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Abstract: The goal of the present research paper is to study how a spacetime manifold evolves
when thermal flux, thermal energy density and thermal stress are involved; such spacetime is called
a thermodynamical fluid spacetime (TFS). We deal with some geometrical characteristics of TFS and
obtain the value of cosmological constant Λ. The next step is to demonstrate that a relativistic TFS
is a generalized Ricci recurrent TFS. Moreover, we use TFS with thermodynamic matter tensors of
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1. Introduction

“I am convinced that the only physical theory with universal substance that can be
utilized is thermodynamics, and that it will never be denied.”—Albert Einstein.

A fundamental thermodynamic system consists of a homogeneous macroscopic group
of elements. The system is viewed as a “black box”, and the state of the system is described
by a handful of macroscopic parameters, often energy, entropy, volume, and particle
number, which are determined by the environment in which the system lives. These are not
all necessarily independent, though. Thermodynamic degrees of freedom are the number
of n independent parameters in a basic one-phase system with n− 1 components. Any
more parameters will be dependent. A non-uniform thermodynamic system can be created
through the interaction of simple thermodynamic systems.

A comprehensive function of state known as the internal energy exists for every
thermodynamic system. Manifolds originally developed as a set of variables that were
subject to equations. The creators of differential geometry thoroughly investigated the
early examples, such as curves and surfaces [1]. Smooth is typically understood to mean a
piecewise analytic for the manifold of equilibrium states of a thermodynamic system. Be
aware that the overlap requirement must be satisfied if the manifold is a connected set, in
which case all coordinate chart pictures must have the same n dimension. The dimension
of the manifold is the name given to this value. The thermodynamic system’s manifold
of equilibrium states is the one we will focus on in the next sections. The number of
degrees of freedom in the system is referred to as the dimension of this manifold. Therefore,
the connected four-dimensional time-oriented Lorentzian manifold is modeled using the
thermodynamical spacetime manifold (see [2]) of the general theory of relativity GTR
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(general relativity is basically a theory of gravitation developed by A. Einstein between
1907 and 1915, which states that the observed gravitational effect between masses results
from their wrapping of spacetime) and cosmological space.

Basically, both the spacetime of the GTR and cosmology are used to model a connected
four-dimensional time-oriented Lorentzian manifold [3,4].

Definition 1. If the Ricci tensor has a certain shape, then it is claimed that a Lorentzian manifold
is a perfect, fluid spacetime [5].

Ric = ag + bu⊗ u, (1)

where u is a 1-form metrically related to a vector field that resembles time and a and b are non-zero
scalars; the spacetime manifold is a Lorentzian manifold.

Formally, the effective energy-momentum tensor, defined in [6], can be used to recast
the GTR. Then, in the presence of a competent time-like vector field, this tensor is de-
scribed by isotropic pressure, energy density, an anisotropic pressure, and energy flow [3].
Moreover, this tensor also changes the shape of the Ricci tensor in Einstein’s equation for
perfect fluid spacetime (1).

For the thermodynamics aspect of the spacetime manifold from which Einstein’s
equation is derived, the fundamental relationship between the horizon area and entropy as
well as their proportionality [7] is as follows:

δQ = T dS, (2)

where T is the temperature, S is the entropy and Q is the heat. The energy flux and
temperature inside the horizon, as observed by an accelerating observer, are denoted by δQ
and T in the relationship above, which holds for all local causal horizons via each spacetime
point. For the Einstein equation to hold, gravitational lensing caused by matter-energy
must specifically alter the causal structure of spacetime.

In 1995, Jacobson [8] proposed that the Einstein equation can be derived as a constitu-
tive equation for the equilibrium (2) of a thermodynamical spacetime point of view with a
cosmological constant, which can be given as:

Ric− 1
2
Rg + Λg =

2π

h̄η
T. (3)

Recent observations indicating an accelerating rate of cosmic expansion have led many
cosmologists to believe that our universe is characterized by a positive value for cosmologi-
cal constant (for more details, see [9]). The length η−

1
2 is twice the Planck length (h̄G)

1
2 ,

where Newton’s constant, G = (4h̄η)−1, is determined by the constant of proportionality η
between the entropy and the area (for additional information, see [7]). As mysterious as
ever, the cosmological constant Λ is still unknown.

Inclusion of the cosmological constant Λ: A scientific hypothesis with amazing
power and simplicity, GTR is a model example. Meanwhile, the cosmological constant
serves as a prime example of an adjustment that, at least on the surface, seems unnecessary
and unpleasant, but which actually helps match the facts. When the universe’s expansion
was discovered, its original purpose of enabling static homogeneous solutions to Einstein’s
equations in the presence of matter was shown to be unnecessary. Since then, there have
been a number of instances in which a non-zero cosmological constant has been proposed
as an explanation for a set of observations and later withdrawn when the observational
case vanished [10]. In the meantime, researchers studying particle theory have discovered
that the cosmological constant may be used to calculate the energy density of the vacuum.
This energy density is the result of several, seemingly unrelated contributions that are all
orders of magnitude greater than the cosmological constant’s upper bounds (for further
information, see [11]).

Other reviews of the cosmological constant’s different elements include:
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(i) Dark energy (DE), dark matter (DM) and regular composed of atoms matter were
determined to be the universe’s energy makeup. Understanding these observational
data may require modifying the description offered by GTR. The inclusion of the
cosmological constant in Einstein’s field equations is one of the main models utilized
for this goal, among the several techniques to describe the cosmic acceleration. The
word DM refers to an unidentified kind of matter that exerts gravitational force but
cannot be detected by its radiation. Dark energy, often known as DE, is an unidentified
energy source and an unusual material with high negative pressure. The main and
most pertinent candidate for DE, which offers the best rational explanation of the
cosmos, is the cosmological constant.

(ii) In order to account for the state of the universe at the moment, cosmologists have
recently become interested in modeling cosmological models for an alternative theory
of gravity (modified theory). Numerous theories have been devised in accordance
with the recognized rules of physics, but they are still unable to fully explain the
enigma of the driving force behind the universe’s expansion. Many cosmologists
have researched the role of variables G and Λ to describe the current scenario of the
accelerating universe as an alternative to changing the general theory of relativity
by adding f (R)-gravity [12] and f (G, T)-gravity [13]. Newton’s constant G may be
regarded as a function of time or the scale factor, for example.

In observational and relativistic cosmology, the cosmos is studied using equations of
state (EoS), perfect fluid cosmological models and other tools. The gravitational constant
G serves as a coupling constant in the general theory of gravity between the geometry of
space and the matter content in Einstein’s field equations. In general-relativistic quantum
field theory, the cosmological constant Λ naturally appears and is stated in terms of the
vacuum energy density. They are also thought of as basic constants. After identifying a
potential resolution to the cosmological constant problem, a cosmological model with a
dynamic cosmological constant that is free of the cosmological problems was created [14].

(iii) The key area of inquiry will be the thermodynamic features of cosmological models,
where G and Λ are time-dependent variables. The cosmos as a whole is constrained
by the second law of thermodynamics, which keeps the temperature law in its original
form. Additionally, the study of heat, radiation and black holes uses thermodynamics.
The evolution of our universe can be predicted by the large quantity of entropy that
is present in the universe and is in the form of black-body radiation. Numerous
cosmic facts indicate that matter was in a state where all portions of a system had
the same temperature or amount of heat. It is further noticed that the universe is
homogeneous in its early stages based on the isotropy of the cosmic data. As a result,
thermodynamics can be used to study the early universe’s behaviors. In the EoS
(p = ωρ), the parameter ω = 1 describes dark energy, whereas ω < 1 describes
phantom energy. Symbolically, p and ρ signify the pressure and energy density,
respectively [11].

(iv) The Lovelock theory of gravity reduces to the Gauss–Bonnet term in a four-dimensional
connected spacetime manifold, and it emerges in a five-dimensional (≥5) spacetime.
Lovelock gravity also admits black hole solutions and the accompanying thermody-
namics as expected in terms of the cosmological constant Λ and is ghost-free with
second-order field equations.

These calculations, which can be referred to as non-extended phase spaces, were made
with the cosmological constant present as a fixed quantity. Some values are thermodynamic
variables in thermodynamic systems, while others are fixed parameters that cannot change.

Remark 1. The energy density associated with dark energy gives rise to a negative pressure pΛ
and asymptotically approaches the constant known as the cosmological constant Λ after the 1998
discovery of the universe’s accelerated expansion from the observation of supernovas.
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For Λ > 0, this cosmological constant Λ is crucial in understanding the universe’s observed
accelerated expansion. As a result, the energy density connected to the cosmological constant is
known as the "vacuum energy density" or "dark energy density", εΛ, and it is defined as [15]:

εΛ =
c4

8πG
Λ, (4)

where c is velocity and G is Newton’s constant.

The formula for the mass density that corresponds to the vacuum energy density
is [15]:

ρΛ =
εΛ

c4 . (5)

Additionally, the definition of the dark energy equation of state is [15]:

pΛ = −εΛ. (6)

The energy-momentum tensor is crucial in determining the amount of matter in space-
time, despite the fact that matter is typically thought of as a fluid with properties such as
density, pressure and dynamic and kinematic characteristics, such as velocity, acceleration,
shear and expansion [3]. In conventional cosmological models, the universe’s matter com-
position is thought to behave as a certain fluid spacetime (perfect fluid spacetime). As a
result, we split the effective energy-momentum tensor into two portions, the first of which
is a perfect fluid that is pressureless, and the second of which is an imperfect fluid. The
imperfect part is calculated to give an effective explanation of dark energy DE and the
perfect fluid part is described to explain the dark matter DM [16].

Moreover, in the case of a perfect fluid spacetime, there is no existence of heat conduc-
tion and viscosity. A spacetime nature is dependent on the casting of stuff in it. Now, we
may define the following:

Definition 2. A four-dimensional Lorentzian spacetime manifold which includes thermal energy
density, thermal flux and thermal stress, is called thermodynamical fluid spacetime TFS [17].
Heat is described by the GTR energy tensor TH , often known as the thermal energy tensor [18].

Therefore, the entire cosmic foundation is also an imperfect fluid. Thermodynamics
describes it. The only local sources of energy for a matter tensor’s type of matter will be
mass and heat [18]

T = TM + TH , (7)

where the “material energy tensor” is an energy tensor denoted by the symbol TM. This uses
the following conventional form [18]:

TM = ρu⊗ u (8)

for this kind of substance, often called dust. Additionally, as demonstrated by the relativistic
kinetic theory of gases, TH is the exact effective energy tensor created by the random motion
of particles around the average flow denoted by u [16]. The standard form of TH is given
as [18]:

TH = εu⊗ u + 2u⊗ q + τ. (9)

In a TFS, the thermodynamic matter tensor T is of the following shape [18]:

T = (ρ + ε)u⊗ u + 2u⊗ q + τ, (10)

where ρ is an effective density, ε is the thermal energy density, τ is the thermal stress
tensor and q is the thermal flux. In GR, one projection of a thermal energy tensor is the
thermal flux. Furthermore, ξ and ζ are time-like and space-like orthogonal vector fields,
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respectively, such that g(ξ, ξ) = −1, g(ζ, ζ) = 1. They are corresponding orthogonal vector
fields with 1-forms u and q, respectively, that is, g(E, ξ) = u(E) and g(E, ζ) = q(E).

Chaki used a covariant constant energy momentum tensor to explore spacetimes [19].
Furthermore, a topic that is closely connected to this one and has been studied by a number
of writers is the spacetime manifold with an energy momentum tensor (for more details,
see ([3,20–24]).

Symmetries play a profound role in nature, and as such, physics. Different species
of particles organize themselves in symmetric ways. Symmetry is also a mathematical
explanation for conserved quantities such as momentum and energy. For example, there
is even a whole field theoretical physics called “super-symmetry”.The sort of symmetry
varies on the matter and spacetime manifold geometry, and its Lorentzian metric frequently
makes it easier to find solutions to a variety of problems, such as those posed by Einstein’s
field equations.

Physical matter symmetry in the GTR is directly applicable to spacetime geometry.
A key symmetry is the soliton which is attached to the spacetime geometrical flow. In fact,
the concept of kinematics and thermodynamics in GTR is understood via the Ricci flow.
Curvatures maintain self-resemblance, which keeps RS concentrated.

RS, or self-similar solutions of the Ricci flow ∂
∂t g = −2Ric [25], were proposed in

Riemannian Geometry and play a crucial role in explaining its singularities.

Definition 3. An RS is pseudo-Riemannian manifold (M, g), admitting a smooth vector field V,
such that [25]

1
2
LV g +Ric + θg = 0, (11)

where LV , Ric and θ indicate the Lie derivative along the direction of V, the Ricci tensor and a
real number, respectively. Referring to (11), an RS is known to be growing, stable or decreasing
according to whether θ > 0, θ = 0 or θ < 0, respectively.

RS have subsequently received a lot of attention in pseudo-Riemannian situations.
One of the many factors contributing to the increased interest of theoretical physicists in RS
is their connection to String theory. In terms of RS, Ahsan and Ali explored the spacetime
manifold in the GTR [26]. In addition, the perfect fluid spacetimes were depicted by Blaga
in [27], with η-RS and η-Einstein solitons. In [28], RS is also used by Venkatesha and Aruna
to study perfect fluid spacetimes with a torse-forming vector field. Numerous authors
conducted in-depth research on spacetimes with solitons in distinct manners; we may refer
to ([27,29–34]) and references therein.

Therefore, the results of earlier research served as our motivation. We explore the
behavior of TFS in Section 2. In Section 3, we examine a geometrical feature of TFS and
demonstrate that the total density of space is not zero. In addition, we determine the
cosmological constant Λ, whose value relies on the scalar curvatureR. With the help of the
Codazzi and cyclic parallel Ricci conditions, we confine the curvature of TFS in Section 4.

In [28], the authors studied quasi-conformal flat perfect fluid spacetime, and in the
present manuscript, we estimate a new and more general notion named the pseudo-quasi-
conformal curvature tensor on TFS. Basically, a pseudo-Quasi-conformal curvature tensor
is a generalization of a concircular curvature tensor, conformal curvature tensor, quasi-
conformal curvature tensor and projective curvature tensor.

Furthermore, the authors analyze the behavior of distinct solitons on perfect fluid
spacetimes using a torse-forming vector field, a Jacobi vector field, and a killing vector field
in [27,28,35,36]. With a new sort of vector field called the ψQ or ϕ(Ric) vector field, we
examine the RS on TFS in Section 7. Additionally, using a ψQ vector field and the RS, we
determine the value of the cosmological constant Λ on TFS. In addition, we discover that
an expanding universe, assuming the cosmological constant Λ is positive, is the condition
for a TFS with an RS.
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2. Relativistic TFS

In light of (3), for two vector fields E and F on M, Einstein’s equation of state with the
cosmological constant for TFS is given as:

Ric(E, F) + (Λ− 1
2
R)g(E, F) =

2π

h̄η
T(E, F), (12)

whereRic andR stand for the Ricci tensor and scalar curvature of TFS, respectively.
We deduce Einstein’s equation of state with the cosmological constant for a TFS via

Equations (12) and (10):

Ric(E, F) =
(R− 2Λ)

2
g(E, F) +

2π

h̄η
(ρ + ε)u(E)u(F) +

4π

h̄η
u(E)q(F) +

2π

h̄η
τ(E, F), (13)

where E, F ∈ χ(M4, g), χ(M4) denotes the collection of all C∞-vector fields of M4 and u,
which is 1-form, and in this scenario, flux q is a 1-form or function over the spacetime and
the thermal energy density τ is a (0, 2) type symmetric tensor. On contracting (13), we find
the following result.

Theorem 1. In a relativistic TFS with thermal energy density, thermal flux and thermal stress and
satisfying the Einstein equation of state with cosmological constant, the scalar curvature is:

R = 4Λ +
2π

h̄η
[ρ + ε + J], (14)

where J = Tr(τ).

The following corollary is deduced from Theorem 1 and Remark 1:

Corollary 1. For a relativistic TFS with thermal energy density, thermal flux and thermal stress
and satisfying the Einstein equation of state with positive cosmological constant, the TFS is an
accelerating spacetime if and only if R4 > π

2h̄η [ρ + ε + J].

With a time-like vector field ξ and space-like vector field ζ, we have g(E, ξ) = u(E),
g(E, ζ) = q(E), u(ξ) = −1, q(ζ) = 1, u(ζ) = q(ξ) = 0, g(ξ, ζ) = 0 from (13), while ξ, ζ are
orthogonal unit vector fields, respectively, we gain:

Ric(E, ξ) = (α− β)u(E), (15)

Ric(E, ζ) = αq(E) + γq(E) + ωτ(E, ζ), (16)

Ric(ξ, ξ) = α− β, (17)

Ric(ζ, ζ) = α + ωI, where τ(ζ, ζ) = I, (18)

Ric(ξ, ζ) = −γ, (19)

where
α =
R
2
−Λ, β =

2π

h̄η
(ρ + ε), γ =

4π

h̄η
, ω =

2π

h̄η
. (20)

Letting Q represent the symmetric endomorphism of the tangent space at any point
on the spacetime manifold. Then, we have Ric(E, F) = g(QE, F) for all E, F, where Q is
the Ricci operator.

3. Geometrical Virtues of Relativistic TFS

Through (15), we haveRic(E, ξ) = (α− β)g(E, ξ) for all E.
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Theorem 2. In a relativistic TFS, the generator ξ is an eigenvector of the Ricci tensor corresponding
to the eigenvalue α− β.

Let us assume that in a relativistic TFS, ξ is the parallel velocity vector field. Then,
∇Eξ = 0 for all E, which argues that R(E, F)G = 0 is an outcome of Ric(E, ξ) = 0 for all
E. Again, from (15), we obtainRic(E, ξ) = (α− β)u(E). Thus, α− β = 0 is required. As a
result, we get the following outcome:

Theorem 3. If the generator ξ of a relativistic TFS is a parallel velocity vector field, then the
associated scalars α, β are linked by α− β = 0.

After all, both ξ and ζ are orthogonal to each other, thus, from (16), we obtain that:

g(Qξ, ξ) = α− β, (21)

which signifies that Qξ is orthogonal to ξ ⇔ α− β = 0. Thus, we can articulate the following:

Theorem 4. In a relativistic TFS, Qξ is orthogonal to ξ if and only if α− β = 0.

Proof. From (55), we easily obtain our desired result.

Therefore, from Equation (20), we notice that ρ + ε = h̄η
2π (R− 4Λ)− J.

Corollary 2. If the velocity vector field is parallel of the relativistic TFS, then the sum of densities
is ρ + ε 6= 0.

Corollary 3. In a relativistic TFS, Qξ is orthogonal to ξ with ρ + ε 6= 0.

In addition, from (18) we find:

g(Qζ, ζ) = α + γ + ωI,

which signifies that Qζ is orthogonal to ζ ⇔ α + γ + ωI. Thus, we can articulate:

Theorem 5. In a relativistic TFS, Qζ is orthogonal to ζ if and only if α + γ + ωI = 0.

Likewise, in virtue of Equation (20) and the theorem 5, the following consequence
is found:

Corollary 4. If Qζ is orthogonal to ζ in a relativistic TFS, then the scalar curvature is
R = 4Λ + 2π

h̄η [(ρ + ε) + J + 2] and the value of cosmological constant is Λ = R
4 −

π
2h̄η [(ρ + ε) +

I + 2].

In light of Remark 1 and Corollary 4, the outcome is as follows:

Theorem 6. If Qζ is orthogonal to ζ in a relativistic TFS, then the relativistic TFS is an accelerat-
ing universe if and only if R

4 > π
2h̄η [(ρ + ε) + I + 2].

Corollary 5. If Qζ is orthogonal to ζ in a relativistic TFS, then the relativistic TFS with Λ > 0
is a supernova if and only if R

4 > π
2h̄η [(ρ + ε) + I + 2].

Furthermore, the relations (4), (15) and (6) entail that:
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Theorem 7. If Qζ is orthogonal to ζ in a relativistic TFS with Λ > 0, then the dark energy,
εΛ = c4

8πG
R
4 −

π
2h̄η [(ρ + ε) + I + 2], pressure pΛ = − c4

8πG
R
4 −

π
2h̄η [(ρ + ε) + I + 2] and vacuum

energy density is ρΛ = c2

8πG
R
4 −

π
2h̄η [(ρ + ε) + I + 2].

Next, let us assume that ξ and ζ are parallel vector field on TFS. Then, we have
∇Eξ = 0 and ∇Eζ = 0, which imply that:

R(E, F)ξ = 0, R(E, F)ζ = 0.

Hence, it follows that:

Ric(E, ξ) = 0, and Ric(E, ζ) = 0.

Now, adopting (15) and (18) we obtain α− β = 0, α + γ + ω = 0. Due to the parallel vector
fields ξ and ζ’s implication, γ = β = −(α + ωI).

4. Codazzi and Cyclic Parallel Type Ricci Curvature Tensor on Relativistic TFS

The Codazzi type and Ricci cyclic type curvature explain the important limitation of
the geometry of the spacetime manifold. These curvatures introduced the geometric or
unconventional matter content in the Einstein equitation, depending on the point of the
view, in a different way than other extended theories of gravity. The Codazzi condition and
closed vector field determines a class of spacetime that host the tensor. The spacetime in turn
determines the Ricci tensor and the way the Codazzi tensor interacts with the Ricci tensor.
Finally, the Codazzi type and Ricci cyclic type tensor determine the energy-momentum
tensor of the Einstein equation. The Codazzi type and Ricci cyclic type curvature property
strongly restrict the spacetime they live in. For example, in a static spacetime, the Codazzi
tensor determines the acceleration form under certain condition (for more details see [37]).
The trivial Codazzi tensors give the Einstein equations without and with a cosmological
constant. Derdzinski and Shen presented the idea of a non-trivial Codazzi tensor on a
Riemannian manifold in the cited work [38]. The Codazzi tensors are exemplified by the
parallel tensors.

Definition 4 ([38]). If a non-vanishing Ricci tensorRic of a semi-Riemannian manifold satisfies
the condition:

(∇ERic)(F, G) = (∇GRic)(E, F) (22)

then the Ricci tensorRic is said to be Codazzi type.

Definition 5 ([38]). If the Ricci tensorRic of a semi-Riemannian manifolds satisfies the condition:

(∇ERic)(F, G) + (∇FRic)(E, G) + (∇GRic)(E, F) = 0 (23)

then Ricci tensorRic is said to be cyclic parallel.

For the relativistic TFS, the thermodynamic matter tensor is Codazzi type. Then, the
relativistic TFS satisfies:

(∇ET)(F, G) = (∇GT)(F, E), where T = TM + TH . (24)

From (12) we attain:

(∇ERic)(F, G)− (∇GRic)(E, F)− 1
2
[dR(E)g(F, G)− dRg(E, F)] (25)

=
2π

h̄η
[(∇ET)(F, G)− (∇GT)(F, E)].
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Since, in light of (4), scalar curvatureR is constant, which implies that dR(E) = 0. Then,
we find (24). Thus, we can state the following:

Theorem 8. The thermodynamic matter tensor of a relativistic TFS is Codazzi type if and only if
Ricci tensor is of Codazzi type.

Let us assume that the time-like velocity vector field ξ and space-like thermal flux
vector field ζ of a relativistic TFS are Killing vector fields.

(Lξ g)(E, F) = 0, and (Lζ g)(E, F) = 0, (26)

where L indicates the Lie derivative along the direction of a vector field ξ and ζ, respectively.
From (26) it follows that:

g(∇Eξ, F) + g(E,∇Fξ) = 0, g(∇Eζ, F) + g(E,∇Fζ) = 0. (27)

Since:
g(∇Eξ, F) = (∇Eu)(F), and g(∇Eζ, F) = (∇Eq)(F), (28)

we find a pair of relations from (27) that:

(∇Eu)(F) + (∇Fu)(E) = 0, and (∇Eq)(F) + (∇Fq)(E) = 0, (29)

for all E, F.
In a similar fashion, we have:

(∇Eu)(G) + (∇Gu)(E) = 0, and (∇Eq)(G) + (∇Gq)(E) = 0, (30)

(∇Gu)(F) + (∇Fu)(G) = 0, and (∇Gq)(F) + (∇Fq)(G) = 0, (31)

for all E, F, G.
Furthermore, we consider that the associated scalars are constant. Then, from (13) and

using (30), (31) we obtain:

(∇ERic)(F, G) + (∇FRic)(G, E) + (∇GRic)(E, F) (32)

=
2π

h̄η
[(∇Eτ)(F, G) + (∇Fτ)(G, E) + h̄η(∇Gτ)(E, F)].

Therefore, we can articulates the following:

Theorem 9. If the time-like velocity vector field ξ and space-like thermal flux vector field ζ of a
relativistic TFS are Killing vector fields and the associated scalars are constant, then the relativistic
TFS is cyclic parallel if and only if the thermal stress tensor τ is cyclic parallel.

5. Pseudo-Quasi-Conformal Curvature Tensor on Relativistic TFS

In [39], Shaikh and Jana introduced the notion of pseudo-quasi-conformal tensor and
is defined as:

C](E, F)G = (p + d)R(E, F)G +

(
q− d

3

)
[Ric(F, G)E−Ric(E, G)F]

+ q[g(F, G)QE− g(E, G)QF] (33)

− R
n
[

p
n− 1

+ 2q][g(F, G)F− g(E, G)F]

where E, F, G ∈ χ(M), Q is a symmetric endomorphism of the tangent space at each
point corresponding to the Ricci tensorRic, i.e., g(QX, Y) = Ric(X, Y) and p, q, d are real
constants such that p2 + q2 + d2 > 0.
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Remark 2. In particular, C is reduced to the projective curvature tensor, quasi-conformal curvature
tensor, conformal curvature tensor and concircular curvature tensor, respectively, if (1) p = q = 0,
d = 1; (2) p 6= 0, q 6= 0, d = 0; (3) p = 1, q = − 1

n−2 , d = 0; (4) p = 1, q = d = 0.

Now, Equation (4) signify that the scalar curvatureR is a constant, i.e., dR(E) = 0, for
all E. Adopting dR(E) = 0, we obtain from (33) that:

(∇HC])(E, F, G) = (p + d)(∇H R)(E, F, G) +

(
q− d

3

)
[(∇HRic)(F, G)E− (∇HRic)(E, G)F]

+ q[g(F, G)(∇HQ)E− g(E, G)(∇HQ)F]. (34)

We know that (divR)(E, F, G) = (∇ERic)(E, G)− (∇FRic)(E, G) and from (13) we find:

(∇ERic)(F, G) =
2π

h̄η
(ρ + ε)[(∇Eu)(F)u(G) + u(F)(∇Eu)(G)] (35)

+
4π

h̄η
[(∇Eu)(F)q(G) + u(F)(∇Eq)(G)] +

2π

h̄η
(∇Eτ)(F, G),

since 2π
h̄η (ρ + ε), 4π

h̄η and 2π
h̄η are constant. Now after contracting (34) and using (35), we

arrive at:

(divC])(E, F, G) = (p + q +
2d
3
)[

2π

h̄η
(ρ + ε)((∇Eu)(F)q(G) + u(F)(∇Eq)(G)

− (∇Fu)(E)q(G)− u(E)(∇Fq)(G))

+
4π

h̄η
((∇Eu)(F)q(G) + u(F)(∇Eq)(G) (36)

− (∇Fu)(E)q(G)− u(E)(∇Fq)(G))

+
2π

h̄η
((∇Eτ)(F, G)− (∇Fτ)(E, G))].

Applying the condition that the time-like velocity vector field ξ and space-like thermal flux
vector field ζ of the relativistic TFS are parallel vector fields that provide ∇Eξ = 0 and
∇Eζ = 0. Thus, we obtain a pair of equations:

g(∇Eξ, F) = 0, i.e., (∇Eu)(F) = 0. (37)

g(∇Eζ, F) = 0, i.e., (∇Eq)(F) = 0. (38)

Therefore, from (36), (37) and (38), it follows that:

(divC])(E, F, G) =
2π

h̄η
(p + q +

2d
3
)[(∇Eτ)(F, G)− (∇Fτ)(E, G)]. (39)

Consequently, we can articulate the following:

Theorem 10. If in a relativistic TFS the associated scalars are constant and time-like velocity
vector field ξ and space-like thermal flux vector field ζ are parallel, then the divergence-free pseudo-
quasi-conformal curvature tensor and the thermal stress tensor τ of Codazzi type are equivalent.

Moreover, in light of Remark 2 and Equation (39), we gain the following corollary:

Corollary 6. If in a relativistic TFS the associated scalars are constant and time-like velocity vector
field ξ and space-like thermal flux vector field ζ are parallel, then:

1. The divergence-free projective curvature tensor and the thermal stress tensor τ of Codazzi type
are equivalent;

2. The divergence-free quasi-conformal curvature tensor and the thermal stress tensor τ of
Codazzi type are equivalent;

3. The divergence-free conformal curvature tensor and the thermal stress tensor τ of Codazzi
type are equivalent;
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4. The divergence-free concircular curvature tensor and the thermal stress tensor τ of Codazzi
type are equivalent.

6. Generalized Ricci Recurrent Relativistic TFS

Definition 6 ([40]). A non-flat semi-Riemannian manifold is said to be a generalized Ricci recur-
rent manifold if its Ricci tensor satisfies the following condition:

(∇ERic)(F, G) = a(E)Ric(F, G) + b(E)g(F, G), (40)

where a and b are non-zero 1-forms. If b = 0, then the manifold turn into a Ricci recurrent
manifold [41].

A time-like velocity vector field ξ corresponding to the associated 1-form u is said to
be recurrent if [42]:

(∇Eu)(F) = A(E)u(F), (41)

where A is a non-zero 1-form.
In addition, let us assume that the generators ξ and ζ corresponding to the associated

1-form u and q are recurrent. Then we have

(∇Eu)(F) = λ(E)u(F), (∇Eq)(F) = µ(E)q(F), (42)

wherein λ and µ are non-zero 1-forms.
Now, adopting (42) and (35), we obtain:

(∇GRic)(E, F) =
4π

h̄η
(ρ + ε)λ(G)u(E)u(F) (43)

+
4π

h̄η
[µ(G)u(E)q(F) + λ(G)u(E)q(F)] + d(∇Gτ)(E, F).

Consider that 1-form λ and µ are equal, i.e., λ(G) = µ(G) for all G. Then, we find
from (43) that:

(∇GRic)(E, F) =
4π

h̄η
λ(G)u(E)u(F) +

4π

h̄η
(ρ + ε)λ(G)u(E)q(F) +

2π

h̄η
(∇Gτ)(E, F). (44)

In view of (13) and (44), we have:

(∇GRic)(E, F) = α1(G)Ric(E, F) + β1(G)g(E, F) + d(∇Gτ)(E, F), (45)

where α1(G) = 2λ(G) and β1(G) = − 4π
h̄η λ(G). Then, we can articulate the following.

Theorem 11. If the generators ξ and ζ of a relativistic TFS corresponding to the associated 1 forms
u and q are recurrent with the same vector of recurrence and the associated scalars are constant along
the new condition thermal stress tensor τ is covariant, then the relativistic TFS is a generalized
Ricci recurrent relativistic TFS.

7. Ricci Solitons on Relativistic TFS with a ψQ Vector Field

Definition 7 ([43]). A vector field ψ on a semi-Riemannian manifold M is said to be a ψQ-vector
field if it satisfies:

∇Eψ = σQE, (46)

where ∇, σ and Q is the Levi-Civita connection, a constant, and a Ricci operator, respectively. If
σ 6= 0, then vector field ψ is said to be a proper ψQ-vector field, and if σ = 0 in (46), then vector
filed ψ is said to be covariantly constant.

Now, we obtain an interesting finding.
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Theorem 12. If a relativistic TFS M admitting an RS (M, g, ψ, θ), such that the potential vector
field ψ is a proper ψQ-vector field, then (M, g, ψ, θ) is a relativistic TFS.

Proof. In view of (11) and (13), we obtain:

1
2
LV g(E, F)−

{
R
2
−Λ + θ

}
g(E, F)− 2π

h̄η
(ρ + ε)u(E)u(F)− 4π

h̄η
u(E)q(F)− 2π

h̄η
τ(E, F) = 0. (47)

By the definition of the Lie-derivative and (46), one has:

(Lψg)(E, F) = 2σRic(E, F) (48)

for any E, F.
From (47) and (48), we obtain:

Ric(E, F) = − (α + θ)

σ
g(E, F) +

β

σ
u(E)u(F) +

γ

σ
u(E)q(F) +

ω

σ
τ(E, F). (49)

Adopting E = F = ξ in (49), we find:

θ = σ(α− β)− (α + β). (50)

Hence, we state the following results.

Theorem 13. Let M be a relativistic TFS admitting an RS (M, g, ξ, θ) with a proper ξQ- time-like
velocity vector field ξ; then, RS is growing, stable or decreasing according to σ(α− β) > (α + β),
σ(α− β) = (α + β) and σ(α− β) < (α + β), respectively.

Corollary 7. Let M be a relativistic TFS admitting an RS (M, g, ξ, θ), such that the time-like
velocity vector field ξ is ξQ, which is covariantly constant; then, RS decreases.

Again, putting E = ξ in (49) yields:[
(α− β) +

(α + θ)

σ
− β

σ

]
u(F)− γ

σ
q(F) = 0, (51)

which signifies:

q(F) =
1
γ
[α(σ− 1)− β(σ + 1)− θ]u(F), (52)

where
α =

R
2
−Λ (53)

and β = 4π
h̄η (ρ + ε). As a result, the following can be said.

Theorem 14. A relativistic TFS admitting an RS (M, g, ξ, θ) with a proper ξQ- time-like velocity
vector field ξ, after which the relativistic TFS admits thermal flux, provided:

α(σ− 1)− β(σ + 1)− θ 6= 0.

Corollary 8. A relativistic TFS admitting an RS (M, g, ξ, θ) with a covariantly constant ξQ
time-like velocity vector field ξ, after which the relativistic TFS admits thermal flux, provided:

−(α + β)− θ 6= 0.

In view of Remark 1 and Equations (53), (4)–(6), we obtain the following results:
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Theorem 15. With a relativistic TFS admitting an RS (M, g, ξ, θ) with a proper ξQ- time-like
velocity vector field ξ and relativistic TFS admitting thermal flux, the value of the cosmological
constant is positive if and only if R2 > α.

Theorem 16. With a relativistic TFS admitting an RS (M, g, ξ, θ) with a proper ξQ- time-like
velocity vector field ξ and relativistic TFS admitting thermal flux, the TFS is an accelerating
universe if and only if R2 > α.

Theorem 17. With a relativistic TFS admitting an RS (M, g, ξ, θ) with a proper ξQ- time-like
velocity vector field ξ and relativistic TFS admitting thermal flux, Λ > 0, the dark energy
is εΛ = c4

8πG [
R
2 − α], pressure is pΛ = − c4

8πG [
R
2 − α] and vacuum energy density is ρΛ =

c2

8πG [
R
2 − α].

Again, using E = F = ζ, we arrive at:

θ = −{α(σ + 1) + ωI(σ− 1)}. (54)

Theorem 18. Let M be a relativistic TFS admitting an RS (M, g, ζ, θ) with a proper ζQ-space-like
velocity vector field ζ; then, RS decreases.

Corollary 9. If M is a relativistic TFS admitting an RS (M, g, ζ, θ) with a covariantly constant
ζQ-space-like velocity vector field ζ, then RS is growing, stable or decreasing according to ωI > α,
ωI = α and ωI < α, respectively.

Example 1. Let M =
{
(x, y, z, t) ∈ R4 : t 6= 0

}
, where (x, y, z, t) are the standard coordinates

of R4.

Let (e1, e2, e3, e4) be the set of linearly independent vector fields of M, and is defined as:

e1 = t
(

∂

∂x
+ y

∂

∂y

)
, e2 = t

∂

∂y
, e3 = t

(
∂

∂y
+

∂

∂z

)
, e4 = (t)3 ∂

∂t
.

Let g be the Riemannian metric M, defined by:

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e4, e4) = −1 g(ei, ej) = 0, for i 6= j, i, j = 1, 2, 3, 4.

Let η be the 1-form defined by η(Z) = g(Z, e4) for any Z ∈ χ(M).
Furthermore, let ϕ be the (1, 1) tensor field, defined by:

ϕ(e1) = e1, ϕ(e2) = e2, ϕ(e3) = e3, ϕ(e4) = 0, ξ = (t)3 ∂

∂t

and let∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Thus, using
the linearity of ϕ and g, we obtain:

[e1, e2] = −(t)e2, [e1, e4] = −(t)2e1, [e2, e4] = −(t)2e2, [e3, e4] = −(t)2e3.

Then, for e4 = ξ and using Koszul’s formula for the Lorentzian metric g, we obtain:

∇e1 e1 = −(t)2e4, ∇e2 e1 = te2, ∇e1 e4 = −(t)2e1, ∇e2 e4 = −(t)2e2

∇e3 e4 = −(t)2e3, ∇e3 e3 = −(t)2e4, ∇e2 e2 = −(t)2e4 − te1. (55)

∇e3 e1 =
1
2

e2ze2, ∇e3 e2 = −1
2

e2ze1, ∇e3 e0 = 0. (56)

From (55), we find that the structure (ϕ, ξ, η, g) is a Lorentzian structure on M. Conse-
quently, M4(ϕ, ξ, η, g) is an Lorentzian manifold (four-dimensional spacetime model).
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The non-vanishing components of Riemannian curvature and the Ricci tensors are
given by:

R(e1, e4)e1 = (t)4e4, R(e2, e4)e2 = (t)4e4, R(e3, e4)e3 = (t)4e4,

R(e1, e3)e3 = (t)4e1, R(e1, e3)e1 = −(t)4e3, R(e2, e3)e2 = −(t)4e3,

R(e1, e4)e4 = (t)4e1, R(e2, e4)e4 = (t)4e2, R(e1, e2)e2 = [(t)4 − (t)2]e1,

R(e2, e3)e3 = (t)4e2, R(e3, e4)e4 = (t)4e3, R(e1, e2)e1 = −[(t)4 − (t)2]e2,

From the above expression of the curvature tensor, we can easily calculate the non-vanishing
components of the Ricci tensorRic

Ric(e1, e1) = 3(t)4 − (t)2, Ric(e2, e2) = 3(t)4 − (t)2

similarly, we have:
Ric(e3, e3) = 3(t)4, Ric(e4, e4) = 3(t)4. (57)

Therefore:

R =
4

∑
i=j=1

Ric(ei, ej) = 2[6(t)4 − (t)2].

Now, in light of (11) and (49), we obtain:

Ric(ei, ei) +
(α + θ)

σ
g(ei, ei)−

β

σ
u(ei)u(ei)−

γ

σ
u(ei)q(ei)−

ω

σ
τ(ei, ei) = 0

for all i ∈ {1, 2, 3, 4}, and we have:

Ric(ei, ei) +
(α + θ)

σ
g(ei, ei)−

β

σ
δi4 = 0

for all i ∈ {1, 2, 3, 4}, we gain θ = 3σt4 − (α + β). Thus, the data (g, ξ = e4, θ) are Ricci
solitons on TFS (M4, g), with a proper ξQ- time-like velocity vector field ξ, which is
expanding if 3σt4 < (α + β), shrinking if 3σt4 > (α + β) or steady if 3σt4 = (α + β), as
illustrated in Theorem 13.

In addition, the data (g, ξ = e4, θ) are expanding Ricci solitons on TFS (M4, g); addi-
tionally, a time-like velocity vector field ξ is ξQ covariantly constant if θ = −(α + β) and
verified Corollary 7.

Finally, in light of Equation (53), we find the value of Λ = [6(t4)− (t2)]− α, and it
will be positive if [6(t4)− (t2)] > α, which also fulfills the Theorems 16 and 17.

8. Conclusions

In this article, we attempted to analyze the thermodynamical development of the
spacetime manifold under the influence of some specific thermal characteristics. We
described the TFS as a manifold with three particular objects (thermal density energy,
thermal flux and thermal stress). Furthermore, we analyzed a series of geometric properties
of these spaces linked to the existence of symmetries and demonstrated that the total density
of space is not zero. Certain types of curvature tensors were used in order to characterize
the structural configuration of the abovementioned spacetime. On the other hand, the
Codazzi type and Ricci cyclic type curvature introduced the geometric or unconventional
matter content in Einstein’s equitation, depending on the point of the view, in a different
way as compared to other extended theories of gravity. With the help of the Codazzi and
Cyclic Parallel Ricci conditions, we confined the curvature of TFS and examine new and
interesting results. Lastly, we studied the behavior of the RS on TFS with a new sort of
vector field and also discovered that an expanding universe with a positive value of the
cosmological constant is the condition for a TFS with an RS.
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