8.5 N exerted on the cover
by uppermost particles was equaled to gravity of the top
platen used in experimental tests. Three replicate tests
were performed for each sample to verify the repeatabil-
ity.

The simulations were conducted for monodisperse and
binary samples comprising spheres with diameters of 8, 6.35
and 4.762 mm, analogical to ones examined in laboratory
tests. Additionally, specimens composed of spheres with
diameters of 8 and 3.175 mm were generated in simulations
to study the effect of the volume fraction of small particles
on structural properties of packings with size ratio of 0.4.
The diameters of spheres varied within ±2 % to simulate
real steel beads and to prevent identical particles from rear-
ranging themselves into a crystal-like formation.

3 Results

3.1 Solid fraction

Figure 2 shows the evolution of solid fraction (ϕ) with the
volume fraction of small particles in physical and numerical
mixtures with various particle size ratios. The solid fraction
of a granular material is defined as the fraction of the sample
volume filled by grains. The mean values are plotted with the
error bars indicating ± one standard deviation. Compared
with monodisperse samples, in binary mixtures with size
ratios smaller than 0.6 solid fractions were smaller, which
was in agreement with results presented by Zhou et al. [3] and
Jalali and Li [6]. In mixtures with the size ratio of 0.6 and 0.7,
an increase in the solid fraction with an increase in f value
up to 0.6 was observed, which was then followed by decrease
in solid fraction at volume fraction of small elements of 0.8.
A further decrease in the number of smaller particles in mix-
tures resulted in an increase in solid fractions which, finally,
were the highest in monodisperse samples composed of small
particles. The maximum ϕ value in packings with g value
smaller than 0.7 occurred at the volume fraction of smaller
beads of 0.6, which corroborated findings reported earlier
by inter alia McGeary [1], Rassously [2], Jalali and Li [6].
In samples with the high particle size ratio, the solid fraction
increased slightly in the whole range of f and no maximum in
the value of the parameter was observed, which was in oppo-
site to numerical predictions conducted by Jalali and Li [6].
These results indicate that above a certain value of the par-
ticle size ratio, the solid fraction of binary samples does not
reach maximum. Solid fractions varied from 0.597 to 0.625 in
physical samples which corroborated findings of, inter alia,
Chen [33] and Francois et al. [34], EDEM Software [32] and
Francois et al. [34], who reported that for randomly arranged
spheres the packing density varied between 57 and 64 %.

A good quantitative agreement between the numerical and
experimental results was obtained for granular specimens of
various size ratios and volume fractions of smaller particles;
however, DEM provided samples with significantly smaller
solid fractions.

Fig. 2 The evolution of the
solid fraction versus the volume
fraction of small particles in
experimental (a) and numerical
(b) binary mixtures with various
size ratios
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3.2 Coordination number

In the three-dimensional monodisperse packing of friction-
less spheres, the average coordination number (CN), is
expected to be six, which is equal to twice the number of
degrees of freedom per particle [35]. Monodisperse sam-
ples of uniform spheres and mixtures composed of particles
with a small degree of polydispersity are arranged in a
crystalline formation with a homogeneous distribution of
contacts throughout the system [7]. Each particle in the
sample is supported by several neighbouring particles and
it supports other particles. In highly heterogeneous mix-
tures, where small spheres partially fill the pores between
larger particles, each particle is supported by neighbour-
ing particles but it does not necessarily support others.
As these particles do not contribute to the force transmis-
sion through the system, a corrected coordination number
(CN*) in which mechanically unstable particles with less
than four contacts were excluded from calculations has been
introduced by Göncü et al. [36]. Wiącek and Molenda [8]
observed an increase in the corrected coordination num-
ber by 25 %, as compared to the classical coordination
number, in assemblies with a high degree of polydisper-
sity.

The evolutions of the classical average coordination num-
bers (CN) and the corrected coordination numbers (CN*) in
numerical sphere packings with various size ratios and vol-
ume fractions of small particles are shown in Fig. 3. The
coordination number varies with the distance from the wall
due to the wall effect; therefore, the particles lying within
three diameters of larger spheres from the walls of the cham-
ber were excluded from calculation to reduce the wall effect.
The average coordination number was slightly smaller in
mixtures with the volume fraction of smaller components of
0.2, as compared to monodisperse samples of large spheres
due to evolution of the packing structure from the ordered
to the disordered one. The average coordination numbers in
monodisperse assemblages were close to 6, which means
that these samples reached mechanical stability and might
be termed isostatic [5].

In mixtures with g = 0.8, composed of similarly sized par-
ticles, no impact of contribution of small spheres onCN value
was observed. In mixtures with smaller particle size ratios,
the number of contacts between spheres increased with the
volume fraction of small particles increasing up to 0.6, which
was followed by the decrease in the coordination number for
higher f values. In these packings, the relationships between
the average coordination number and the volume fraction of
smaller spheres followed the similar paths to solid fraction-
volume fraction curves.

As the average coordination number in the polydisperse
granular packing is determined by contacts between different
types of particles [37], the detailed analysis of the aver-
age coordination numbers for spheres representing respective
fractions in assemblies was conducted in this study. Figure 4
shows the evolution of the average coordination numbers for
contacts between spheres with the contribution of small par-
ticles in mixtures with various particle size ratios. The CN
values for equally sized spheres were similar in the examined
packings, contrary to the values of the parameter calculated
for contacts between non-uniformly sized spheres. Coordina-
tion numbers for contacts between large and small particles
were higher in samples with g = 0.4 and increased sharply
with an increase in the number of small spheres. In turn, the
CN values for contacts between small and large particles in
these mixtures were smaller and decreased with increasing
f value. These results indicate that the average coordination
number in binary mixtures is determined mainly by contacts
between large and small particles.

Figure 3b illustrates a change in the corrected coordina-
tion number with the increasing particle size ratio and the
volume fraction of small spheres in binary mixtures. Values
of the parameter strongly varied in samples with the volume
fraction of small particles of 0.2 which resulted from dif-
ferences in the population of particles with contacts smaller
than 4 in packings with different g values (Fig. 5a). A slight
influence of the size ratio on CN* value was observed for
higher volume fractions of small components.

Figure 5 shows the probability distributions for the num-
ber of contacts per particle (N ) in the binary samples with

Fig. 3 The evolution of the
coordination number (a) and the
corrected coordination number
(b) with the volume fraction of
small particles in numerical
binary mixtures with different
size ratios
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various size ratios and volume fractions of small beads of 0.2
and 0.8. No statistically significant difference was found in
probability distributions for mixtures with g value of 0.8 and
various volume fractions; however, a decrease in the particle
size ratio resulted in the more heterogeneous distribution of
contact numbers per particle in the packings with higher f
values. The probability distributions for mixtures with size
ratios of 0.6 and 0.8 were symmetrical, while the ones for
higher g = 0.4 were asymmetrical and right-skewed.

The coordination number is a fundamental geometrical
parameter dependent on the structure of granular assembly,
therefore, numerous effort has been made to determine the
relationship between the average number of contacts and

parameters describing structural properties of packing. In
1980, Dodds [38] introduced the following formula for the
coordination number in isotropic mixtures composed of uni-
formly sized homogeneous particles of types q and p

CNp,q = fqCN , p, q = 1, 2 (7)

where fq is a volume fraction of particles q and CN is an
average coordination number.

As the coordination number was found to be determined
by structural properties of granular assembly, Artz [39]
expressed the coordination number as a function of the
relative density of the particulate system (D); however, appli-

Fig. 4 The evolution of
average coordination numbers
for contacts between large
particles (a), large and small
particles (b), small and large
particles (c) and small particles
(d) with the volume fraction of
small particles in mixtures with
particle size ratios of 0.4 and 0.8
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Fig. 5 Probability distribution
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particle in numerical samples
with various size ratios and
volume fractions of small
spheres of f = 0.2 (a),
f = 0.8 (b)
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cation of Artz was limited for the early stages of compaction.
Thus, Helle et al. [40] has developed simple approximation,
applicable for I and II stage of compaction under hydrostatic
pressure:

CN = 12D. (8)

Further studies on relationship between the coordination
number and the solid fraction in sphere packings conducted
by, inter alia, O’Hern et al. [41], Majmudar et al. [42] and
Göncü et al. [36] have shown that CN exhibits a following
power law:

CN − CNc ∝ (ϕ − ϕc)
β , (9)

where critical value of solid fraction ϕc is the one for which
there are enough contacts per particle (CNc) to satisfy the
conditions of mechanical stability and β ≈ 0.5 [42].

Many equations have been proposed over the last few
decades to estimate the average coordination number of
monodisperse granular packings [38–40]. A number of
studies have also been conducted to derive a formula for
nonuniformly sized granular systems [11,36,43]; however,
they still have not provided reasonable approximations for
binary mixtures.

It has already been shown that the average coordination
number in polydisperse granular packing is determined by
contacts between different types of particles [18,44]. Turner
and Ashby [37] proposed formulas for average coordination
numbers between particles representing respective fractions.
Average coordination numbers for contacts between large
particles (CNll), large and small particles (CNls), small and
large particles (CNsl) and small particles (CNss) may be
expressed as:

CNll = 1 − k

(1 − k + kg)2CN ,

CNls = kg

(1 − k + kg)2CN ,

CNsl = (1 − k) g

(1 − k + kg)2CN ,

CNss = kg2

(1 − k + kg)2CN ,

(10)

where k is a number fraction of small particles and g is a
ratio between the diameter of a small and large particle.

The numerical results and theoretical predictions of aver-
age coordination numbers from Eq. (10) for binary mixtures
with particle the size ratio of 0.8 as a function of the volume
fraction of smaller particles are shown in Fig. 6. Equation
(10) were found to be highly accurate approximations to
numerical results in samples with a high particle size ratio.
The difference between numerical and theoretical predictions
decreased with g value increasing, which was illustrated in
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Fig. 7. Skrinjar and Larsson [12] reported that the theoretical
CN values calculated for contacts between large–small and
small–large particles deviated from numerical results at high
number fractions of small particles; however, in this study,
no impact of contribution of small particles on accuracy of
approximation of Eq. (10) to numerical data was observed.

As the Eq. (7), proposed by Dodds [38], defines the coor-
dination number as a function of volume faction of particles
of different types, the fits of Eq. (7) to the numerical data
for large–large and small–small particles were included in
Fig. 6 to verify the applicability of the formula for bidis-
perse granular packings with different volume fractions of
small particles. Equation (7) was found to be a surprisingly
good approximation of numerical CN values for contacts
between large particles; however, it provided smaller coordi-
nation numbers for small particles, as compared to numerical
results.

3.3 Radial distribution function

The composition of granular packing determines the arrange-
ment of particles in an assembly affecting its geometrical
properties. The spatial structure of the packing may be
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described by means of the RDF providing information about
long range interparticle correlations and their organization
[45]. The RDF g(r) may be expressed as [46]

g (r) = n (r)

4πr2�rρ
, (11)

where n(r) is the number of the particles in a spherical shell
occupying the space from a radial distance r to r + �r from
the center of the specified particle and ρ is the averaged
density of particles, defined as a ratio between the number
of particles and the volume of the assembly. In this study,
�r = 0.2Dl . The g(r) is the probability distribution of find-
ing the center of a particle in a given position at distance
r+�r from a reference one. The RDFs in packings with dif-
ferent volume fractions of smaller spheres and the size ratio
of 0.8 for small and large particles were shown in Fig. 8. The
RDFs were calculated for volumes of mixtures, appropriate
for exclusion of the effect of the wall on the organization of
spheres in the system. For monodisperse samples, the g(r)
exhibited a sharp peak at r/Ds = 1 and smaller ones at the
distance from the center of a reference particle equaled to
1.7, 2 and 2.6 particle diameters (inset of Fig. 8a), which
corroborated findings reported previously by, inter alia Isola
[4], Parafiniuk et al. [46] and Sain [47]. The distances of the
second and the fourth peaks from the reference sphere are
the multiple of

√
3 reference sphere diameter. The presence

of the peaks indicates an organized structure of the granular
packing, presented in Fig. 9 for two-dimensional system. In
the case of binary mixtures, the dominance of the structure of
large particles over the smaller spheres in mixtures with the

volume fraction smaller than 0.8 was observed, resulting in
the second and third peaks at the distance from the reference
small sphere equaled to 1.8 and 2.2 Ds . The increase in f
value to 0.8 in mixtures resulted in the RDF for small spheres
similar to the one typical for the monodisperse sample. The
RDFs for large particles, presented in Fig. 8b, exhibit second
peak in distance from the reference large sphere decreasing
with the increase in the contribution of small particles. For
mixtures with the volume fraction of small particles higher
than 0.4, the peak was observed at the distance equaled to
1.6 large particle diameters. The same effect was reported
by Isola [4] who observed the dominance of the structure of
small particles over the larger spheres in mixtures with num-
ber fraction of large particles of 30 and 50 % and the size
ratio of 0.25 and 0.5. Although the peak at the distance from
the reference sphere equaled to two large particle diameters
was noticeable, the peaks at the distance equaled to the sum
of the diameter of large and small particles were also appar-
ent. The author observed that the increase in the contribution
of large spheres into binary packings above 70 % decreased
impact of small particles resulting in RDF close to the one
typical for the monodisperse case. Isola found a strong influ-
ence of the volume fraction of large particles on the positon
of peaks in the RDFs only for large particles, while, in this
study, the RDF for both, large and small spheres differed
significantly with the increasing contribution of large parti-
cles in the mixture. Moreover, the height of peaks increased
with the decrease in the number of large particles in samples,
indicating an increase in packing order.

Positions and heights of peaks in the RDFs were expected
to be determined by particle sizes in binary packings. Fig-

Fig. 8 Radial distribution
functions for small particles (a)
and large particles (b) in
numerical binary mixtures with
various volume fractions of
small particles and the size ratio
of 0.8. Inset zoom into the peaks
of the RDF at the distance
between 1.4 and 3 particle
diameters 0
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Fig. 9 The organization of
particles contributing to peaks in
the radial distribution function
for the two-dimensional
monodisperse granular packing
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Fig. 10 Radial distribution
functions for small particles (a)
and large particles (b) in
numerical binary mixtures with
various size ratios and the
volume fraction of smaller
particles of 0.8
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ure 10 shows RDFs for small and large spheres for packings
with different particle size ratios and volume fraction of small
spheres of 0.8. For each sample, the g(r) for small particles
exhibited a sharp peak at r/Ds = 1 and the second one at
the distance from the center of the reference sphere between
1.7 and 2 particle diameters. The next peaks were apparent
at the distance from the reference particle of 2.6, 2.9 and 3.5
sphere diameters and the height of peaks increased with the
increasing particle size ratio. A much higher influence of the
particle size ratio on the RDF was observed for large spheres
(Fig. 10b), wherein positions and heights of peaks differed
significantly.

4 Conclusions

The experimental and numerical investigations of randomly
generated binary granular systems showed a strong influence
of both, particle size ratio and contribution of small parti-
cles in packing on fundamental geometrical parameters of
the sample. The size ratio was chosen not smaller than 0.4
to prevent small particles from percolating through bedding.
The numerical results, provided by tests performed using
DEM, were partially verified by the experimental results.
The three-dimensional simulations have been carried out for
assemblies of steel beads using EDEM software with sim-
plified non-linear Hertz–Mindlin contact model. In mixtures
with small to large particle size ratios higher that 0.7, the
solid fraction was found to increase with the increasing vol-
ume fraction of small spheres. In packings with a higher
difference between particles’ sizes, the solid fraction reached
maximum when the volume fraction of smaller beads was
0.6. These results indicate the presence of the certain value
of the particle size ratio above which the solid fraction of
binary mixtures does not reach maximum. The results indi-
cated a strong relationship between the coordination number
and the solid fraction of binary mixtures. The average coor-
dination number-volume fraction of smaller particles curves
followed the similar paths to solid fraction-volume fraction
of smaller particles curves. Coordination numbers for con-
tacts between different types of particles varied significantly

with the increasing contribution of small spheres in systems;
however, CN value for all spheres was determined mainly
by contacts between large and small particles. That effect
was particularly apparent in samples with large differences
between particles’ sizes. The numerical average coordination
numbers for contacts between different types of particles in
mixtures were compared to the theoretical predictions based
on equations proposed earlier by Turner and Ashby [35] and
Dodds [36]. While the formula introduced by Dodds was a
good approximation of numerical CN values only for con-
tacts between large particles, the equations of Turner and
Ashby were accurate for all types of contacts. The accuracy
of theoretical predictions increased with the increasing parti-
cle size ratio in assemblages; however, it was found not to be
affected by the volume fraction of small spheres in beddings.
The spatial structure of binary systems, described by means
of the RDF, was also found to be strongly determined by both,
the composition of packing and the degree of heterogeneity
of particle sizes.

The combination of DEM computational modeling with
experimental validation provided new scientific insight into
the structural properties of bidisperse granular mixtures
which leads to the improved analysis of their mechanical
properties and more accurate interpretation or design of
effects encountered in the industry.
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