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Abstract This study is part of a project concerned with the analysis of how students work
with two-variable functions. This is of fundamental importance given the role of
multivariable functions in mathematics and its applications. The portion of the project we
report here concentrates on investigating the relationship between students’ notion of
subsets of Cartesian three-dimensional space and the understanding of graphs of two-
variable functions. APOS theory and Duval’s theory of semiotic representations are used as
theoretical framework. Nine students, who had taken a multivariable calculus course, were
interviewed. Results show that students’ understanding can be related to the structure of
their schema for R3 and to their flexibility in the use of different representations.

Keywords APOS . Graphic representation . Schema . Two-variable functions .

Representations

1 Introduction

The notion of a multivariable function is fundamental in mathematics and its applications.
Research on this subject, however, is scarce. There are many studies that deal with the general
idea of a function; however, few make use of the particularities of multivariable functions to
explicitly study how students build their understanding about them. While reviewing the
literature, we could not find theory-based research studies probing student understanding of
this notion. This lack of research findings limits the understanding of how students learn the
main ideas involved in the study of multivariable calculus. The purpose of this study is to
contribute to filling this gap in the literature. In this paper, we focus on the analysis of some
geometrical factors that are related to students’ notion of function of two variables.
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Understanding the geometrical properties of functions involves the possibility of relating
different representations of functions. This in turn is related with visualization. During the
last two decades, the critical problem of translation between and within representations has
been addressed in several studies. For example, Breidenbach, Hawks, Nichols and
Dubinsky (1992) and Sfard (1992) proposed that the ability of recognizing and being able
to build a bridge between algebraic and graphic representations of functions differentiates
between students who have and those who have not encapsulated the notion of function.
Referring to the generalization involved in the transition from functions of one variable to
functions of two variables, Yerushalmy (1997) insisted on the importance of the interplay
between different representations to generalize key aspects of these functions and to
identify changes in what seemed to be fixed properties of each type of function or
representation. More recently, Gagatsis, Christou and Elia (2004) argued that representa-
tions constitute different entities and that as such require explicit instruction.

A competent use of different representations for a concept has been related to
visualization. Gutiérrez (1996), Goldin (1998, 2002), Hitt (2002), and Van Nes and De
Lange (2007), among other researchers, insist on the relationship between research on
representations, mathematical visualization, and understanding of concepts. Many research
papers have studied students’ visualization problems and some literature reviews have been
published (Bishop, 1980; Presmeg, 2006). Dreyfus (1991) summarized the findings of some
studies on specific difficulties in visualization, and their relationship with the intervening
conceptual structure. He emphasized the importance of rules and conventions involved in
the interpretation of different types of diagrams and figures that are not accessible to
students. He also argued that the status of visualization should be recognized as a tool for
learning. Arcavi (2003) examined the different roles that visualization can play in doing and
learning mathematics, and how visually moderated sequences can be used to analyze
procedures elicited by visual cues; he also pointed out that students may “see” in a
representation something other than what an expert would, and related this to their
conceptual structure, as suggested by Dreyfus (1991). Further, he related some difficulties
in visualization to a lack of flexible translation between representations.

We agree with the abovementioned authors on the importance of the use of representations,
both in visualization of mathematical objects and in conceptual understanding. We also
consider that these issues play an important role not only in constructing the graph of a two-
variable function but in understanding the notion of function of two variables as well. In this
study, we focus on the analysis of some geometrical aspects related to functions of two variables
that we consider essential in their understanding. Our research questions are:

1. What are students’ conceptions of fundamental planes (by fundamental planes we mean
planes of the form x=c, y=c, z=c, where c is a constant) and how are they used to
construct the kinds of subsets of R3 (sections, contours, projections) that are needed in
the graphical analysis of functions of two variables?

2. How are students’ conception of graphs of functions of two variables related to their
knowledge of R3 and its subsets?

2 Theoretical framework

Two conceptual frameworks inform the theoretical basis used in this study. Firstly, APOS
theory is used to model the development of the concept of two-variable functions and,
secondly, semiotic representation theory provides the conceptual tools to analyze flexibility
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in the use of different representations and its role in understanding the mathematical ideas
under consideration. As APOS theory has proved to be useful in giving a detailed
description of the construction of several mathematical concepts, it can prove useful in
understanding how the concept of two-variable functions is constructed. This theory does
not include any specificity related to the role of representations in conceptual
understanding, which we consider essential. In particular, the analysis of graphs of
functions, together with other representations, is fundamental in building strong relation-
ships among the components of a possible schema for the concept of two-variable function.
The description of treatments and conversions as actions or processes to perform with
representations such as graphs or symbols adds specificity and a new angle of description to
the analysis using APOS theory. These two conceptual frameworks can be used in a
coherent and complementary way, both when analyzing students’ responses and strategies
when they work on tasks and to design instruction in the future. We briefly describe both
theories and give an example as a means to clarify the interaction between them.

In Action–Process–Object–Schema (APOS) theory (Asiala et al., 1996; Dubinsky, 1991,
1994), an action conception is a transformation of a mathematical object by individuals,
according to an explicit algorithm which is conceived as externally driven. As individuals
reflect on their actions, they can interiorize them into a process. Each step of a
transformation may be described or reflected upon without actually performing it. An
object conception is constructed when a person reflects on actions applied to a particular
process and becomes aware of the process as a totality, or encapsulates it. A mathematical
schema is considered as a collection of action, process and object conceptions, and other
previously constructed schemas, which are synthesized to form mathematical structures
utilized in problem situations (Baker, Cooley, & Trigueros, 2000). These schemas evolve as
new relations between new and previous action, process, and object conceptions and other
schemas are constructed and reconstructed. Their evolution may be described by three
stages that Piaget and García (1983) refer to as the “triad”: At the general intra- stage, some
operational actions are possible, but there is an absence of relationships between properties.
At the inter- stage, the identification of relations between different processes and objects,
and transformations are starting to form, but they remain isolated. The trans- stage is
defined in terms of the construction of a synthesis between them to form a structure
(Cooley, Trigueros, & Baker, 2007). Also, although it might be thought that in APOS
theory there is a linear progression from action to process to object and then to having
different actions, processes, and objects organized in schemas, this often appears more like
a dialectical progression where there can be partial developments, passages, and returns
from one to other conception (Czarnocha, Dubinsky, Prabhu, & Vidakovic, 1999). What the
theory states is that the way a student works with diverse mathematical tasks related to the
concept is different depending on his or her conception.

The application of APOS theory to describe particular constructions by students requires
researchers to develop a genetic decomposition—a description of specific mental
constructions one may make in understanding mathematical concepts and their relation-
ships. Some clarifications are pertinent. A genetic decomposition for a concept is not
unique; it is a general model about how a concept may be constructed; different researchers
can develop diverse genetic decompositions of how students in general construct that
particular concept, but, once one is proposed, it needs to be supported by research data from
students. Frequently, gathered data reveal overlooked constructions which then give rise to
a revised genetic decomposition.

As discussed before, visualization, representations, and conceptual understanding can be
considered as related among them and with the process of mathematics learning. The
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possibility of using concrete imagery needs to be coupled with rigorous analytical thought
processes to be effective in mathematics learning (Dreyfus, 1991; Presmeg, 1997). Some
authors consider that connections between internal constructs and representations where
access is gained through the senses are involved in acts of visualization (Zazkis, Dubinsky,
& Dauterman 1996), but visualization can be also considered in the case of connections
among mental representations or images; in this case, mind-to-mind constructions can be
thought of as described by interiorization, coordination, reversal, or encapsulation
(Dubinsky, 1991). This position is supported by Duval (1999, 2006) who argued that
thinking processes in mathematics require not only the use of representation systems but
also of their cognitive coordination. For him, reasoning and visualization are complemen-
tary thought processes. In Duval’s analysis, understanding and learning mathematics require
the comparison of similar semiotic representations. According to him, there are two
different types of transformations of semiotic representations: treatments, which are
transformations of representations that happen within the same representation register, and
conversions, which consist of changes of representation register without changing the
object being denoted. He argues that these transformations are the source of many
difficulties in learning mathematics, and that taking them into account helps in overcoming
those difficulties, namely, to compare similar representations and treatments within the
same register in order to discriminate relevant values of the mathematical object so that the
features that are mathematically relevant and cognitively significant are noticed, and to
convert a representation from one register to another to dissociate the represented object
and the content of the particular representation introduced so that the register does not
remain compartmentalized.

The use of APOS and semiotic representation theory allows us to look at the same
phenomena from two different but complementary perspectives. In APOS theory,
treatments can be partially described in terms of actions or processes on an object within
a specific representation register. Reflection on these actions may put forward aspects or
properties of the object that are significant when those actions are interiorized in a process.
Adding the point of view of semiotic representations theory enables the researcher to make
the role of those actions in the construction of mathematical knowledge clear by
emphasizing the need to discriminate all those features that are characteristic of the object
in the register where the actions are being performed. Conversions may be described in
APOS as relationships between different objects within a schema or as the interiorization
into a process that makes it possible to consider the actions of comparison and identification
between an object in two different representation registers as a mental association. Again,
semiotic representation theory complements these considerations by pointing out its
necessity in terms of cognitive importance. Also, both theories can be seen as coherent
when one considers that a schema in APOS may contain the representations of a process or
object in different registers, as has been stated above, while a treatment within a register or
conversions within different registers in semiotic representation theory may involve objects
in different schemas. Since in this study we are focusing on the geometric representation of
functions of two variables, it is useful to be able to refer to the treatments and conversions
between different representational registers without losing the genetic perspective afforded
by APOS theory. An example may help to illustrate the relationship between both
theoretical perspectives. When the action of substituting a number is performed on the
function given by z=x2+y2 to obtain z=y2 or z=1+y2, students may recognize these
equations as quadratic functions in R2 which have been translated in the y–z plane, and
interiorize them into the process in which any number can be substituted to consider any
translation of the function. Semiotic representation theory focuses on the consideration that
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this process involves a family of functions that have common characteristics. When
considering the conversion of such equations into their graphs in the plane, the relationship
between different objects, an equation and its graph, is constructed, and those aspects of the
equation and the graph that remain invariant or change can be considered. In this case, both
objects, the analytical representation of the function and its graphical representation, are
related within the same schema for functions of one variable. Consider now the mental
transformations that might take place when considering the same actions on the function of
two variables and their relationship with its graph in three-dimensional space. The
abovementioned conversion of the equation into its graphical representation, obtained by
the substitution of a specific number for the variable x in the equation (for example, number 1),
may need the consideration of the relationship between two different schemas: R2 and R3

since it is necessary to consider the position of the quadratic function obtained on the
fundamental plane x=1; when the actions of substitution of numbers and their conversion to
the graphical register are interiorized, the resulting process involves the coordination of the
vertical translations within the plane and the translation of the plane through the x axis. When
this process is generalized, all those curves can be considered as the intersection of the yet
unknown surface z=x2+y2 with different planes and can be encapsulated into a graphical
object that represents the surface, that is, the graph of the function of two variables.

When we choose in this study to restrict our attention to the geometrical aspects of
functions of two variables, we are also choosing to keep track of issues related to
representation and visualization that arise in the learning process, hence our choice of
incorporating semiotic representation theory, while APOS theory allows us to examine the
construction of the mathematical objects involved in the construction of functions of two
variables and to describe the result of the coordination of different schemas.

The present study is part of an investigation of student understanding of the concept of
function of two variables. As a first step in the study, the following preliminary genetic
decomposition, based on theoretical consideration and the experience of the authors as
teachers, was proposed:

– The schemas that we consider students should have developed previously, to be able to
understand the concept of two-variable functions, are: (a) intuitive three-dimensional
space which consists of a construction of the external material world; (b) Cartesian
plane which includes the concept of points as objects and relations between variables,
such as curves, functions, and regions as processes resulting from the generalization of
the action of representing their component points; (c) real numbers which includes the
concept of number as an object, and arithmetic and algebraic transformations as
processes; (d) sets; (e) real functions of one real variable including function as process,
operations with functions, and coordination of the analytic and geometric representa-
tion of functions.

– The Cartesian plane, real numbers, and the intuitive notion of space schemata must be
coordinated in order to construct the Cartesian space of dimension three, R3, through
the action of assigning a real number to a point in R2, and the actions of representing
the resulting object both as a 3-tuple and as a point in space and making conversions
between them. These actions are interiorized into a process that considers all the
possible 3-tuples and subsets of 3-tuples, and their representation, to construct a
process that when coordinated with the respective verbal, analytic, tabular, and
geometric representations can be thematized as three-dimensional space, R3.

– This space schema is coordinated with the schemas for function and set through the
action of assigning one and only one specific height to each point in a given subset of
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R2, either analytically or graphically. This action is internalized into the process of
assigning a height to each point on a subset of R2 to construct a two-variable function,
and the process of conversion needed to relate its different representations. When this
process is generalized to consider any possible function of two variables, as a specific
relation between subsets of R2 and R is encapsulated, the notion of two-variable
functions has been constructed as an object.

We suggest in the genetic decomposition that a schema for R3 and flexibility in the use
of representations are necessary conditions to understand the concept of two-variable
functions, and specifically to be able to analyze graphs of such functions. We conjecture
that fundamental planes mediate the process of conversion between analytical, geometrical,
and verbal representations of functions of two variables.

3 Method

APOS theory can be used in research in two different ways. One can use the theory to study
students’ constructions after they have finished a course or a series of courses related to the topic
under study (Czarnocha, Dubinsky, Loch, Prabhu, & Vidakovic, 2001; Dubinsky, Weller,
McDonald, & Brown, 2005; Trigueros, 2000). One can also use the theory to design activities
to teach the topic and then analyze which constructions were made by students and which
were not (Brown, DeVries, Dubinsky, & Thomas, 1998; Dubinsky & Yiparaki, 2000;
McDonald, Mathews, & Strobel, 2000). In both cases, results of the analysis can be used to
refine the genetic decomposition so that it better reflects the way students, in general, construct
those concepts. This study used the first approach with the intention of analyzing students’
constructions related to the relationship of the R3 schema with the two-variable function
schema, after they had finished an undergraduate course on multivariate calculus for Applied
Mathematics, Engineering, or Economics majors at a private university. The teaching in that
course was traditional. Some of these students had taken a course in Analytic Geometry in
high school where they were introduced to the equations of the line and the conic sections in
the plane, with an emphasis in algebraic manipulation. Nine students, three good, three
average, and three weak students, were chosen by their instructor at the end of the semester to
be interviewed, based on their grades and participation in the course. It is not assumed here
that all the constructions developed by these students were developed during that course. They
had already taken other courses that may have contributed to their constructions.

An instrument was designed to conduct semi-structured interviews. The selection of the
tasks to be included in the interview was made on the basis of their possibility to inform on
specific components of the genetic decomposition, and to test the conjecture of the mediation
role played by fundamental planes, as well as students’ capability to do treatments and
conversions of representations in a flexible way. Some questions in the instrument were
designed to be similar to those used in the course; others were different with the purpose of
studying what students could do in non-familiar situations. The interviews were 45–60 minutes
long; they were audio-taped and their transcription and all the work produced by students were
independently analyzed by the two researchers. Results were negotiated between them. The 12
questions of the interview were related to two-variable functions. For the purpose of this study,
only five of those questions, related to subsets of R3, and graphs are discussed.

1. a. Represent, in three-dimensional space, the point that is obtained when the ordered
pair (1, 2) is assigned a height z=3.
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b. Represent points (0, −2, 2) and (−3, 2, −2).
c. Find the coordinates (x, y, z) of point A represented in Fig. 1.

This question had the purpose of probing if students were able to perform the actions of
assigning a height to a point in R2 (a), and representing given points in R3 (b, c), as well as
their capability of converting between symbolic and graphical representation registers (c).

2. In this problem, we refer to positive x as east, negative x as west, positive y as north,
negative y as south, positive z as up, negative z as down.

a. Starting at point (2, −1, 4) move the point 4 units west, 3 north, and 2 down. At
what point does it end?

b. How would you move point (−3, 4, −1) to end at point (2, −2, 2)?
c. If you start at point (3, −2, −4) and move freely in the directions east–west and up–

down, give an equation that describes the set of all points that may be reached.

This problem was intended to determine if students could perform the actions or process
needed to translate a point in R3; if they could recognize treatments on a point in R3 (a, b)
and if they were able to generalize the results of their actions or process into a geometrical
object in R3 (a plane); visualize the result of a treatment and perform a conversion (c).

3. a. Draw the set of points in R2 that satisfies the equation x2+y2=1.
b. Draw in R3 the set of points that is the result of assigning a height z=3 to the points

in R2 satisfying equation x2+y2=1.
c. Draw in R3 the set of points that may be reached by starting with points in R2 that

satisfy equation x2+y2=1 and assigning them an arbitrary height z.

The goal of this question was to verify if students could coordinate their schemas for
Cartesian plane, real number, and their intuitive notion of three-dimensional space, through
actions (a, b) or a process (c), conversions from a symbolic representation to a geometric
one (a), and to visualize the result of treatments (b, c).

Fig. 1 Pont A for problem 1c
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4. Consider the surface given in Fig. 2:

a. Draw on a two-dimensional plane the points on the surface that satisfy z=1.
b. Draw on a two-dimensional plane the points on the surface that satisfy x=1.
c. Draw on a two-dimensional plane the points on the surface that satisfy y=1.

The response to this problem requires the coordination of subsets of R3 and a reversal
process of coordination of subsets of R3 with the Cartesian plane R2. This is a difficult
question, it involves visualizing the intersection between surfaces, which is a treatment in
the geometrical register of representation and graphically representing the result of that
intersection, which involves another treatment. Constructions such as the one this problem
asks for are needed when analyzing graphs of two-variable functions.

5. In each of the following problems, represent the given set in three-dimensional space as
carefully as you can. Also describe it verbally giving as much detail as possible.

a1. {(x, y, 0): x=3} a2. {(x, y, z): x=3}

b1. {(x, y, z): z=x2+y2, y=3} b2. {(x, y, z): z=x2+y2, z=4}

This question involves the coordination of subsets of R3 with their graphical
representation and descriptions in natural language which are conversions among different
representation registers. It was intended to verify students’ capability of making sense of set
notation, and if they could coordinate the set and R3 schemata.

4 Results

Interviewed students showed differences in their construction of the schema of functions of
two variables when their responses to the whole instrument are considered. Results show
that all of the students demonstrated they had constructed a schema for R3 which includes
points as objects in their different representations. Differences in their capability to graph

Fig. 2 Surface for problem 4
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two-variable functions and to interpret those graphs can be related to differences in structure
of their R3 schema, that is, in the relationships they have been able to construct between
elements of this schema; this in turn is intimately related to their capability to do treatments
and conversions among different representation registers, and to foresee and visualize the
result of actions on particular representation registers. The nine students interviewed fell
into three groups, each with three students, who demonstrated difficulties with different
aspects of the genetic decomposition, but similarities in the structure of the R3 schema
revealed by their responses. This grouping differed from that proposed by their teacher:
during the interview, one “weak” student demonstrated a better understanding and one
“good” student demonstrated less understanding. Results of the analysis showed that the
three resulting groups could be related with different levels of the Cartesian space schema.
In the description that follows, we present the analysis of results according to such levels.

4.1 Students who demonstrated an intra-level structure of the Cartesian space schema

The students in this group showed many difficulties with the graphical representation of
two-variable functions, and could not coordinate their schema for an intuitive notion of
three-dimensional space and that for R3, as suggested by the genetic decomposition.
Rodrigo exemplifies typical responses of this group of three students. When working with
problem 2c, and after taking a lot of time to think, Rodrigo responded:

Rodrigo—[reads the problem] … ah, ok, … that is, we can only move freely on the x
axis… and on the z axis but the y axis is fixed, ok … then it would be … [long pause]

Interviewer—what are you thinking?

Rodrigo—I’m thinking that we are fixed at y, aren’t we? It does have point 3, say
here, and I have to describe an equation so that I may move freely on x and on z, so
that if we are in three dimensions, it would take … here … we form a plane or not,
there it is … negative …ok

Interviewer—ok, so you wrote y=x+z+3

Rodrigo—3, what happens is that, according to me, if I write y=x+z+3, then it
works here that, that it is x at 3 …

This response demonstrates that he was neither able to do a treatment to the point in the
graphical register nor to describe the result of the needed actions. He went back to a
memorized fact, the equation of a plane, and could not relate it to the task. He was not able
to relate the set of points generated by the movement of the given point in space to the
equation of the corresponding fundamental plane. Later, the interviewer asked Rodrigo to
represent the plane y=−2 in a physical model of three-dimensional space but he was unable
to do it and to relate it to the expected solution of the question. In several instances, he
recognized equations of the form x=c, y=c, and z=c as planes in R3, but could not perform
treatments on those planes when the tasks required it or convert these memorized equations
to their geometric representation. He demonstrated he had an action conception of planes
and difficulty coordinating his schema of R3 with his schema of intuitive three-dimensional
space.

All students in this group had similar problems to Rodrigo. They used disconnected
memorized facts in their responses, and did not show evidence of having constructed
relations between their actions and their intuitive knowledge of space. They struggled when
asked to do treatments and conversions, independently of the representation register used.
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Their difficulties visualizing the results of their actions seem to be related to lack of
generalization of their actions on points in space into a process that considers all the
possible 3-tuples that satisfy a specific restriction. The R3 schema they seem to have
constructed includes points and their representations, some memorized facts about
fundamental planes, and other planes, but the fact that they cannot do any treatments and
conversions on sets of points reveals that they have not constructed relationships between
these components of the schema (intra-level structure of schema).

4.2 Students who demonstrated an inter-level structure of the Cartesian space schema

Students in this group were able to consider some sets of points in R3, such as fundamental
planes, projections, and some surfaces, but showed difficulties when they needed to
coordinate them. For example, referring to question 2c, Maria deduced the equation of the
plane very quickly. She responded:

Maria—ok and since I don’t have north and south then … the plane y=−2.

Interviewer—would that be the equation?

María—… y=−2

Consistently throughout the interview, she was able to visualize fundamental planes and
to make conversions from their analytic representation to the corresponding geometric
representations.

However, in problem 5 part b1:

Maria—we have that z=x2+y2 with y=3 … z=x2+y2 is like, like a cup, and y=3 …
here is y=3, then it is all 3-tuples of x, y, z …

Interviewer—how would that look?

Maria—… something like this, that is the … that is, y can only take 3 as a value? …
then it would be … a paraboloid … over this, over 3 and then here they are 3.

Interviewer—what is the relationship between this set and the cup you mentioned
earlier?

Maria—well, it is like the tip, isn’t it? That is the … the … but no, because … yes
because x can be positive or negative, but in … that is, it can have any x or any y, any
x but in y it can only be 3, like a piece … a slice of the piece

Interviewer—here you drew a circle, does it include the points inside the circle?

Maria—… well in x it has … it has no point because there is no such … y and z, well
neither.

Maria had difficulty representing the set x; y; zð Þ : z ¼ x2 þ y2; y ¼ 3
� �

graphically,
although she was able to recognize y=3 as a plane. This can be seen in her drawing of what
looks like a disc inside the plane y=3 (see Fig. 3). Her inconclusive answer to the last
question together with the solid circle she drew confirms that even though she was able to
do the conversion needed from the analytic to the geometrical register of both surfaces, the
paraboloid and the fundamental plane, independently, she was not able to coordinate both
surfaces to find their intersection, nor to visualize its result, the transversal section. This
lack of coordination made it impossible for her to represent the intersection geometrically.
The use of the word “slice” while analyzing transversal sections of surfaces, seemingly
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made her relate her actions to her schema for intuitive three-dimensional space, and
associate an image of a 3D solid “cup” with the expression z=x2+y2 thus obtaining a
surface as the intersection, instead of a curve resulting from the coordination involved in
intersecting both surfaces .

Later, in order to describe the set of points in R2 that satisfy the equation x2+y2=1 when
assigned a height of 3, she said:

Maria—…ah then … we’d be left with … something like this … in the interior [see
Fig. 4, she drew a cup-like surface that she quickly fixed to have her drawing look like a
cylinder]

Interviewer—then, that looks like a surface?

Maria—yes, this is a surface because we are in R3… it is … there… a cylinder…

While working with question 3, Maria showed difficulties converting from a description
in natural language to the geometrical register. This difficulty can also be related to
difficulties in predicting and visualizing the result of actions on curves which are related to
the coordination of a conversion and a treatment when both of them are needed. She was
not able to determine that the result of lifting a curve is also a curve.

Fig. 3 Maria’s attempt at drawing
x; y; zð Þ : z ¼ x2 þ y2; y ¼ 3

� �

Fig. 4 Maria’s drawing in R3

of the points that result of
assigning a height of 3 to the
points in R2 satisfying x2+y2=1
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When working with the graph given in problem 4, she initially struggled with the section
corresponding to x=1, but eventually succeeded with some help; however, when working
with the section corresponding to y=1:

Interviewer—and how will that look?

Maria—… well … from … so x from −1 to 1 … and it didn’t touch any from 0 to 1 in
x and in y … now I’m lost, I’m lost

Interviewer—and how is that? A surface? A curve? …

Maria—no, a curve

Interviewer—a curve, could you draw that curve, more or less?

Maria—… from −1 to 1 in x … and at the points where y has the value 1… [long
pause] … I don’t know, it would look, like a curve … that is, they only go through 1 in
y and from −1 to 1 in x … would be these ones here.

Her final drawing is shown in Fig. 5.
Maria showed difficulty representing geometrically contours and transversal sections of

surfaces, which involve coordination of treatments in the graphical register and conversion
between representation registers. She was unable to represent the section corresponding to
y=1 in problem 4, even though she recognized y=1 as a plane, and then the section
corresponding to y=3 in question 5, again, she recognized both surfaces but was unable to
coordinate them to find their intersection, although, with a more familiar problem, in the
case of problem 5b2, she was able to do this coordination correctly.

Results show that students in this group had coordinated their R3 schema with those for
sets and one-variable functions; they had interiorized the processes needed to identify some
subsets of R3 such as lines, fundamental planes, and some surfaces. They also had
constructed relationships between components of the Cartesian space schema which were
demonstrated by the interiorization of actions on points to consider curves or surfaces, and
also by coordinations by means of treatments and conversions among different
representation registers. However, as shown with difficulties Maria had, they struggled
when coordination between treatments, or between treatments and conversions, were
involved or when they needed to coordinate fundamental planes with the schema of subsets
of R3, mainly surfaces, and that of the Cartesian 2D plane to produce projections and
intersections of surfaces. This coordination through treatments and conversions is important

Fig. 5 Maria’s drawing of the
points on the surface of problem
4 that satisfy y=1

14 M. Trigueros, R. Martínez-Planell



when it is necessary to visualize the result of specific actions on equations or graphs, and to
analyze or draw graphs of functions of two variables.

4.3 Students who demonstrated being in transition to the trans-level structure of the
Cartesian space schema

The three students who demonstrated a good understanding of graphs of two-variable
functions showed that they had constructed all the coordinations described in the genetic
decomposition required for the construction of R3 and its subsets; also that their schema for
R3 consisted of points, planes, and surfaces as interrelated objects. When working in
problem 4, Rafael, for example, commented:

Rafael—let’s see, draw on a plane of two dimensions the points on the surface that
satisfy x=1, x=1 would be … here we have x=1 … x=1 would simply be this side
[correctly pointing to one side of the boxed surface] … x=1 would simply be all this
line … all this line that is on the xy plane … xy … in x=1 … now … the convenient
plane is … the plane would be x, xz and it would have a line that goes from here …

The line he drew is close to being correct, but on an xz plane. Again on part c, he drew
the curve correctly but mislabeled the plane as yz (see Figs. 6 and 7).

When he was trying to draw the contour corresponding to z=1, he said:

Rafael—… I first locate the axes, the x axis, the y axis, this is y zero, ahh now now
now now, this y zero, this x zero … these, the axes and z … z, ok, consider in a two-
dimensional plane … points on that satisfy z=1 … let’s see, in a two-dimensional
plane, the points on the surface that satisfy z=1, z=1, …z=1 …. I am at z minus one,
plus one, let’s see, here I would try to draw a plane parallel to xy, but finding the
points of intersection would be somewhat complicated, if I didn’t have the equation of
this, of this surface …

Rafael clearly described the process of intersection between the surfaces, he referred to a
plane “parallel to the xy plane” and to “finding the points of intersection”, but he was not
able to visualize and graph the result of this intersection. He only struggled when

Fig. 6 Rafael’s drawing of the
points on the surface of problem
4 that satisfy x=1
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representing graphically the harder intersection, even though he was able to describe the
process verbally. This showed that coordination of fundamental planes and surfaces of R3

through the process of intersection of surfaces was on the way of being encapsulated.
The three students in this group showed that their schema included some coordination

between successive conversions and treatments as well, as relationships between different
components of R3 demonstrating they were in transition to trans-level of the schema.

5 Discussion

Results of this study show that most of the interviewed students had constructed a schema
for R3, a construction that we hypothesized as fundamental in the genetic decomposition of
the concept of two-variable functions, even though they had some problems with the sub-
schema of subsets of R3. Students in the first group described had difficulties in
understanding fundamental planes and other subsets of R3. They had not interiorized
actions consisting of memorized facts, into the process necessary to understand those
subsets, and they could not relate them to sets of points in space. They did not show any
evidence of coordination of the constructions necessary to be able to flexibly relate different
representations of objects in space and to perform actions on any object, other than points,
in R3. A source of difficulty for these students seems to be a lack of coordination between
their schema of R3 and schemas for one-variable functions and sets. This makes it difficult
for them to do treatments on curves or surfaces in any representation register, not to say
conversions between registers.

Among those students who were able to perform actions on sets of points in R3, as
students in group two, results showed that visualizing and graphing the result of those
actions was more difficult than is sometimes acknowledged by instructors. It seems that
students’ intuitive notion of space interferes when students try to predict the result of a
treatment or a conversion of an object in R3, independently of the representation register
used. This interference seems to be related to the use of language. It was shown that
sometimes the use of certain words such as “cutting a surface” or “lifting a curve” made
students visualize and represent an object related to their common experience rather that the
mathematical object expected. It seems to be important that the meaning of this kind of
sentence be explicitly discussed in class. It was also observed that the possibility of
visualizing actions on curves and surfaces, and their result, as in the use of fundamental
planes to construct sections, contours and projections, seems to require an object conception

Fig. 7 Rafael’s drawing of the
points on the surface of problem
4 that satisfy y=1
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of fundamental planes and curves, together with the ability to flexibly make treatments
within the analytical and graphical representations of, at least, simple objects.

Even the students who showed a better understanding of graphs of two-variable
functions demonstrated difficulties when they had to visualize, describe, or represent the
intersection of a fundamental plane with a given surface. Most students struggled when
both the surface and the plane were given algebraically, and when the plane was given
algebraically and the surface geometrically. This difficulty was not predicted in the genetic
decomposition described above and should be considered in its future refinement. Only one
student could flexibly intersect a fundamental plane with a surface, and use different
representations related to that intersection. This ability is important to analyze graphs and to
interpret some relevant results regarding these functions, such as limits and derivatives, but
seems not to have been developed by these students during their course. This ability
requires, according to our analysis, the possibility to do or imagine doing a succession of
treatments and conversions of representations of the function of interest. This also seems to
have an effect in building a more coherent structure of a mathematical conception of R3and
of graphs of two-variable functions. We consider that instructors must pay more attention to
be sure that the abilities to relate treatments between representations and to convert between
different representations, including tables, that were not analyzed in this part of the study,
but are no less important, are developed by students before using them to explain other
abstract concepts related to these functions. We agree with Gagatsis, Christou and Elia
(2004) and with Dreyfus (1991) who considered that “Diagrams and figures contain
relevant mathematical information in a form that is determined by certain rules and
conventions … They are therefore not accessible to students who have not had the
opportunity to get acquainted with these rules and conventions” (p. 34).

Visualization and a flexible use of different representations seem also to be related to
reasoning by analogy. Some of the interviewed students, as Maria and students from the
third group, used it; however, it seems that this is an ability that has to be taken more
explicitly into account by instructors in order for students’ to develop a deeper
understanding of these functions. Also, representations of R3 always require the ability to
interpret and draw projections in R2. Students’ difficulties are evidence that this capability
is difficult to acquire without explicit experience on it. Some of the interviewed students
were helped during the interview by the use of concrete materials they could manipulate.
We consider the use of such materials should also be considered in instruction, as suggested
by Bishop (1983).

Analysis of the results of this study shows that the flexible use of different semiotic
representation registers is related, as stated by several authors, to the cognitive development
of students. Furthermore, it shows how the use of semiotic representations theory can put
forward some important relationships that need to be taken into account when describing
the constructions described by the genetic decomposition of the notion of two-variable
functions based on APOS theory. These two theories direct their attention to different
aspects of mathematics learning process that, in the case of the study of graphs of two-
variable functions, are intimately related. The complementary use of these two theories was
not only useful but fruitful in this analysis.

6 Conclusions

This study gives information about students’ difficulties and understanding of functions of
two variables. In particular, results obtained show that the generalization of understanding
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of one-variable functions to two-variable functions, in particular in the case of graphical
representation, is not direct.

This study gives evidence that the understanding of graphs of functions of two variables
is not easy for students and that it can be related to the structure of students’ schema for R3,
specifically with the construction of subsets of points in space. The construction of
relationships between components of students’ schemas has been found to be needed in
order to be able to flexibly relate different representation registers and construct
coordinations, which are needed to understand the graphical representation of functions
of two variables.

It was found that the possibility of intersecting surfaces with planes, and predicting the
result of this intersection, plays a fundamental role in understanding graphs of two-variable
functions and was particularly difficult for students. The fact that this relation was only
constructed by one of the interviewed students seems to indicate that a more consistent
effort is needed when teaching this subject in multivariate calculus courses.

From the theoretical point of view, the use of semiotic representation theory and APOS
theory was useful and complementary. On the one hand, analyzing the way students worked
within representations provided information about the kind of relationships among
components of students’ schema that had been constructed, and about mind-to-mind
visualization which would have been difficult to achieve using only APOS theory. On the
other hand, APOS constructs were used to specify the necessary constructions for students
to be able to work within and among representations. We expect that the results obtained in
this study can be useful in designing activities to teach functions of two variables, and that
their use will contribute to a more significant learning of this concept.
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