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Abstract. A complete geometrical classification of supersymmetric o-models is
given. Extended supersymmetry requires covariantly constant complex struc-
tures, and Kahler and hyperkahler manifolds play a special role. As an
application of the classification, it is shown that a particular class of these
models is on-shell ultraviolet finite to all orders in perturbation theory.

Nonlinear o-models are the quantum field theories of harmonic maps from space-
time into a Riemannian manifold M. Recent work indicates that there is an
intimate connection between supersymmetric versions of the models and differen-
tial geometry. There is a correlation between complex manifolds and extended
supersymmetry, [1,2] with the strong implication for models in two space-time
dimensions that ultraviolet divergences are severely limited compared to expec-
tations based on power counting [3]. In particular when the manifold M is Ricci-
flat the associated supersymmetric g-model is on-shell ultraviolet finite through
3-loop order [3-5]. For general manifolds there appears to be at most a 1-loop
contribution [3] to the generalized S-function [6].

In this paper we present new results of two types.

1. A complete geometrical characterization of manifolds which permit exten-
ded supersymmetry is given. The possibilities are N =2 supersymmetry which
occurs if and only if M is Hermitian and Kahler [7] and N =4 supersymmetry
which requires that M is hyperkahler [§].

I1. Strong restrictions on the on-shell ultraviolet counterterms are derived by
combining general considerations of power counting and invariance with the
complex manifold structure required by extended supersymmetry. In particular it
is shown that the allowed ultraviolet counterterms of N =4 models must be zero
modes of the Lichnerowicz Laplacian on M which are also algebraic functions of
the curvature tensor. For a subclass of N =4 models, namely those for which M is
a four-dimensional asymptotically locally Euclidean self-dual gravitational in-
stanton [9], it is shown that there are no solutions to these requirements. There are
therefore no on-shell ultraviolet counterterms to any order in perturbation theory.
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As far as we know these are the first quantum field theories which have been
shown to be ultraviolet finite although power counting arguments indicate
divergences to all orders.

Given an n-dimensional Riemannian manifold with metric gij(di") one can
define a supersymmetric o-model with N =1 supersymmetry [10]. The superfield
action is

1 _
1[0]= - [d*xd*0g,(#DPDP. 1)

Here ®(x,0) is a real scalar superfield
Pi(x, 0) = ¢'(x) + Op'(x) + SO0F(x), 2

where ¢(x) and y(x) are real scalar and spinor fields and Fi(x) is a real auxiliary

field, and the spinor derivative D, = 6% ——i(éy")a@# involves the real Grassman

a

variable, §_, o =1, 2. This leads to the following component action for the physical

s Yo

fields [10]
Lo, y1=3{d*x{g;{0)0,0'0,0" +ig, (@)P V"D I + & Ry, (V)T )y ()

with covariant derivative D, ' =8,y + I'};0,¢’y". The action is invariant under the
supersymmetry transformation

4
Sy = —ido'e — IiEpyt. @

The action is also invariant under reparametrizations of M, ¢''=¢"(p),

. 09t . . .
Y= %}—.uﬂ, and such diffeomorphisms commute with supersymmetry transfor-
mations [which requires that ¢’ appears in the second term of dy' in (4)].
We now wish to study the possibility of additional fermionic invariances of the
action (3). The most general Ansatz for transformation rules which is consistent

with dimensional arguments and Lorentz and parity invariance is
op'=f'Fy
Sy'= — ikl Jo'e— Si (et )
— Vi v — PuErspliy v,
where f, h, S, V, and P are allowed to be functions of the dimensionless field ¢'(x).
Commutation with difftomorphisms implies that f, h, ¥, and P are tensors. We
require that the action (3) be stationary under the variations (5). Absence of the

linear term in y of 81 requires the conditions g, f*;=g,4*; and ¥, f*,=0. Thus f,
(and W ;) are covariantly constant, which implies via the Ricci identity

fimijkt’ - Rimkf fmj =0. (N
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Cancellation of the O(y?) terms in &1 requires that the tensors V', and P';, vanish
and that

S;z: = I—ijffj . (8)

Cancellation of the O(y%) terms then follows. The relation f*;i', =", is used in the
O(y?) and O(y®) calculations and will be derived below.

Thus invariance of the action requires, essentially, that f*; is a covariantly
constant tensor. Such a tensor commutes with the holonomy group [12] of M, a
fact which implies a great deal of further information about the manifold. For the
moment, however, we prefer to derive this information from a more physical
standpoint, and therefore assume that the fermionic invariances sought obey the
supersymmetry algebra

{04, 0% =26"P. ©)

When applied to (5) this implies the condition f*;h/, =6, which can be combined
with the previous relation between f and h to give

gijfikfj(:gk(' (10)

Thus the net result is that a supersymmetry requires a covariantly constant
tensor f*(¢) satisfying (10), and that

dg'= fi,-gwj
S ) =L=80"+2L 7o/*(P 0") e

(where Fierz rearrangement has been used).

Note that the transformation (11) can be obtained by the simple substitution
w'— f ' in the superfield (2) (working on the auxiliary shell) or equivalently by
the same replacement in (4). Thus the action I[¢, fy] is guaranteced to be
invariant. Therefore a quick proof of invariance of I[¢, ] under (11) can be
obtained by demonstrating that I{ ¢, w]=1I[, fi], which follows easily using (7)
and (10).

We now assume that there are several supersymmetries with covariantly
constant tensors [, Then, (9) implies

f(a)f(b)_l+f(b)f(a)*1:25ab (12)

in matrix notation. We can assume that one transformation is the original (4), i.e.
[ =5, Then with b=0 and a=+0, we get from (12) that @ = — f®~* which
implies

(D

f(a)ikf(a)kj — _5ij (133)
f(a)ij: _f(a)ji , (13b)
where (10) is used. Then (12) implies a Clifford algebra structure

f(a)f(b)+f(b)f(a):_25ab (14)

for all supersymmetries beyond (4).
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We now show that the previous results are extremely natural from the
viewpoint of complex differential geometry [11]. A tensor f*; on a given manifold
satisfying (13a) is an almost complex structure. This means that multiplication by
the imaginary unit i can be smoothly defined on the tangent space of M (namely
“"V=fV). If(10)is satisfied by the Riemannian metric, g, then an almost Hermetian
structure is defined on M. Finally if f* ;1s covariantly constant with respect to the
Riemannian metric, then M is a complex Kahler manifold. This means that one
can cover M with complex coordinate charts with holomorphic transition

functions. In a complex coordinate system the line element takes the form
ds® =2gzdz*dz’ (15)

and covariant constancy of f implies the Kahler condition

0 0
Frg 955 = 2 955 - (16)
Thus a supersymmetric g-model on a Riemannian manifold M admits a second
supersymmetry if and only if M is Kahler.

Further supersymmetries require additional parallel complex structures sat-
isfying (14). Notice that if f® and f® exist and satisfying (14), then the product
SO = fO % automatically generates a third supersymmetry. Then one has a
quaternionic structure in the tangent space. Given a quaternion g ={¢,, ¢, 95, q3)
then the product of ¢ with a vector V is defined by

(qV)i:(qoaij+‘hf(l)ij"'qu(Z)ij+q3f(3)ij)Vj- (17)

A manifold possessing this quaterionic structure is called a hyperkahler manifold
[8], and we have now shown that it implies and is required by N=4
supersymmetry.

Given a vector V in the tangent space at a point @’ of M and any closed curve 7,
then parallel transport of ¥V around y defines a new vector V. The linear
transformation Aij(y) which changes V into V' is an element of the holonomy
group ¥, The full group is formed by repeating this operation for arbitrary " and
all closed curves y. If M is connected ¥, is the same group at each point, and if
parallel transport is performed with Riemannian connection, as it is here, then ¥ is
a subgroup of O(n). Tensors transform under the holonomy group as the
appropriate tensor product of vectors, and one can show [12] that a covariantly
constant (1, 1) tensor commutes with all elements of ¥, ie.

Aik(?)fkj - fikAkj(V) =0. (18)

Since the Riemann tensor can be viewed as the infinitesimal generator of ¥, the
infinitesimal form of (18) is nothing but (7).

The action of the holonomy group in the tangent space of M is said to be
reducible (irreducible) according to whether there is (there is not) a non-trivial
invariant subspace. Full reducibility follows since ¥ is necessarily compact [12].
The manifold is accordingly called reducible (irreducible). In the reducible case one
can show that local coordinate charts (@™, ¢?) can be chosen such that the line
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clement takes the form
ds* =g, ; (@*)de" de’ +g,,, (9*)dpde’. (19)

Physically this corresponds to a ¢g-model with two sets of fields which do not
interact locally. Thus it is natural to restrict ourselves to irreducible manifolds.

We come to the question of the maximal number of conserved spinor charges
0° in a supersymmetric g-model. If M is irreducible then one can apply Schur’s
lemma for real representations of the holonomy group [ 137, which implies that the
matrices which commute with all elements of ¥ form a division algebra over the
reals. The only possibilities are the real, complex, and quaternion fields. Thus a
supersymmetric g-model on an irreducible manifold has at most 4 conserved
spinor charges. It is intriguing that this limit coincides with the heuristic physical
argument based on dimensional reduction from 6 dimensional space-time which is
the largest dimension where there is a supersymmetric multiplet containing only
scalar and spinor fields. However, this physical argument is imprecise, because
more than 4 fermionic invariances can be defined if M is reducible. For example in
a product manifold of two hyperkahler factors one can define 16 fermionic
invariances by combining complex structures in each factor. However at most 4 of
these transformations can be considered supersymmetries in the technical sense
that their anticommutator gives a uniform translation of all fields. One should also
note that a second supersymmetry beyond (4) requires a Kahler manifold
independent of reducibility, and there is a theorem [14] that a reducible Kahler
manifold always splits into a product of Kahler factors.

It is clear that such relations as fh=1 and the Clifford algebra condition
appeared because we assumed that the algebra of fermionic invariances was that of
supersymmetry. That assumption can be removed if M is irreducible. We show this
now using only differential geometry and the conditions on f and h obtained from
cancellation of the O(yp) term in 6. Since f ij must be covariantly constant, it
commutes with the holonomy group which acts irreducibly. Schur’s lemma implies
that f*; i (and K jarea representatlon of division algebra. If the division algebra is
the reals then necessarlly f —051 —h‘ and there is only one supersymmetry up
to normalization.

If the division algebra is the complex numbers then there is a basis with
covariantly constant units 5’ and I', with I’ I" = —¢';. To show that the metric g;;
is Hermitian with respect to the almost complex structure I’ we consider the
eigenvalue problem

(I gi. 1’ /lgl]) =V. (20)

Since all tensors are invariant under the action of the holonomy group, given any
single eigenvector v* and an element 4%,(y) of ¥, then 47, (y)v* is also an eigenvector
with the same cigenvalue. Since the holonomy group acts irreducibly, vectors of
the form A(y)v span the tangent space of M. Hence there is only one possible
cigenvalue, necessarily positive and

I lgkf —;gl_] (21)
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Covariant constancy of I and g implies that A(¢) is actually constant, and the
condition I?= —1 implies that A= 1. This is the desired Hermiticity property and
implies antisymmetry, I;;= —1I,. Thus I'(¢) defines an almost complex and
Hermitian structure. Covariant constancy implies that M is a Kahler manifold.
The real dimension of M is even, i.e. 2n, and the holonomy group is contained [14]
in U(n).

We now return to supersymmetry and note that f’ ;and h ; are superpositions
of the units &', and I'; with constant coefficients. The condition f;;=h;; implies
fy=cé';+dl’; and h';=cé';—dI';. This is sufficient to prove the vanishing of the
O(y*) and O(y?) terms in 61. The units §; and I; can be used to define two
fermionic invariances of the action which then obey (9). The most general
invariance is then a superposition of these with constants ¢ and d. Thus a second
fermionic invariance appears if and only if M is Kahler, and that invariance is
necessarily a supersymmetry. In particular this implies that there are no central
charges in the supersymmetry algebra of o-models defined on irreducible
manifolds.

In the case that the division algebra is the quaternions, there is a basis with
three imaginary units which satisfy the Clifford algebra property (14). By the
previous discussion each imaginary unit defines a Hermitian Kahler structure on
M, and the four units may be used to define four supersymmetry transformations
which obey (9). Further, as discussed above, there is a quaternionic structure in the
tangent space which is preserved by parallel transport. This means that M is a
hyperkahler manifold. Its real dimension is 4n, and the holonomy group is
contained in Sp(n).

Sp(n) is embedded in SU(2n) and this is sufficient to show that hyperkahler
manifolds are necessarily Ricci-flat [ 14]. The curvature tensor is the generator of
the holonomy group and can be written in complex coordinates as R*; 5, where the
indices «, f§ are those of the holonomy group. In the case that the holonomy group
is SU(2n) [or more generally SU (m) for an m-complex dimensional case], the trace
R, 5=0. Applying the cyclic identity for a Kahler manifold (R;,,;=Rj,,,), one
finds that R ;=0. By previous work on the ultraviolet structure [3,15], this
implies that supersymmetric g-models on hyperkahler manifolds are at least
3-loop finite.

We now apply these results to the study of the ultraviolet behavior of
supersymmetric o-models. One expects, ab initio, that as a consequence of power
counting these models have the same generalized renormalizable structure found
by Friedan [6] in the bosonic g-model. The important class of ultraviolet
counterterms are reparametrization invariant and take the superfield form

Al ] = %J" Pxd* 0T (S)DF DY, (22)

where T;(®) is a second rank tensor algebraically constructed from the curvature
tensor on M and its covariant derivatives. An /-loop order tensor T}y’ must scale
[15] as TY—A’""TY¥ under the constant conformal transformation g;;— 4~ 'g,;
of the metric. In the treatment of Friedan, the invariant counterterms require the
introduction of a renormalized metric gf}(,u) on M which varies with energy scale .
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There is an additional class of “off-shell” counterterms which vanish when the
classical equations of motion are imposed and correspond to divergences com-
pensated by field redefinitions or reparametrizations of M. This gives rise to the
appellation “on-shell” for the invariant counterterms (22). It is these which are of
primary importance since they correspond to renormalization of the physical
parameters of the theory. The background field method and superspace per-
turbation theory permit direct calculation [15] of the invariant counterterms in
their geometrical form.

The geometrical correlation between extended supersymmetry and complex
manifolds may now be used to deduce strong restrictions on the form of the
allowed tensor counterterms in (22). First note that the effective unrenormalized
metric on M is the sum g;;-+7;; of the metric of the classical action and the
quantum corrections, and that one expects that the quantum corrections preserve
the symmetries of the classical action. Hence if g;; is a Kahler metric so that the
classical action has N=2 supersymmetry, then g;;+ T;; must allow N =2 super-
symmetry and must also be a Kahler metric. Hence in complex coordinates T;;
must satisfy T,,=1;;=0 and 0,T,;=0,T,;. It was shown previously [3] that the
vanishing curl condition severely restricts the tensors which occur in one and two-
loop order, and that these restrictions apply to both N=1 and N =2 models
because of a “universality property”. Extensions of this approach to higher order
should be facilitated because the Hermiticity condition is now known to be
required.

When the classical metric g;; is that of a hyperkahler manifold, the quantum
corrections must preserve the four supersymmetries of the classical theory. Thus
the effective metric g;;+ 7;; must also be hyperkahler and therefore Ricci-flat. By
the Palatini identity [16] this requires that T;; is a zero mode of Lichnerowicz
Laplacian of g;;, defined by

ALTiszkaTij—i-[Vi, Vk]T"j—l-[Vj, VT, (23)

Thus the problem of finding ultraviolet counterterms of these models reduces to
the problem of finding the zero modes of (23) which are also algebraic functions of
curvature of definite positive conformal weight.

We have been able to solve the zero mode problem for a special class of
manifolds, namely the explicitly known family [9] of four dimensional asymptoti-
cally locally Euclidean self-dual gravitational instantons. Self-duality of the
curvature tensor implies that the holonomy group is SU(2) which acts irreducibly
in the tangent space in the four dimensional real representation. Since SU(2) is
isomorphic to Sp(l), there are necessarily 3 parallel complex structures [8,9]
which satisfy the Clifford algebra condition. Thus if M is a gravitational instanton
metric, the associated supersymmetric o-model in two space-time dimensions has
N =4 supersymmetry.

The particular property of the gravitational instanton metrics used here is that
the solutions are known with the most general set of independent parameters for
given topological class. Thus the zero modes of 4; arein 1 :1 correspondence with
parameter variations of these solutions. Such parameter variations necessarily
have conformal weight — 1, whereas positive conformal weight is required for any
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ultraviolet counterterm in perturbation theory. Therefore there are no ultraviolet
counterterms and the supersymmetric a-models are on-shell ultraviolet finite to all
orders in perturbation theory.

Some technical comments should be made concerning the assumption that the
on-shell counterterms are invariant under symmetry transformations of the
classical actions. Some exceptions have been noted [17] in the case of nonlinear
transformations because the “quantum field” in background field calculations has
complicated transformation properties. Further, one must always note the possi-
bility of quantum level anomalies for classical invariances. There is no problem
with reparametrization of M, because the normal coordinate expansion allows one
to choose a “quantum field” with linear transformation law, and there is no
problem with the Riemannian N =1 supersymmetry, because superfield calcu-
lations are manifestly supersymmetric. The extended supersymmetry transfor-
mations (11) are nonlinear because of the elimination of auxiliary fields in our
treatment. However in coordinates on M adapted to the complex structure f* ; the
extended supersymmetry can be formulated as linear homogeneous transfor-
mations with auxiliary fields which coincide with the real form of the transfor-
mation of [1]. Thus the counterterms (22) which are coordinate independent
should be invariant under the extended supertransformations.

We believe that the ultraviolet finiteness properties found here should be valid
for supersymmetric o-models on any hyperkahler manifold and probably for any
Ricci-flat metric. Extension of the proof requires classification of the zero modes of
4, which is not a simple problem.

Improved ultraviolet divergence structure is well known in supersymmetry, but
these are the first theories whose ultraviolet finiteness is established to all orders.
One may hope that these geometrical methods or perhaps more traditional
methods may be applied in four dimensional field theories, where the N=4
supersymmetric Yang-Mills theory has been shown by calculation to be ultra-
violet finite in 2-loop [18] and 3-loop [19] order.
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