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Abstract: The present paper aims to deliberate the geometric composition of a perfect fluid spacetime
with torse-forming vector field ξ in connection with conformal Ricci–Yamabe metric and conformal
η-Ricci–Yamabe metric. We delineate the conditions for conformal Ricci–Yamabe soliton to be
expanding, steady or shrinking. We also discuss conformal Ricci–Yamabe soliton on some special
types of perfect fluid spacetime such as dust fluid, dark fluid and radiation era. Furthermore, we
design conformal η-Ricci–Yamabe soliton to find its characteristics in a perfect fluid spacetime and
lastly acquired Laplace equation from conformal η-Ricci–Yamabe soliton equation when the potential
vector field ξ of the soliton is of gradient type. Overall, the main novelty of the paper is to study the
geometrical phenomena and characteristics of our newly introduced conformal Ricci–Yamabe and
conformal η-Ricci–Yamabe solitons to apply their existence in a perfect fluid spacetime.

Keywords: Ricci–Yamabe soliton; conformal Ricci–Yamabe soliton; conformal η-Ricci–Yamabe soliton;
perfect fluid spacetime; torse-forming vector field; energy-momentum tensor; Einstein’s field equation

1. Motivation and Introduction

In [1], R. S. Hamilton introduced the notions of Ricci flow, which is an evolution
equation for metrics on a Riemannian manifold in 1982. The Ricci flow equation is the
following:

∂g
∂t

= −2S (1)

on a compact Riemannian manifold M with Riemannian metric g.
The Ricci soliton, which is a self-similar solution to the Ricci flow, is given by [1–3]:

£V g + 2S + 2Λg = 0, (2)

where V is a vector field and Λ is a scalar, S is Ricci tensor, g is Riemannian metric, £V is
the Lie derivative in the direction of V. We designate Ricci soliton as shrinking, steady
and expanding accordingly as Λ is negative, zero and positive, respectively. The notion of
conformal Ricci soliton [4] as:

£V g + 2S +
[
2Λ−

(
p +

2
n

)]
g = 0, (3)

where p is a scalar nondynamical field (time-dependent scalar field), n is the dimension of
the manifold.
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The notion of Conformal η-Ricci soliton was introduced by Mohd Danish Siddiqi [5]
in 2018, which can be written as:

£ξ g + 2S +
[
2Λ−

(
p +

2
n

)]
g + 2µη ⊗ η = 0, (4)

where Λ, µ are contants.
A Yamabe soliton [6] corresponds to a self-similar solution of the Yamabe flow [3], and

is defined on a Riemannian or pseudo-Riemannian manifold (M, g) as:

1
2

£V g = (r−Λ)g, (5)

where r is the scalar curvature and Λ is a constant [7].
Many authors ([8–13]) have studied Ricci soliton and Yamabe soliton on contact

manifolds. Furthermore, some researchers have also studied conformal η-Ricci solitons,
singular submanifolds, biharmonic submanifolds, warped product pointwise semislant
submanifolds and so on [14–33]. In recent years, Kumara, H. A. studied and determined
geometrical aspects of perfect fluid spacetime with torse-forming vector field and Ricci
soliton in perfect fluid spacetime with torse-forming vector field ξ. They gave the conditions
for the Ricci soliton to be expanding, steady or shrinking [34]. Singh, J. P. and Khatri, M.
in [34], and Siddiqi, M. D. in [35] have considered conformal Ricci and Ricci–Yamabe
solitons on general relativistic spacetime respectively. Motivated by these results, we will
introduce and study more generalized versions of these solitons and discuss their existence
on the perfect fluid spacetime. The differences in this paper to other studies is that, for
example, [34] is about M-projective curvature tensor which has been studied in general
relativistic spacetime, but we do not discussed any particular curvature tensor in this
work. Moreover, [34,35] are about conformal Ricci and Ricci–Yamabe solitons on general
relativistic spacetime, respectively, but we introduce and study more generalized versions
of these solitons and discuss their existence on the perfect fluid spacetime. Moreover,
there are some articles concerning the study of singularity theory, submanifolds and
harmonic quasiconformal mappings and so on which are helpful to our present and
future research. In our next work, we will consider taking the main results in this paper
to connect the methods and techniques of singularity theory and submanifolds theory,
etc., presented in [23–33,36–54] to explore new results and theorems related with more
symmetric properties about this topic.

In [55], Crasmareanu, M. and Güler, S. presented a new geometric flow which is a
scalar combination of Ricci and Yamabe flow under the name Ricci–Yamabe map in 2019.
This new geometric flow is known as Ricci–Yamabe flow of the type (α, β). Also in [55], the
authors characterized that the (α, β)-Ricci–Yamabe flow is said to be:

• Ricci flow [1] if α = 1, β = 0;
• Yamabe flow [3] if α = 0, β = 1;
• Einstein flow [13] if α = 1, β = −1.

A soliton to the Ricci–Yamabe flow is called a Ricci–Yamabe solitons as long as it
moves by only one parameter group of diffeomorphism and scaling. The metric of the
Riemannain manifold (Mn, g), n > 2 is said to admit (α, β)-Ricci–Yamabe soliton or simply
Ricci–Yamabe soliton (RYS) (g, V, Λ, α, β) if it satisfies the equation:

£V g + 2αS = [2Λ− βr]g, (6)

where Λ, α, β are real scalars.
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In the above equation, if the vector field V is the gradient of a smooth function f
(denoted by D f , D denotes the gradient operator) then Equation (6) is called gradient
Ricci–Yamabe soliton (GRYS) and it is defined as:

Hess f + αS =
[
Λ− 1

2
βr
]

g, (7)

where Hess f is the Hessian of the smooth function f .
Now, using (6) and (3), we introduce the notion of conformal Ricci–Yamabe soliton as [7]:

Definition 1. A Riemannian manifold (Mn, g), n > 2 is said to admit conformal Ricci–Yamabe
soliton if

£V g + 2αS +
[
2Λ− βr−

(
p +

2
n

)]
g = 0, (8)

We call the conformal Ricci–Yamabe soliton expanding, steady or shrinking depending
on Λ being positive, zero or negative, respectively. If the vector field V is of gradient type,
that is to say V = grad( f ), for f is a smooth function on M, then we call Equation (8) a
conformal gradient Ricci–Yamabe soliton. Also using (6) and (4), we extend the concepets
of conformal η-Ricci–Yamabe soliton by the following:

Definition 2. A Riemannian manifold (Mn, g), n > 2 is said to admit conformal η-Ricci–Yamabe
soliton if

£ξ g + 2αS +
[
2Λ− βr−

(
p +

2
n

)]
g + 2µη ⊗ η = 0, (9)

If the vector field ξ is of gradient type, that is to say ξ = grad( f ), for f is a smooth function
on M, then we call Equation (9) the conformal gradient η-Ricci–Yamabe soliton.

A perfect fluid is a fluid which could be completely characterized by its rest-frame
mass density and isotropic pressure. A perfect fluid has no shear stress, viscosity or heat
conduction and it is distinguished by an energy-momentum tensor T of the form [56]:

T(X, Y) = ρg(X, Y) + (σ + ρ)η(X)η(Y), (10)

where ρ, σ are the isotropic pressure and energy-density, respectively, and η(X) = g(X, ξ)
is 1-form, which is equivalent to the unit vector ξ and g(ξ, ξ) = −1. The field equation
governing the perfect fluid motion is Einstein’s gravitational equation [56]:

S(X, Y) +
[
λ− r

2

]
g(X, Y) = κT(X, Y), (11)

where λ is the cosmological constant and κ is the gravitational constant, which can be
considered as 8πG, where G is the universal gravitational constant.

Using (10), the above equation takes the form:

S(X, Y) =
[
− λ +

r
2
+ κρ

]
g(X, Y) + κ(σ + ρ)η(X)η(Y). (12)

Let (M4, g) be a relativistic perfect fluid spacetime which satisfies (12). Then, by
contracting (12) and considering g(ξ, ξ) = −1, we obtain

r = 4λ + κ(σ− 3ρ). (13)

Using the value of r from the above equation, (12) becomes

S(X, Y) =
[
λ +

κ(σ− ρ)

2

]
g(X, Y) + κ(σ + ρ)η(X)η(Y). (14)
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Hence the Ricci operator Q can be written as:

QX =
[
λ +

κ(σ− ρ)

2

]
X + κ(σ + ρ)η(X)ξ, (15)

where g(QX, Y) = S(X, Y).

Example 1. A radiation fluid is a perfect fluid with σ = 3ρ and so the energy momentum tensor T
becomes,

T(X, Y) = ρ[g(X, Y) + 4η(X)η(Y)], (16)

From (13), we can say that a radiation fluid has constant scalar curvature r equal to 4λ. Now
we take a special case when ξ is a torse-forming vector field [57,58] of the form:

∇Xξ = X + η(X)ξ. (17)

Moreover, if the vector field ξ on a perfect fluid spacetime is torse-forming, then the following
relations hold [58]:

∇ξξ = 0, (18)

(∇Xη)(Y) = g(X, Y) + η(X)η(Y) (19)

R(X, Y)ξ = η(Y)X− η(X)Y, (20)

η(R(X, Y)Z) = η(X)g(Y, Z)− η(Y)g(X, Z), (21)

for all vector fields X, Y, Z. Using (17), we have,

(£ξ g)(X, Y) = g(∇Xξ, Y) + g(X,∇Yξ)

= 2[g(X, Y) + η(X)η(Y)], (22)

for all vector fields X, Y.

Perfect fluid is frequently considered to be a sharp tool in general relativity to model
the idealized distribution of matter; for example, the interior of a star or an isotropic
universe. In general relativity and symmetries of space time, one often employs a perfect
fluid energy momentum tensor (10) to represent the source of the gravitational field. A
perfect fluid has two thermodynamic degrees of freedom. The outline of the article is
as follows: In Section 2, we discuss some properties of perfect fluid that will be used in
the paper. In Section 3, we provide some applications of conformal Ricci–Yamabe soliton
structure in perfect fluid spacetime with torse-forming vector field. In this section we
have contrived the conformal Yamabe soliton in perfect fluid spacetime with torse-forming
vector field to accessorize the nature of this soliton on the mentioned spacetime. We have
also considered the potential vector field V of the solition as a conformal Killing vector
field to characterize the vector field. Sections 4–6, are devoted to finding the nature of
the conformal Ricci–Yamabe soliton in a dust fluid spacetime, dark fluid spacetime and
radiation era, respectively. Finally, in the last section, we give the conclusion of the paper.

2. Conformal Ricci–Yamabe Soliton Structure in Perfect Fluid Spacetime with
Torse-Forming Vector Field

In this section, we study conformal Ricci–Yamabe soliton structure in a perfect fluid
spacetime whose timelike velocity vector field ξ is torse-forming.

Taking V as a torse-forming vector field ξ in the soliton Equation (8) and putting n = 4,
we obtain,

(£ξ g)(X, Y) + 2αS(X, Y) +
[
2Λ− βr−

(
p +

1
2

)]
g(X, Y) = 0. (23)
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Using (22), the above equation becomes

2[g(X, Y) + η(X)η(Y)] + 2αS(X, Y) +
[
2Λ− βr−

(
p +

1
2

)]
g(X, Y) = 0. (24)

In view of (14), we obtain[
Λ− βr

2
− 1

2

(
p +

1
2

)
+ αλ +

ακ(σ− ρ)

2
+ 1
]
+
[
ακ(σ + ρ) + 1

]
η(X)η(Y) = 0. (25)

Taking X = Y = ξ in the above equation, we acquire

Λ =
ακ(σ + 3ρ)

2
+

βr
2
− αλ +

1
2

(
p +

1
2

)
. (26)

Using (13), we have

Λ =
κ

2

[
(α + β)σ + 3(α− β)ρ

]
+ (2β− α)λ +

1
2

(
p +

1
2

)
. (27)

Therefore, we can state the following:

Theorem 1. If a perfect fluid spacetime with torse-forming vector field ξ admits a conformal
Ricci–Yamabe soliton (g, ξ, Λ, α, β), then the soliton is expanding, steady or shrinking according as,
κ
2

[
(α + β)σ + 3(α− β)ρ

]
+ (2β− α)λ + 1

2

(
p + 1

2

)
T 0.

Remark 1. In (27), if we take
(

p + 1
2

)
= 0, then Λ = κ

2

[
(α + β)σ + 3(α− β)ρ

]
+ (2β− α)λ

and in this case the conformal Ricci–Yamabe soliton becomes Ricci–Yamabe soliton and we obtain

that the soliton is expanding, steady or shrinking according as, κ
2

[
(α + β)σ + 3(α− β)ρ

]
+ (2β−

α)λ T 0.

A spacetime symmetry of physical interest is the conformal Killing vector, as it pre-
serves the metric up to a conformal factor. We call a vector field V a conformal Killing
vector field if, and only if, the following relation holds:

(£V g)(X, Y) = 2Φg(X, Y), (28)

here, Φ is some function of the coordinates(conformal scalar).
Furthermore, if Φ is not constant the conformal Killing vector field V is called proper.

Moreover, when Φ is constant, we call V a homothetic vector field and when the constant
Φ becomes non-zero, V is called a proper homothetic vector field. If Φ = 0 in the above
equation, we call V a Killing vector field, if Φ = 0 in the above equation. Let us assume
that in Equation (8), the potential vector field V is a conformal Killing vector field. Then,
using (28) and (8), we obtain

αS(X, Y) = −
[
Λ + Φ− βr

2
− 1

2

(
p +

1
2

)]
g(X, Y), (29)

which leads to the fact that the spacetime is Einstein, provided α 6= 0.
Conversely, assuming that the perfect fluid spacetime with torse-forming vector filed

ξ is Einstein space time, i.e., S(X, Y) = θg(X, Y).
Then, Equation (8) becomes

(£V g)(X, Y) = −
[
2Λ + 2αθ − βr−

(
p +

1
2

)]
g(X, Y), (30)
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which can be written as,
(£V g)(X, Y) = 2Ψg(X, Y), (31)

where Ψ = −
[
Λ + αθ − βr

2 −
1
2

(
p + 1

2

)]
.

Thus from (31), V becomes a conformal Killing vector field.
Hence we can state the following:

Theorem 2. Let a perfect fluid spacetime with torse-forming vector field ξ admit a conformal
Ricci–Yamabe soliton (g, V, Λ, α, β). The potential vector field V is a conformal Killing vector field
if and only if the spacetime is Einstein, provided α 6= 0.

Now, in view of (29) and (14), we obtain,[
Λ + Φ + αλ +

ακ(σ− ρ)

2
− βr

2
− 1

2

(
p +

1
2

)]
g(X, Y) +

[
ακ(σ + ρ)

]
η(X)η(Y) = 0. (32)

Taking Y = ξ in the above equation and considering η(ξ) = −1, we have[
Λ + Φ + αλ− ακ(σ + 3ρ)

2
− βr

2
− 1

2

(
p +

1
2

)]
η(X) = 0. (33)

Since η(X) 6= 0, then we obtain

Λ + Φ + αλ− ακ(σ + 3ρ)

2
− βr

2
− 1

2

(
p +

1
2

)
= 0. (34)

Substituting the value of r from (13), the above equation reduces to

Φ =
κ

2

[
(α + β)σ + 3(α− β)ρ

]
+ (2β− α)λ−Λ +

1
2

(
p +

1
2

)
. (35)

Hence we can state the following:

Theorem 3. Let a perfect fluid spacetime with torse-forming vector field ξ admit a conformal
Ricci–Yamabe soliton (g, V, Λ, α, β). The potential vector field V is a conformal Killing vector field,
then V is

(i) proper conformal Killing vector field if α, β, p are not constant.

(ii) homothetic vector field if α, β, p are constant.

Take advantage of the property of Lie derivative we can write

(£V g)(X, Y) = g(∇XV, Y) + g(∇YV, X) (36)

for any vector fields Y, X.
Thus, by using (14) and (36), (8), we have

g(∇XV, Y) + g(∇YV, X) +
[
2Λ− βr−

(
p +

1
2

)
+ 2α

{
λ +

κ(σ− ρ)

2

}]
g(X, Y)

+ 2ακ(σ + ρ)η(X)η(Y) = 0. (37)

Suppose ω is a 1-form, that is metrically equivalent to V and is given by ω(X) =
g(X, V) for an arbitrary vector field X. Furthermore, the exterior derivative dω of ω can be
given by:

2(dω)(X, Y) = g(∇XV, Y)− g(∇YV, X). (38)
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As dω is skew-symmetric, so if we define a tensor field F of type (1,1) by

(dω)(X, Y) = g(X, FY), (39)

then F is skew self-adjoint that is g(X, FY) = −g(FX, Y).
Therefore, the (39) can be given by:

(dω)(X, Y) = −g(FX, Y) (40)

Using (40), (38) becomes,

g(∇XV, Y)− g(∇YV, X) = −2g(FX, Y). (41)

We add (41) and (37) together and factor out Y to yield

∇XV = −FX−
[
Λ− βr

2
− 1

2

(
p +

1
2

)
+ α
{

λ +
κ(σ− ρ)

2

}]
X− ακ(σ + ρ)η(X)ξ. (42)

Substituting the above equation in R(X, Y)V = ∇X∇YV−∇Y∇XV−∇[X,Y]V, we have

R(X, Y)V = (∇Y F)X− (∇X F)Y + ακ(σ + ρ)[Yη(X)− Xη(Y)]

+ β
Y
2
(Xr)− β

X
2
(Yr). (43)

Since dω is closed, we acquire

g(X, (∇ZF)Y) + g(Y, (∇X F)Z) + g(Z, (∇Y F)X) = 0. (44)

Making inner product of (43) with respect to Z, then, we obtain

g(R(X, Y)V, Z) = g((∇Y F)X, Z)− g((∇X F)Y, Z)

+ ακ(σ + ρ)[g(Y, Z)η(X)− g(X, Z)η(Y)]

+ β
Y
2
(Xr)− β

X
2
(Yr). (45)

Since F is skew self-adjiont, then ∇X F is skew self-adjiont. Then using (44), (45) takes
the form

g(R(X, Y)V, Z) = ακ(σ + ρ)[g(Y, Z)η(X)− g(X, Z)η(Y)]− g(X, (∇ZF)Y)

+ β
g(X, Dr)

2
g(Y, Z)− β

g(Y, Dr)
2

g(X, Z). (46)

We take X = Z = ei in the above equations, and here, eis are a local orthonormal
frame and summing over i = 1, 2, 3, 4, then, we find

S(Y, V) = −3ακ(σ + ρ)η(Y)− (divF)Y− 3β

2
g(Y, Dr). (47)

here divF is the divergence of the tensor field F.
Equating (14) and (47), we obtain

(divF)Y = −κ(σ + ρ)[3α + η(V)]η(Y)−
[
λ +

κ(σ− ρ)

2

]
ω(Y)− 3β

2
g(Y, Dr). (48)
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We give the covariant derivative of the squared g-norm of V taking (42) as below:

∇X | V |2 = 2g(∇XV, V)

= −2g(FX, V)−
[
2Λ− βr−

(
p +

1
2

)
+ 2α

{
λ +

κ(σ− ρ)

2

}]
g(X, V)− 2ακ(σ + ρ)η(X)η(V). (49)

From (14), (8) becomes

(£V g)(X, Y) = −
[
2Λ− βr−

(
p +

1
2

)
+ 2α

{
λ +

κ(σ− ρ)

2

}]
g(X, Y)

− 2ακ(σ + ρ)η(X)η(Y). (50)

Using the above equation, (49) takes the form

∇X | V |2 +2g(FX, V)− (£V g)(X, V) = 0. (51)

Therefore, we can state the following:

Theorem 4. If a perfect fluid spacetime with torse-forming vector field ξ admits a conformal
Ricci–Yamabe soliton (g, V, Λ, α, β), then the vector V and its metric dual 1-form ω satisfies the
relation

(divF)Y = −κ(σ + ρ)[3α + η(V)]η(Y)−
[
λ +

κ(σ− ρ)

2

]
ω(Y)− 3β

2
g(Y, Dr)

and
∇X | V |2 +2g(FX, V)− (£V g)(X, V) = 0.

3. Dust Fluid Spacetime with Conformal Ricci–Yamabe Soliton

In pressureless fluid spacetime or a dust, the energy-momentum tensor is the
following [52]:

T (X, Y) = ση(X)η(Y), (52)

where σ is the energy density of the dust-like matter and η is same as defined in (10).
Using (11) and (52), we have,

S(X, Y) =
[
− λ +

r
2

]
g(X, Y) + κση(X)η(Y). (53)

Let (M4, g) be a dust fluid spacetime which satisfies (53). Then by contracting (53) and
considering g(ξ, ξ) = −1, we obtain,

r = 4λ + κσ. (54)

Taking contraction in (8) and using (54), we have,

Λ = −divV
4

+ (2β− α)
[
λ +

κσ

4

]
+

1
2

(
p +

1
2

)
, (55)

where divV is the divergence of the vector field V.
Then we have,

Theorem 5. If a dust fluid spacetime admits a conformal Ricci–Yamabe soliton (g, V, Λ, α, β), then
the soliton is expanding, steady, shrinking according as,

−divV
4

+ (2β− α)
[
λ +

κσ

4

]
+

1
2

(
p +

1
2

)
T 0.
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4. Dark Fluid Spacetime with Conformal Ricci–Yamabe Soliton

In a dark fluid spacetime ρ = −σ, then the energy–momentum tensor (10) gives,

T (X, Y) = ρg(X, Y). (56)

Using (11) and (56), we obtain,

S(X, Y) =
[
κρ− λ +

r
2

]
g(X, Y). (57)

Let (M4, g) be a dark fluid spacetime which satisfies (57). Then by contracting (57)
and considering g(ξ, ξ) = −1, we obtain,

r = 4(λ− κρ). (58)

Taking contraction in (8) and using (58), we have,

Λ = −divV
4

+ (2β− α)(λ− κρ) +
1
2

(
p +

1
2

)
. (59)

Therefore we can state the following:

Theorem 6. If a dark fluid spacetime admits a conformal Ricci–Yamabe soliton (g, V, Λ, α, β), then
the soliton is expanding, steady, shrinking according as,

−divV
4

+ (2β− α)(λ− κρ) +
1
2

(
p +

1
2

)
T 0.

5. Radiation Era in Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton

In perfect fluid spacetime, radiation era is characterized by σ = 3ρ, so in that case the
energy–momentum tensor (10) takes the form [35]:

T (X, Y) = ρ[g(X, Y) + 4η(X)η(Y)]. (60)

Using (11) and (60), we obtain

S(X, Y) =
[
κρ− λ +

r
2

]
g(X, Y) + 4κρη(X)η(Y). (61)

Let (M4, g) be a radiation fluid spacetime which satisfies (61). Then by contracting (61)
and considering g(ξ, ξ) = −1, we obtain,

r = 4λ. (62)

Taking contraction in (8) and using (62), we have,

Λ = −divV
4

+ λ(2β− α) +
1
2

(
p +

1
2

)
. (63)

Then we have,

Theorem 7. If a radiation fluid spacetime admits a conformal Ricci–Yamabe soliton (g, V, Λ, α, β),
then the soliton is expanding, steady, shrinking according as,

−divV
4

+ λ(2β− α) +
1
2

(
p +

1
2

)
T 0.
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6. Conformal η-Ricci–Yamabe Soliton Structure in Perfect Fluid Spacetime

Let (M4, g) be a general relativistic perfect fluid spacetime and (g, ξ, Λ, µ, α, β) be a
conformal η-Ricci–Yamabe soliton in M.

Then writting explicitly the Lie derivative (£ξ g) as (£ξ g)(X, Y) = g(∇Xξ, Y)+ g(X,∇Yξ)
and from (9) and (14), we acquire,

g(∇Xξ, Y) + g(X,∇Yξ) + 2α
[{

λ +
κ(σ− ρ)

2

}
g(X, Y) + κ(σ + ρ)η(X)η(Y)

]
+
[
2Λ− βr−

(
p +

1
2

)]
g(X, Y) + 2µη(X)η(Y) = 0 (64)

for any vector fields X, Y.
Then the above equation can be written as,

[
Λ− βr

2
− 1

2

(
p +

1
2

)
+ αλ +

ακ(σ− ρ)

2

]
g(X, Y) +

[
µ + ακ(σ + ρ)

]
η(X)η(Y)

+
1
2

[
g(∇Xξ, Y) + g(X,∇Yξ)

]
= 0. (65)

Consider {ei}1≤i≤4 an orthonormal frame field and ξ = ∑4
i=1 ξ iei. We have from [58],

∑4
i=1 εii(ξ

i)2 = −1 and η(ei) = εiiξ
i.

Multiplying (65) by εii and summing over i for X = Y = ei, we obtain,

4Λ− µ = 4(2β− α)λ + κ(2β− α)(σ− 3ρ) + 2
(

p +
1
2

)
− div(ξ), (66)

where div(ξ) is the divergence of the vector field ξ.
Putting X = Y = ξ in (65), we obtain,

Λ− µ = (2β− α)λ +
κ

2

[
(2β + α)σ− 3(2β− α)ρ

]
+

1
2

(
p +

1
2

)
. (67)

Then calculating Λ, µ from (66) and (67), we achieve,

Λ = (2β− α)λ +
κ

2

[(2β− 3α

3

)
σ− (2β− α)ρ

]
+

1
2

(
p +

1
2

)
− div(ξ)

3
(68)

and

µ = −κ
[(2β + 3α

3

)
σ− (2β− α)ρ

]
− div(ξ)

3
. (69)

Then we can state the following:

Theorem 8. Let (M4, g) be a 4-dimensional pseudo-Riemannian manifold and η be the g-dual 1-
form of the gradient vector field ξ := grad( f ), with g(ξ, ξ) = −1, where f is a smooth function. If
(g, ξ, Λ, µ, α, β) is a conformal η-Ricci–Yamabe soliton on M, then the Laplacian equation satisfied
by f becomes:

∆( f ) = −3
[
µ + κ

{(2β + 3α

3

)
σ− (2β− α)ρ

}]
. (70)

Example 2. A conformal η-Ricci–Yamabe soliton (g, ξ, Λ, µ, α, β) in a radiation fluid is given by:

Λ = (2β− α)λ− καρ +
1
2

(
p +

1
2

)
− div(ξ)

3
,

and

µ = −4καρ− div(ξ)
3

.
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7. Conclusions

The main study of the paper is to obtain the geometrical phenomena and characteristics
of our newly introduced conformal Ricci–Yamabe and conformal η-Ricci–Yamabe solitons
to apply their existence in a perfect fluid spacetime. We first give the geometric composition
of a perfect fluid spacetime with torse-forming vector field ξ in connection with conformal
Ricci–Yamabe metric and conformal η-Ricci–Yamabe metric. Moreover, the conditions
required for the conformal Ricci–Yamabe soliton to be expanding, steady or shrinking have
been given. We have contrived the conformal Yamabe soliton in perfect fluid spacetime
with torse-forming vector field to accessorize the nature of this soliton on the mentioned
spacetime. We have also considered the potential vector field V of the solition as conformal
Killing vector field to characterized the vector field. Furthermore, we find the nature of
the conformal Ricci–Yamabe soliton in a dust fluid spacetime, dark fluid spacetime and
radiation era, respectively.
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