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Summary. The Gaussian beam method has recently been introduced into 
synthetic seismology to overcome shortcomings of the ray method, especially 
in transition regions due to focusing or diffraction where ray theory fails. 
One proceeds by discretizing the initial data as a superposition of paraxial 
Gaussian beams, each of which is then traced through the seismic environ- 
ment. Since Gaussian beam fields do not diverge in ray transition regions, 
they are ‘uniformly regular’ although the quality of this regularity depends 
on the beam parameters and on the ‘numerical distance’ which defines the 
extent of the transitional domain. However, when Gaussian beam patches are 
used to simulate non-Gaussian initial data, there arise ambiguities due to 
choice of patch size and location, beam width, etc., which are at  the user’s 
disposal. The effects of this arbitrariness have customarily been explored 
by trial and error numerical experiment but no quantitative recommendations 
have emerged as yet. As a step toward a priori predictive capability, it is 
proposed here to perform a systematic study on analytically tractable 
prototype models of how the parameters and location of a single beam affect 
the quality of the observed seismic field, especially in ray transition regions. 
The conversion of ordinary ray fields into beam fields in canonical configura- 
tions can be accomplished conveniently by displacing a real source point 
into a complex coordinate space. Thus, the desired beam solutions can be 
obtained directly from available ray, and even paraxial ray, fields. Complex 
ray theory and its implications are reviewed here, with an emphasis on 
improvements of beam tracking schemes employed at present. 

1 Introduction 

1.1 R E A L K A Y S  

The ray method provides one of the important tools for predicting source excited wave 
motion in a complicated environment. Restricted to high frequencies, where wave propaga- 
tion is a local rather than a global phenomenon, the motion is tracked in terms of h a 1  
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78 L. B. Felsen 
plane waves along ray trajectories connecting the source with the observer. A local plane 
wave may be regarded as the  composite wavefield that  results from constructive interference 
of  a spectrum of  true plane waves; the mathematical basis for this observation is provided by 
stationary phase evaluation of a plane wave spatial spectral integral representation of  the 
wavefield. The ray trajectories coincide with the direction of  energy flow in the local plane 
wavefield, and t h e  phase of  the desired field a t  any  point on a ray is given as the plane wave 
phase accumulation from the source t o  the observer along that ray. The amplitude o f  the 
desired field is determined from the (constant) energy contained in a narrow tube of rays 
surrounding the ray in question. The amplitude is inversely proportional to  the square root 
of the energy density and hence can be ascertained from the change in ray tube cross- 
section between source and observer (Felsen & Marcuvitz 1973;  Aki & Richards 1980). 

Ray fields chart high-frequency wave transport phenomena from an initial and presumably 
known surface distribution to points away from the initial surface. To the lowest order of  
approximation, smooth variations in the medium are assumed to  cause no reflections, and 
this requires such variations t o  occur over a scale length that is large compared to  the local 
wavelength. Strong changes in the medium properties, represented by rapid variations over 
the scale of  the local wavelength, may give rise to  reflection, refraction and diffraction, as, 
for example, a t  an abrupt boundary between two different media and at a slope discon- 
tinuity in that boundary, respectively. Reflection, refraction and diffraction generate new 
systems of rays, excited by the incident rays. If the initial field values o n  each of  the 
reflected, refracted and diffracted rays can be determined, the local plane wavefields 
expressed thereby can be tracked away froin the initial points by the same rules as stated 
previously. The initial values on reflected and refracted rays at smoothly curved portions 
on  the boundary can be established by  phase and amplitude matching with the incident local 
plane wavefield. At scattering centres such as kinks or edges o f  cracks, the  initial values for 
diffracted rays must be extracted from a high-frequency asymptotic treatment of  the full 
‘canonical’ wave solution that models the essential features of  the structural discontinuity; 
thus, diffraction by a kink in a curved boundary can be inferred adequately from the 
knowledge of diffraction by the intersection of the two tangent planes, with the exterior 
and interior media taken globally constant at the local values near the kink in the actual 
environment. All of  these considerations are validated t o  a lowest order of  approximation 
by the above-stated requirement that smooth changes, whether in a boundary or a medium, 
occur over length scales that are large with respect t o  the local wavelength. This provides 
the justification for modelling direct propagation, reflection, refraction and diffraction in 
terms of  canonical solutions with simpler local properties to  furnish the various initial 
field values. 

The preceding scenario, with varying degrees of complication that depend on  the 
type of  wavefield and the physical environment, applies in principle to  all linear wave 
propagation and diffraction phenomena in the high-frequency limit. The method was 
first developed in electromagnetics under the name ‘Geometrical theory of diffraction’ 
(Keller 1965), and it has since then been refined and extended so that it is now a basic tool 
for analysis and for  practical design in that discipline. The method has more recently been 
introduced into seismology (Aki & Richards 1980; cerveny, Molotkov & PSenCik 1977: 
Klem-Musatov & Aisenberg 1983) but refinements comparable to  those in electromagnetics 
remain t o  be formulated for the considerably more complicated environmental conditions 
encountered there. A principal limitation of ray theory is its failure in ‘transition regions’ 
where two or more ray fields interact so strongly that the resulting rapid field variation 
cannot b e  characterized by superposition of distinct local plane waves (Felsen & Marcuvitz 
1973). Such transitions occur across refraction and diffraction shadow boundaries, near 
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Complex rays and Gaussinn beams 79 
critical reflection, etc., where the number of ray species on one side differs from that on the 
other. Discontinuities introduced into the total ray field by the sudden disappearance or 
emergence of a particular ray type must be smoothed out (uniforniized) by ‘transition 
functions’ based on more sophisticated wave theory. These transition functions generally 
contain a coordinate, cmfiguration- and frequency-dependent parameter, the ‘numerical 
distance’ ND, whose magnitude, which is related to the difference in the phases accumulated 
along relevant strongly interacting rays, determines the extent of the transition region. For 
sufficiently large N D  values, leading order asymptotics reduces a transition function to the 
ray field. Comparison of numerical values of the transition function and the ray field can 
then delineate the transitional range of ND for a specified tolerable maximum error in the 
ray solution. 

A typical transition in a heterogeneous medium, and one that has received considerable 
attention in seismology, is associated with ray caustics that separate illuminated from 
shadow regions for a particular type of ray (Chapman 1978). Simple ray theory predicts 
infinite amplitudes there. Although known caustic correction factors (phase shifts) relate a 
ray field emerging from a caustic to its incident values before making contact, use of 
these corrections requires knowledge of the nature and location of the caustic. This aspect 
complicates numerical implementation. 

1.2 C O M P L E X  K A Y S ,  E V A N E S C E N T  W A V E S  A N D  G A U S S I A N  B I : A M S  

To circumvent these difficulties, a new method (Popov 1982) has been proposed wherein 
the fields are transported locally not by an ordinary plane wave with constant amplitude on 
an equiphase surface (the wavefront) but by a beam wave whose amplitude on an equiphase 
surface decays away from the central ray, the beam axis, toward the edges of the ray tube. 
The amplitude profile of the paraxial beam field is expressed by a Gaussian exponential 
when its extent is limited to points close enough to the beam axis t o  validate retention of 
terms no higher than quadratic in the off-axis (transverse) coordinates. Within the context 
of the discussion above, when viewed as a spectrum of true plane waves with amplitudes 
determined by the Gaussian taper, the transport properties of the constructive interference 
maxima of this wave bundle may be described by stationary phase analysis as before, 
with the important difference that the stationary phase points in the spatial wavenumber 
spectrum are generally complex (Felsen 1975, 1976). Thus, the beam wavefield is synthe- 
sized locally by (evanescent or inhomogeneous) plane waves with complex phase, in contrast 
to the real phase ordinary plane waves that synthesize the conventional ray field. By direct 
extension of the notion of a ray as the plane wave trajectory defined by the spatial wave- 
numbers, one is led to the conclusion that if the spatial wavenumbers are complex, the 
trajectory must lie in a complex coordinate space obtained by analytic continuation of the 
physical coordinates from real to complex values. By extending initial conditions (Ghione, 
Montrosset & Felsen 1984; Einziger & Felsen 1982) and environmental parameters into the 
complex space, one may trace complex ray fields by the (analytically continued) rules 
applicable to real ray fields. Where a complex ray intersects the real coordinate space, it 
furnishes there an observable field. These considerations incorporate beam waves systematic- 
ally within the framework of ray theory, provided that the category of real rays is enlarged 
to include complex rays. 

An important attribute of transition phenomena associated with the complex ray fields 
that represent evanescent waves is that these phenomena generally occur in localized regions 
in the complex coordinate space (Ghione e f  al. 1984; Heyman & Felsen 1983). For example, 
a complex ray field may give rise to a complex caustic where ray tube cross-sections shrink 
to zero and thus invalidate complex ray theory there, but these cross-sections rennin finite 
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80 L. B. Felsen 

at the real space intersections. If the caustic surface never intersects the real coordinate 
space, complex ray theory remains valid throughout while real ray theory with its real- 
space caustic fails in the transition region. This complex ray interpretation of the wave 
bundle that synthesizes a paraxial beam thus makes beam phenomena understandable as ray 
phenomena associated with evanescent instead of ordinary local plane waves. To repeat, ray 
theory comprising real and complex ray fields can account for all high-frequency wave 
phenomena, including those (for example, beam type fields and fields on the shadow side 
of real caustics) where evanescent fields predominate. I f  a complex ray transition region 
approaches the real coordinate space, it may be necessary to correct the affected ray fields 
by transition functions in order to obtain more accurate predictions, although ray field 
infinities do not occur. The numerical distance NB, now complex. deterniines the extent 
of the transition region. 

The preceding discussion clarifies the above-noted motivation for seeking to decompose 
a given wavefield into (local evanescent) beam waves instead of local ordinary plane waves 
if transition phenomena for the former, where ray theory fails, may thereby be removed 
from the physical space. Transitions near certain caustics generated by focusing due to 
medium inhomogeneities fall into this category. How deep a ray field transition region is 
pushed into the complex space depends on how strongly evanescent the constituent plane 
waves are, i.e. o n  the parameters of the paraxial beatn. Transition regions deep within the 
complex space may have real-space fields that are so diffuse as to eliminate entirely the 
physically observable transition effects caused by non-evanescent wave constituents. To 
retain such details in the wave behaviour, the incident wavefield should only be weakly 
evanescent, but then simple ray theory without uniformizing corrections may be strained 
by the proximity of the transition region to real coordinate space. Effective use of the 
Gaussian beam method requires a balance between these conflicting attributes. 

One may now understand better the dilemma posed when modelling non-evanescent 
initial conditions locally by evanescent conditions, as proposed in the Gaussian beam 
method. By properly adjusting the plane wave spectral amplitudes in the beam superposition 
integral that expresses the initial surface field, and performing the stationary phase evalua- 
tion that selects the constructively interfering wave groups, one may indeed compensate 
for the local beam character and generate off-surface fields which agree asymptotically with 
those predicted by conventional (non-evanescent) ray theory (Popov 1982). However, the 
numerical implementation of the method involves discretization of the integral into Gaussian 
beam patches. Since not only the location and degree of overlap of the patches but also the 
initial beam parameters, which determine the evanescence and hence the complexness of the 
ray bundle, are at the user’s disposal, there exists an arbitrariness whose effects have been 
assessed so far only by trial and error numerical experiment and comparison with reference 
solutions obtained by other algorithms with proved reliability (cerveny, Popov & PSenEik 
1982; Nowack & Aki 1984). Although these comparisons have granted qualitative insight 
into how various beam parameters affect the resulting seismogram, no quantitative recom- 
mendations have emerged from these studies. Thus, the Gaussian beam method at present 
lacks a priori predictive capability. 

1.3 C O M P L E X  S O U R C E  P O I N T S  A N D  G A U S S I A N  B E A M S  

To remedy some of these deficiencies, it would seem to be advisable to determine the 
influence of the beam parameters on wave phenomena associated with bulk propagation, 
reflection, refraction and diffraction of Gaussian beams in rigorously based analytical 
prototype models. Analytical models involving plane wave decomposition of a Gaussian 
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beam are inefficient here since the plane wave response cannot generally be ascertained in a 
fairly arbitrary environment. Even in those special cases amenable t o  plane wave spectral 
decomposition, asymptotic reduction of  the spectral integral requires an additional step. 
These complications can be avoided by recourse to  complex ray theory or, more funda- 
mentally, to rigorous wave theory performed in a complex coordiriute space. 

I t  is remarkable, and easily proved, that by assigning a complex value rb = ro + ib, where 
ro and b are real vectors, to the location r‘ of a source point in a honiogeneous unbounded 
medium, one thereby converts the time-harmonic spherically (three-dimensional) or 
cylindrically (two-dimensional) spreading field into a wavefield with directional properties 
(Deschamps 1971; Felsen 1976). By proper choice of the imaginary part ib ,  the complex 
source point substitutiorl generates a field whose maximum lies along the direction bo 
of the vector b and whose amplitude decays exponentially away from the bo direction; the 
rate of  decay depends on the magnitude b = I b I .  Thus, the field behaves like a beam whose 
maximum lies along the beam axis bo;  its narrowest portion, the beam waist. is centred at 
the  real location To. Since the source coordinate r‘ appears only as a parameter in the  field 
equations for the Green’s function G(r, r’), the beam field Gh(r, r;,) obtained by  analytic 
continuation to complex source location is an exact solution of the field equations if G(r, r‘)  
itself is exact. In the vicinity of the bo-axis, a paraxial approximation of  Gb furnishes 
precisely a paraxial Gaussian beam. This paraxial Gaussian beam field can also be found 
directly on replacing r‘ by r)b in the paraxial ray approximation of  G(r, r’). Viewed asymp- 
totically a t  high frequencies, the source point in complex space emits complex rays whose 
real-space intersections define a beam-type field, which agrees with the conventional paraxial 
Gaussian beam in the vicinity of the beam axis bo. I t  should be noted that the complete 
complex ray field furnishes a rigorous asymptotic solution of  the field equations whereas 
t h e  paraxial Gaussian beam is only a n  approximate solution. Finally, the complex source 
point method can generate not  only the lowest order Gaussian beam but  also, by  complex 
displacement of  multipole sources, Gaussian beams of higher order (Shin & Felsen 1977). 
This observation may be  important for seismic source models that are based o n  an assumed 
multipole behaviour. 

It now follows that if the point or line source Green’s function G(r, r))  is known exactly 
or  asymptotically in a given environment, its analytically continued form Gb(r, r‘b) provides 
an exact or asymptotic solution for an exciting beam wave in the same environment. Thus, 
by the complex source point substitution, a rigorous treatment of Gaussian beams in various 
environments can be obtained directly from the corresponding treatment o f  ordinary ray 
fields in this environment. The beam solution so obtained is synthesized by complex ray 
fields, each ray being descriptive of a n  evanescent plane wave with fixed complex spectral 
wavenumbers. The local evanescent plane waves are automatically tracked in real space by 
evaluating Gb(r, r‘h) at  different observation points r. 

Since paraxial Gaussian beam fields are analytic continuations of  point or line source 
excited real ray fields, the behaviour of  direct, reflected, refracted and diffracted beams can 
be ascertained from the behaviour o f  real ray fields o n  replacement o f  r’ by rb in the ray 
phase and amplitude functions, and in the ray reflection, refraction and diffraction coeffi- 
cients. Moreover, one may now clearly assess how replacement of a real ray field affects 
the behaviour in critical regions, the transition regions, where ray theory fails. As noted 
previously, the onset of failure in a given transition region can be ascertained from the 
‘numerical distance’, ND, descriptive of  the transition in question. When ND is so small that 
t h e  transition function cannot be  approximated satisfactorily by  the leading term in its large 
ND asymptotic expansion, the ray theory breaks down. The ‘satisfactory’ tange can be 
defined explicitly in terms of a specified maximum acceptable error by comparing the 
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asymptotic form of a the transition function with numerical data for its exact value. For 
real ray fields, the (real) numerical distance inevitably goes to zero on or near the transition 
boundary (caustic, shadow boundary, etc.). For complex ray (beam) fields, the complex 
numerical distance F 6  for many types of transitions does not vanish at real observation 
points (Felsen 1976; Green, Bertoni & Felsen 1979). Therefore, in principle, beam theory 
always applies. However, depending on I b I ~ the ND may become so small that the Gaussian 
beam solution deviates markedly from the solution obtained by the transition function 
evaluated a t  these Nu values. Thus, the previously imposed criterion of maximum error 
serves as well to  establish the acceptability, or not ,  of tlie Gaussian beam field. While the 
Gaussian beam solution will not fail, it may be unacceptably inaccurate. 

The Gaussian beam field. especially for diffraction and near critical reflection, depends 
not only on the width of tlie incident beam but also on where the beam axis is located with 
respect to the diffraction point 01- the critically incident ray. By systematic nunierical 
comparisons between real and complex source point solutions for canonical configurations. 
one may establish acceptability criteria phrased in terms of the ND. Since diffraction effects 
are exhibited most strongly when the beam axis coincides with the transitonal ray, a weak 
response due to a displaced incident beam might be corrected by adjusting its origin on  the 
initial surface. Such a refined procedure could conceivably be incorporated into a numerical 
programme to enhance a submerged diffraction effect. 

The preceding considerations are aimed at  quantifying the Gaussian beam method for 
transition phenomena associated with real ray fields. However, complex ray theory also 
plays a role in the proper structuring of reflected, refracted and diffracted beam fields 
outside the  ray transition regions. It has been proposed (eerveny & PSenFik 1984) that the 
reflection and transmission coefficients for a paraxial beam reflected o r  transmitted at an 
interface between two media should be taken as the Fresnel reflection and transmission 
coefficients for a plane wave incident along the (real) beam axis. Reduction of  the  complex 
ray solution to the paraxial region reveals, however, that the incidence angle in these 
formulas should not be the real ray angle of the beam axis but the complex angle that 
contains in it the  complex displacement of the source point (Ra, Bertoni & Felsen 1973). 
This is due to the fact that although the beam axis is a real ray, the paraxial ray tube 
surrounding it comprises complex rays. For example it is this complex part of  the incidence 
angle that incorporates into the reflected complex ray field the lateral beam shift that has 
been well explored in optics and acoustics. The beam modifications produced by  use o f  the 
complex incidence angle in reflection and transmission coefficients can be related t o  the 
excitation of higher order beam modes that describe the deviation of the reflected or 
refracted beam profile from its geometrically predicted value. Thus, a reflected lowest 
order Gaussian beam at a shifted location, or with some asymmetry. is equivalent to  a 
combination of  higher order beanis with respect to the nun-shifted location. Clearly, the 
former representation obtained by the complex source point method is physically more 
incisive and nurnerically more efficient. Therefore, the  simple inclusion of  complex angles 
for reflection and transmission coefficients should already serve t o  improve results (Cerveny 
& PSenCik 1984) computed by the Gaussian beam method. The same observations hold when 
ray diffraction coefficients (for example, due to a kink in a boundary) are extended to  
describe diffraction by a beam. 

Finally, since the complex source point method generates exact beam solutions of  the 
time-harmonic field equations, causality remains imposed when transforming these into the 
time domain. Here again, approximate numerical schemes for implementing beam-type 
solutions based o n  complex source points may be less apt t o  violate causality than those 
based o n  other beam models. 
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The complex source point field for the scalar wave equation and its paraxial approxima- 

tion are summarized below, with observations pertaining t o  how this incident paraxial beam 
field can be employed systematically to  derive reflected, refracted and diffracted fields. 
Specific applications t o  various canonical configurations are reserved for a future publica- 
tion. These applications address effects of edges, corners or kinks, interfaces between 
different media, curved interfaces or boundaries, and refractive medium inhomogeneities. 

2 The complex source point field 

We shall be concerned here with solutions for the scalar time-harmonic Green’s function 
G(r, r’) in various physical environments, when the originally real source point is 
assigned complex values r6 but the observation point r is kept real. The Green’s function is 
defined by  the inhomogeneous scalar wave equation 

(v2 + k 2 )  G(r, r‘) = 6(r - r ’ )  ( 1 )  

subject to  boundary conditions that model the physical structure. k = w/u = 2n/h is the 
wavenumber in the medium with velocity u, w is the radian frequency, X is the wavelength, 
and a time factor exp(  i w t )  is suppressed. In a multilayer environment with velocity ui in 
the i t h  layer, G + Gi and k + ki In tlie i t h  layer, and tlie right-hand side in ( I  ) is set equal 
to zero except for the layer containing the source. Continuity of Gi and its normal deriva- 
tive, suitably weighted, across the layer boundaries is imposed, and if a layer extends t o  
infinity, a radiation condition is appended. G can be regarded as a scalar potential, from 
which vector fields are then generated by appropriate vector differentiation. 

Since r‘ appears as a parameter in ( I ) ,  the analytic continuation of G(r, r’) t o  G(r, rb) 
Gb(r, rb), when possible, continues to satisfy the wave equation arid boundary conditions 
exactly. Here, rb = ro + ib ,  is complex, with ro, b real. The source term is now no longer a 
delta function but the eyuivalerit source distribution iii real space can be inferred from 
Gb(r, rb) by  examining the behaviour of that function as r -+ ro. 

2.1 I Kkl S P A C E  - THI. I N C I D t  N T  I I E L U  

In a n  unbounded homogeneous medium, the Green’s function is given by 

G(r, r ) = 
4 nD 

in three dunensions, and by 

, D = d(..- x’ )’ + ( y y’ )’ + ( z  z‘ )’ , e x p W D )  

4 

in two dimensions (.v, z ) .  Ilere, (x, y ,  z )  denote rectangular coordinates. To satisfy the 
radiation condition, the distances D and from the source to  the observer are taken to be 
positive real. 

When r’ + r6 = ro + i b ,  i.e. 

XI + x o  + ib,, y’ + y o  + ib,, z f  + z,) t ib (4) 

the  distances D + Db and D + D ,  become complex. To continue t o  satisfy the radiation 
condition, and t o  reduce Gb and Gb t o  G and G, respectively, when I b I - to .  one imposes 
on t h e  complex distances the condition (Fig. I a) 

Re Db > 0, Re D, =. 0. (5)  
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Re Db>O 
Im DbcO 

Re Db<O 
Im DbcO 

field 

I b i  

Figure 1. I’hasc paths  on \\i11cI1 1iiiI)b = con \ t an t  ( \ohd)  and pliasc fronts 0 1 1  which K e l j b  = constant  
( d a d i c d )  l o r  altcrndti\c dctinition.; 0 1  tlic t o p  Kicniann sliect ofnt , .  Urancli cuts  arc drawn heavy. Arrow\  
denote t h e  direction u1’ propagation o f  the phase f ron t .  (:onditions arc symnictrical N i t h  rcspect t o  the 
(1 ~ z,l)-;i-,is. I’ara\ial b e a m  region shown shaded. 211’ = 2 m  i \  the  ( l i e )  beam width a t  the waist .  
20,- 2 m b  IS the nnyular beam width in the far zone.  (a)  KeJjb > 0 o n  top sheet. Branch cut along 
Re Db = 0. (b )  1111 < 0 o n  top  shee t .  Branch cuts along Im Db = 0 .  

D, and f i b  represent, respectively, the complex radii of curvature of the phase fronts 
descriptive of  the outgoing 3-D and 2-D complex ray field. For the 2-D field, the complex 
observation angle e b  is defined as 

and similar definitions identify angular coordinates in the 3-D complex space. 
To understand the  implications of  (4), consider the special case b ,  = 0, b, = b. Then 

in the plane z = zo. Re D,  = 0 and Re 6,  = 0 for D: :- (x - xO)’ t ( y  yo)’ < 6’ and 
( y  ~ yo)’ < h 2 ,  respectively. Branch cuts may be chosen along the contours Re Db = 0 and 
Re D b  = 0, which connect the branch points a t  D,= * b and ( y  y o )  = 5 h,  respectively. 
Then if Re Db and Re Db are defined t o  be positive away from the cut, these quantities will 
be positive everywhere on  the  t o p  sheet of the Rieinann surface defined in this manner. With 
this definition, D, or Db equals ( z  ~ ib) along the positive z-axis but (~~ z + ib) along the 
negative z-axis. yielding for Gb the corresponding exponential field strengths exp  ( k b )  and 
e x p (  - k b ) ,  respectively. Analogous remarks apply to  c b .  The choice b > 0 therefore 
generates wavefields that have an exponential maximum along the positive z-axis and an 
exponential minimum along the negative z-axis (Fig. la). Such fields have a beam-like 
character in the half-space z > 0-Theregions D, < I h I and 1 y - yo I < I b I may be regarded 
as equivalent circular and linear source regions which generate the initial distribution for 
the  3-D and 3-D fields Gh and i?b, respectively (Fig. la) .  For the 3-D case, the initial 
distribution is 

with all square roots defined to be positive. Thus, the equivalent sources in real space 
generate an initial equiphase aperture distribution that  is exponentially tapered away from 
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I I 1 

-1  0 -0.5 0.0 0.5 1.0 0.0 20 40 60 80 

(a) y / b  1 b)  ~ ( D E G R E E S )  

Figure 2. C'oniparison of coniplc.c source point ficld and field duc to infinitc apcrturc distribution \vi l l i  
Gaussian profile e s p  I -k (y  ~ y 0 ) ' / 2 / 1 ] .  lor various b /h  (2-1)). Solid curves: c o n i p l c ~  sourcc point t'icld 
Dashed curve: Gaussian apcrture profile. The  complex soiircc point field i\ \ecn to sirnulate the et'fcct\ 
of a Gaussian aperture field very mell for /]/A 2 1 .  ( a )  Aperture field. The complex source point field has 
an algebraic \ingularity a t  [ J' . y,, l / h  = I. which cannot be rc.;olvcd licrc f o r  />/A > I .  ( b )  I:ar Lone ficld. 

the aperture centre but peaks algebraically near the aperture edge at D,= 0. The peaking is 
weaker than the ( l / D t )  behaviour corresponding to a real point source (b  = 0), owing t o  the 
fact that displacement of  the source into the complex coordinate space smears out  its 
effect in real space. Unless kb is very small, the  effect of this peaking near D,= b is negligible 
when considering the aperture field as a whole, which has a maximum amplitude exp ( k h ) /  
4nb at. the aperture centre. Outside the source region (D,> b ) ,  the field in the aperture 
plane behaves like an outgoing wave. Analogous remarks apply to  Gb (see Fig. 2a). 

One may readily establish that the surfaces of  constant exponential amplitude (Im D,  = 
constant) and constant phase (Re Db = constant) form, respectively, a family of confocal 
hyperboloids and ellipsoids, with focus at  D, = b. Thus, the region of  greatest concentration 
of the field ( the waist of the beam) lies on  the z = 0 plane. The hyperboloids define the 
'phase paths' of  the local evanescent plane waves that carry the field from the aperture into 
the far zone. The degree of evanescence of these local plane waves becomes weaker with 
distance from the aperture, and it tends t o  zero in the far zone where the phase paths 
degenerate into radial trajectories ( the conical asymptotes of the hyperboloids) which 
coincide with the conventional real ray paths for non-evanescent local plane waves. Within 
the framework o f  complex ray theory, the phase paths track the real-space intersections of 
those straight-line complex rays from t h e  complex source point that generate on each such 
path a field with consiant exponential amplitude. In the far zone, where D2 = D: + z2 9 b2 ,  
one has 

Db - D - ib cvs 8, C o S  8 = z /D  ( 8 )  

so that the  far field 

exp ( ikD)  

4 nD 
Gb - exp ( k b  cos 0 )  

exhibits a pattern function f ' (0)  = exp ( kb  cos 0 )  descriptive of a beam with maximum along 
the z-axis. While the field is defined in the  entire physical space 0 < 0 < 71 (see Fig. la), it 
simulates a conventional beam field only in the half-space 0 < 8 i ~ / 2 .  A distant observer 
in the  aperture plane 0 = n/2 secs a field amplitude diminished by a factor exp ( ~ k b )  from 
the maximum on the beam axis. Analogous conclusions for the 2-D field follow from the 
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asymptotic approximation 

which may be employed at all observation points except those near the edges of the 
equivalent aperture. 

Near the beam axis, the ellipsoidal equiphase surfaces can be approximated by spheres. 
The region of validity of this approximation is the paraxial region wherein D: s (zz f 0’) 
so that 

=Db,-, f (aDb/aD,),,D, f (a2Db/a@)oD:/2 f . . . (1 l a )  

The subscript ‘0’ implies evaluation at D ,  = 0. Dbo = (z ~ ib) identifies the complex radius 
of curvature of the on-axis beam field. Note that although the beam axis follows the real ray 
trajectory a b  = 0 (cf (6), with b ,  = 0 ,  b, = b) ,  the ray tube surrounding the axis contains 
complex rays. The resulting field 

exp [ik(z ~ ib) f kD:/2(z ~ ib)] 
(;b - 

47r(z ~ ib) 

agrees with what is conventionally referred to  as a paraxial Gaussian beam. Near and on 
the aperture plane, the ( l / e )  half-width of the paraxial beam is W =  J2blk, from (8), the 
corresponding hyperbolic paths emerge in the far zone with the ( l / e )  angular width 
B , = m b  (see Fig. 1). Evident modifications, via (9), yield the results for the 2-D case. 
Numerical comparison shows that the complex source point field agrees well with the field 
due to an infinite Gaussian aperture distribution for b/h 2 1 (Fig. 2). 

When b,, by  ++ 0, all of the above considerations apply except that the beam axis is 
now rotated to lie along the vector b = (bx ,  by,  bz) .  It should be noted in this connection 
that the complex source point substitution must be performed on an arbitrarily placed real 
source point r‘ in order to convert a spherical wavefield into a beam field that can be steered 
in any specified direction. I f  the beam waist is to be located on the z-axis, for example, 
one cannot employ r’ = (0 ,  0, z‘) at the start since analytic continuation of the transverse 
source coordinates is not possible from zero initial values x ‘ = y ’ = O .  By the correct pro- 
cedure. non-vanishing source coordinates (x’, y ’, z ’ )  are continued into the complex 
coordinate space and the condition xo = y o  = 0 is imposed thereafter to place the waist of the 
beam on the z-axis. 

The ourguing wave restriction in (5) everywhere on the t o p  sheet of the Riemann surface 
for the complex distance implies that the resulting field behaves like a beam only in the 
region (z - ZJ > 0 (we assume again that b ,  = 0). The iricoinirzg portion of a beam in the 
region z < z, requires Re Db or Re D b  < 0 ,  a behaviour satisfied on the lower Remann 
sheet. The entire beam can be contained on a top sheet defined by the condition 

ImDb < 0 ,  Imbb < 0 (13) 
with cuts conveniently chosen along the contours Im Db = 0 or In1 6, = 0 (Fig. 1 b). How- 
ever, other choices of cuts extending from the branch points to infinity are equally possible, 
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with a consequent more complicated partitioning of the top  sheet with respect t o  the 
behaviour o f  the real and imaginary parts o f  the complex distances. 

2.2 E N V I R O N M F . N T A L  EIFECTS 

Having found that ,  for values of  b/h > 1, the  complex source point field agrees very well in 
the near zone (Fresnel region) and the far zone with the field of an aperture distribution 
that extends the paraxial Gaussian profile indefinitely, one may now model the effect of 
an environment on an incident Gaussian beam field as the effect of that same environ- 
ment on  the complex source point field. The latter, in turn, may be found from the 
geometrical ray solution for a real source point by  the  complex source point substitution. 
One may explore in this manner the interaction with the environment o f  ariy portion of  the 
Gaussian incident beam, including the weak fields far from the beam axis. Thereby, one 
may assess, by  numerical comparisons, the dependence of an observed field response on  the 
degree of  evanescence of  the local incident plane waves and define the  paraxial region and 
the  beam width parameter so that essential features of a non-Gaussian input, which is 
modelled by superposition of Gaussian beams, are not obliterated. In the paraxial region, 
expressions for relevant quantities can be obtained by paraxial expansion about  their on-axis 
value. Although the beam axis follows a real ray trajectory, care must be  taken to  use the 
proper complex ray parameters in this expansion, as illustrated in (1 I a) for the incident 
free space field. For example, if r(6, r )  denotes a reflection, transmission, or diffraction 
coefficient that provides the initial amplitude on  a reflected, transmitted or diffracted ray 
progressing along the observation angle ff when a real ray field is incident along the angle f f ’ ,  
then rb(Gb,  0;) denotes the corresponding coefficient for the incident Gaussian beam whose 
axis lies along el,, with the complex angles defined according t o  (6). The paraxial expansion 
about  t h e  real on-axis coefficient r(0, e’) must take the  form 

( I  4a) 

= r(8, i‘> eh ,  6 = (nr)/r I .  (14c) 

Thus, the real ray coefficient r is modified by a (generally complex) phase correction that 
may re-locate the maximum of the reflected, transmitted or diffracted beam field and hence 
the  corresponding beam axis, as well as introducing asymmetries into the beam profile. This 
correction factor has so far been omitted from the Gaussian beam calculations reported in 
the seismic literature. 

3 Conclusions 

To sum up,  the Gaussian beam method offers what seems to  be an attractive option for 
computing seismograms in complicated environments. However, in its present implemen- 
tation, there appear to be several free beam parameters whose effects on  the observed 
field have so far been explored only by trial and error. Moreover, the application t o  reflec- 
tion, refraction and diffraction phenomena has been based o n  ad hoc assumptions that 
introduce uncertainties, first, due t o  the assumed choice of reflection, transmission and 
diffraction coefficients and, second, due to the vague treatment of  beam impact in diffrac- 
tion regions, for example, near critical incidence or near structural discontinuities. It is 
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difficult t o  assess the quality of seismograms developed in this manner. It is proposed here 
to systciriatize these calculations by exploring the proper behaviour of the individual beam 
fields under various conditions alluded to  above. This can be done efficiently by extending 
paraxial ray solutions fo: canonical trial problems to paraxial beam solutions via the 
complex source point substitution. Thus, the whole machinery of  real ray theory, as  incor- 
porated into the geometrical theory of diffraction, can be utilized to  provide the formulae 
needed for quantification of  paraxial Gaussian beam phenomena, and for numerical studies 
of the inilucnce of  the various available beam parameters on the observed field. While the 
ad I ioc  approach employed so far for the generation of synthetic seismograms may indeed 
yield initial information in a convenient manner, the considerations above appear to  be 
essential for any systematic attempt to  improve the information contained in ‘problematic’ 
regions of  the initial data, or to  increase the confidence level in whatever initial discretization 
scheme one chooses to adopt .  
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