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Abstract

Image retargeting algorithms attempt to adapt the image

content to the screen without distorting the important ob-

jects in the scene. Existing methods address retargeting of

a single image. In this paper we propose a novel method

for retargeting a pair of stereo images. Naively retargeting

each image independently will distort the geometric struc-

ture and make it impossible to perceive the 3D structure of

the scene. We show how to extend a single image seam carv-

ing to work on a pair of images. Our method minimizes the

visual distortion in each of the images as well as the depth

distortion. A key property of the proposed method is that it

takes into account the visibility relations between pixels in

the image pair (occluded and occluding pixels). As a re-

sult, our method guarantees, as we formally prove, that the

retargeted pair is geometrically consistent with a feasible

3D scene, similar to the original one. Hence, the retargeted

stereo pair can be viewed on a stereoscopic display or pro-

cessed by any computer vision algorithm. We demonstrate

our method on a number of challenging indoor and outdoor

stereo images.

1. Introduction

Digital images are displayed on a variety of digital de-

vices, each of which might require a different aspect ratio.

The core idea of image retargeting algorithms is to adapt

the image content to the screen without distorting the im-

portant objects in the scene. The rapid pace of technology

makes it possible to view 3D content on a large range of

devices, from cellphones to large TV screens. In addition,

stereophotography is becoming increasingly popular, with a

large number of stereo images appearing online. As a result,

image retargeting algorithms need to be adapted to work on

stereo image pairs.

We propose a novel method for retargeting stereo image

pairs. The input to our method is assumed to be a rectified

stereo image pair and a disparity map. The input disparity

map may be computed from the pair of images by an avail-

able stereo algorithm, or be given by any other algorithm or

device.

The 3D information provides valuable cues for retarget-

ing, as previously demonstrated by retargeting algorithms

for a single image [8]. Clearly, stereo image retargeting can

also benefit from the 3D information provided by the other

image; however, it also poses new challenges. In addition

to retargeting both images without distorting the important

objects in each, it should also obtain a stereo pair consistent

with 3D geometry. Otherwise, the user will not be able to

view and enjoy the retargeted stereo pair.

Our method retargets the input pair in the horizontal do-

main while minimizing the distortion of each image as well

as the distortion in depth. A key property of our method is

that the retargeted stereo pair has a feasible 3D interpreta-

tion that is similar to the original one. Thanks to this geo-

metric consistency, our retargeted pair can be viewed on a

stereoscopic display or processed by any computer vision

algorithm that makes use of a stereo pair (e.g., cosegmenta-

tion or tracking).

1.1. The General Idea

We generalize the single image seam carving algorithm

[1, 10] to work on a stereo pair. Instead of removing a seam

from a single image, our algorithm iteratively removes a

pair of seams from the stereo image pair.

A naive extension of the single image seam carving algo-

rithm is to independently apply it to each of the images (see

the blue box in Fig 1b). It disregards the geometry and dam-

ages the 3D structure of the scene. For example by remov-

ing a pixel from one image while keeping its corresponding

pixel in the other one. To overcome this problem, a joint re-

targeting of both images must be considered. In particular,

the selection of seams in both images should be coupled. A

straightforward approach is to compute the seam in one of

the images, say the left one, and then map it to the right im-

age via the disparity map. This is clearly sub-optimal as it

does not utilize the information available in the right image

or the depth map. Fig. 2 demonstrates the results using this

approach (for more details see Sec. 5).
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Figure 1. Geometric Evaluation. (a): the results of applying our stereo retargeting algorithm. (b): the results of applying single image SC

[10], on each of the input images. On both left and right sides: D̂SGM is computed by applying stereo [4] on the retargeted pair of images;

the original disparity values of the remaining pixels are stored in D̂o. Finally, the depth distortion is measured by |D̂SGM − D̂o|. The color

code is blue for low values and red for high ones; red indicates a difference of at least six pixels.

In fact, the problems run even deeper, mainly due to oc-

clusions; there is no guarantee that seam pixels in the left

image have matching pixels in the right. And the change in

3D shape must be carefully considered to avoid an incon-

sistent change in the visibility relation of the scene points.

In particular, pixels that are visible only in one of the views

should not be revealed. Thus, the benefits provided by the

additional information in the right image and the disparity

map may create new challenges.

The proposed method overcomes these challenges by

generalizing seam carving to simultaneously carve a pair

of seams in both images, while minimizing distortion in

appearance and depth. Seam selection and disparity map

modification are subject to geometric constraints that take

into account the visibility relations between pixels in the

images (occluded and occluding pixels). These geometric

constraints guarantee consistency of the target images with

a feasible 3D scene, as formally proven in Appendix A, and

empirically demonstrated in Sec. 5.

2. Background

Image and video retargeting algorithms have been exten-

sively investigated in recent years. These algorithms try to

change the aspect ratio of an image in a way that does not

hurt the proportions of the important objects in the image.

The various algorithms differ in how they determine the im-

portance of different pixels in the image and in how they use

this information. An excellent overview and comprehensive

study of the topic is given in [9].

Here, we extend the Seam Carving algorithm. The algo-

rithm was first introduced in [1] and extended in [10]. The

algorithm works by iteratively computing a seam with mini-

mal visual distortion in the image and removing it. These al-

gorithms assumed that seams are connected paths in the im-

age, yet this is not a necessary assumption and Grundmann

et al. [3] recently showed that piece-wise connected paths

are more flexible for video retargeting, where the goal is

to retarget frames sequentially and rely on piece-wise con-

nected seams to better fit the retargeting to previous frames.

However, they do not consider stereo data.

Most work reported thus far in the literature focused on

retargeting a single image or video. Yet, the rise of 3D con-

tent makes it necessary to extend image retargeting algo-

rithms to work with 3D content. This was addressed, to

some extent, by the following authors. In Lang et al. [7]

the authors work with stereo images (and video); however,

their goal is to adjust the disparity map according to various

stylistic considerations and not retarget the stereo images.

Mansfield et al. [8] assume the input is an image and a

relative depth map (provided by the user) and the output is

an image. They extend seam carving to scene carving and

show that scene carving is indeed scene consistent, can in-

troduce occlusions, and can also handle pixel reappearance,

say when one layer moves behind another layer and reap-

pears on the other side.

There are a number of important distinctions between

our work and that of [8]. First, we assume that the input is a

pair of stereo images. They, on the other hand, assume the

input to be an image with a depth map. As a result, they

cannot produce a retargeted stereo pair without resorting to

image synthesis techniques to fill in gaps, as they have to

deal with the occlusions caused by the different points of

view of the stereo image pair. Second, we assume a per-

pixel stereo map, as opposed to representing the scene as a

collection of well-defined fronto-parallel planes.

The only attempt to consider a stereo pair was proposed

by Utsugi et al.[11]. They also use the disparity map to

retarget the stereo image pair. However, the primary goal

of preserving the geometric consistency of the output im-

age pair is not defined and not obtained by [11]. Moreover,
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Figure 2. The straightforward approach for seam coupling. (a-b): The pair of input images, and (c), their ground truth disparity map.

(d): The single image retargeted left image using [10], and (e) the retargeted right image computed by carving corresponding seams. (f):

The disparity map computed by applying the SGM stereo algorithm on (d-e). (g): The updated disparity map computed by our method.

the appearance of their retargeted images is impaired (see

example in Fig. 6).

3. Geometric Consistency

A primary goal of our method is to preserve a 3D in-

terpretation of the scene from the retargeted image pair,

while minimizing the 3D distortion of the original scene.

We prove that our algorithm preserves the geometric con-

sistency of the input pair. Namely, it is possible to define

correspondence between pixels that is consistent with the

epipolar geometry as well as with visibility relations be-

tween 3D points in the retargeted pair.

Since all pixels in both images are either left-shifted or

remain in their original location, the epipolar geometry is

preserved (as well as the rectification). In addition, our

method maintains the original input correspondence and the

visibility relations between 3D points in the scene, by im-

posing the following constraints:

C1 : Corresponding pixels in the original images are ei-

ther both removed or remain corresponding in the out-

put images.

C2 : 3D points that are visible in the reference view but

occluded in the other are not revealed.

Constraint C1 is directly satisfied by our method since the

disparity map is used to couple the seams (see Sec. 4.1).

Constraint C2 is satisfied by using occlusion to restrict the

set of candidate seam pixels (see Sec. 4.3). In Appendix A

we formally define constraint C2 and prove that occluding

and occluded pixels do not change their role in the retar-

geted pair.

It is important to note that these constraints can be

proven to be unsatisfiable for horizontal seams.

4. The Method

The input to our method is a pair of m×n rectified stereo

images, {IL, IR}, and a disparity map, D, where the dispar-

ity map can be computed by any stereo algorithm (we use

[4]). Without loss of generality, we consider the disparity

with respect to the left image, which is taken to be the ref-

erence image. The output of our algorithm is a pair of re-

targeted images, {ÎL, ÎR} and an updated disparity map, D̂.

The retargeted images are geometrically consistent with a

feasible 3D scene.

4.1. Seam Coupling

The geometric coupling of the two seams, SL = {si
L
}m

i=1

and SR = {si
R
}m

i=1
, is obtained by using the correspondence

defined by D. Formally, each of the seam’s pixels in the left

image at row i, si
L

= (i, jL(i)) ∈ SL, is matched to a seam

pixel in the right image, si
R

= (i, jR(i)) ∈ SR, as follows:

si

R
= (i, jR(i)) = (i, jL(i) + D(si

L
)), (1)

where jL, jR : [m] → [n], and [m] = [1, ...,m]. The esti-

mated disparity map, D : [n]×[m] → Z∪⊥, maps pixels of

IL to their corresponding pixels in IR, if the correspondence

is known, and to ⊥ otherwise. It follows that the seams con-

tain only pixels for which the disparity is defined.

Note that a continuous seam in the left image generally

corresponds to a piecewise continuous seam in the right im-

age since the seam may cross depth discontinuities. There-

fore, we drop the assumption that a seam (in either IL or IR)

is continuous and consider piecewise seams from now on,

which we refer to as generalized seams (See Fig. 3).

4.2. The Energy Function

The energy function of the stereo seam carving method

consists of an intensity term and a 3D geometry term. Re-

moving a seam’s pixel from each of the stereo image pair

has the local effect of creating new adjacent pixels in the

target image. The resulting gradients in the retargeted left

and right images depend on the seam pixel in the previous

row, denoted by j±
L

and j±
R

, respectively. Since the left and

right image seams are coupled, j±
R

, is uniquely defined by

j±
L

and the disparity map, D. Therefore, we define the en-

ergy function (w.r.t the left image) in accordance with the

seam pixel in the previous row, j± (which is short for j±
L

).

That is,

Etotal(i, j, j
±) = Eintensity(i, j, j

±) + αE3D(i, j, j±), (2)

where α controls the relative impact of each of the terms.

Since we use generalized seams, j± ∈ [m] can be any pixel

in row i − 1 (unlike the continuous case in which j± ∈
{j − 1, j, j + 1}).
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Figure 3. (a): The left image masked with the computed occluded

pixels in green, and occluding pixels in blue; out of field of view

pixels are colored in yellow. (b): The right image masked with the

corresponding occluding pixels in blue. In this example both left

and right seams (in red) are discontinuous.

4.2.1 Appearance Energy

We generalize the original forward energy criterion [10] that

aims at minimizing the resulting distortion in the retargeted

image caused by the intensity differences between new ad-

jacent pixels. The appearance distortion Eintensity(i, j, j
±) is

taken to be the sum of the energy terms, EL and ER, for

removing a pair of coupled pixels from the left and right

images. That is,

Eintensity(i, j, j
±) = EL(i, j, j±) + ER(i, jR(i), j±

R
(i− 1)),

(3)

where the coupling of the left and right seams is captured

via the disparity map as defined in Sec.4.1.

The energy of removing a specific pixel, (i, j) from im-

age I , left or right, is given by:

E(i, j, j±) = Ev(i, j, j±) + Eh(i, j) (4)

where Eh and Ev are the forward energy terms due to the

new gradients in the horizontal and vertical directions, re-

spectively. In particular, Eh is given by:

Eh(i, j) = |I(i, j + 1) − I(i, j − 1)|. (5)

In the vertical direction, the new gradients depend on the
position of the seam in row i − 1, j±. Accordingly, the
vertical forward energy is given by:

E
v(i, j, j±) =






V1 j± < j

0 j± = j

V2 j± > j

(6)

where

V1 =
∑j

k=j±+1
|I(i − 1, k) − I(i, k − 1))|

V2 =
∑j±

k=j+1 |I(i − 1, k − 1) − I(i, k))|
(7)

4.2.2 Depth Energy

The computed depth map provides valuable cues for seam

selection, and a 3D forward energy term, ED, is used to

minimize the disparity distortion. It is defined similarly to

the forward energy of the intensity values, by replacing the

intensity function, I , with the disparity map D in Eq. 4-

7. In practice, in order to compensate for the differences

in range between the intensity and the disparity values, we

normalize both I and D in the range of zero to one.

In addition, the object’s distance from the camera often

correlates with its saliency. Hence, we increase the energy

of pixels that are the projections of nearby 3D points. More-

over, our method is strongly based on the disparity map,

which is computed by a stereo algorithm that is regarded

as a black box. Errors in the estimated map may result in

incorrect coupling of seam pixels. We prefer removing pix-

els for which we have high confidence of disparity values,

measured by the difference in the intensities of correspond-

ing pixels. That is,

G(i, j) = |IL(i, j) − IR(i, j + D(i, j))|. (8)

The total forward 3D energy is a weighted sum between

three components:

E3D(i, j, j±) = ED(i, j, j±)+β|Dn(i, j)|+γG(i, j), (9)

where Dn is the normalized disparity map.

4.3. Maintaining Pixel Visibility

An occluded pixel in the reference image is defined

as the projection of a 3D point that is not visible in the

right view due to another 3D point that occludes it (red in

Fig. 4a). Occluded pixels do not have corresponding pixels

in the right image; our method does not remove them from

the image.

Furthermore, in order to satisfy the geometric constraint,

C2, occluded pixels must not be revealed. Otherwise, no

coherent 3D interpretation can justify the visibility of the

revealed pixel only in one image and not in the other. To

this end, we ensure that occluded pixels in the original right

image remain occluded in the retargeted right image, by

a b
Figure 4. (a): Occluded pixels, red, have no corresponding pixels

in the right image. The occluding pixels, green, are visible in both

views. (b): The ordering constraint does not hold: removing the

red point causes the point p to shift left while the point q remains

in its original location.
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Figure 5. Moebius Dataset. In the first column (top to bottom),

the input left and right images and the input disparity map. In

the second column, our results, with respect to the first column.

The third column shows the results of applying single image SC

[10] to the left input image (top); the distortion in depth caused

by independent single image retargeting (middle); the distortion

in depth caused by our stereo retargeting method. Depth distortion

scores: single image SC=85%; stereo pair SC=3.2%.

avoiding removing pixels that may reveal them, namely oc-

cluding pixels. An occluding pixel is defined to be the pro-

jection of a visible 3D point in both views that accounts for

the occlusion of one or more 3D points in the right view (see

green in Fig. 4a). Our choice of removing only pixels that

are neither occluded nor occluding, is proved to guarantee

that the original visibility relation (i.e., occluded-occluding

pairs) is preserved (see Appendix A).

The set of occluding and occluded pixels is computed

once from the input disparity map, D and represented by a

binary map, O(i, j) where O(i, j) = 1 if pixel (i, j) is an

occluded or occluding pixel. This map is computed using a

simplified Z-buffer approach.

In the examples we considered, the number of occluded

and occluding pixels is typically 20%. An example of both

the occluded and occluding maps is given in Fig. 3.

4.4. Stereo Seam Selection and Carving

The energy term defined in Eq. 2 is now accumulated in a

cost matrix M to select a pair of seams using dynamic pro-

gramming. The seams are coupled as defined in Sec. 4.1.

We set M(i, j) = ∞ for pixels that do not satisfy the visi-

bility constraints, namely if O(i, j) = 1 (see Sec 4.3).

By default, we prefer continuous seams (where j± ∈
j − 1, j, j + 1). However, if a continuous path is blocked at
pixel (i, j) by occluded/occluding pixels, we allow discon-
tinuous seams. Formally, we consider two cases, according
to whether it is necessary to switch at the pixel (i, j) from a

Our Results Utsugi et al. Single Image SC

Figure 6. Aloe Dataset. The input stereo pair is shown in Fig. 2(a-

b). In the first column (top to bottom), our results for the left

and right images and the disparity map. In the second column,

the results of Utsugi et al.[11] method. In the third column, the

results of applying single image SC [10] to the left input image

(top); see caption of Fig.5. The depth distortion scores are: single

image SC=47%; stereo pair SC=2.9%.

continuous to discontinuous seam:

M(i, j) =






min
j±∈{j−1,j,j+1}

Etotal(i, j, j
±); T (i, j) = 0

min
j±∈[m]

Etotal(i, j, j
±); T (i, j) = 1,

(10)

where, T is the binary map of size n×m. T (i, j) indicates

whether a continuous path is blocked in row i−1 by occlud-

ing/occluded pixels. That is, T (i, j) = 1 if O(i−1, j±) = 1
for j± ∈ {j − 1, j, j + 1}.

As in [10], removing a seam pixel from a row results

in shifting pixels in that row. Specifically, all pixels to the

right of the removed pixels are shifted left by one pixel.

The remaining pixels are unchanged. Formally, the shifting

function fL(i, j) : [m] × [n] → [m] × [n − 1] maps the ith

input row to the ith output row. Let si

L
= (i, jL(i)) be the

pixel to be removed from the left image. Then, the shifting

mapping is defined by:

fL(i, j) =






j if j < jL(i)
j − 1 if j > jL(i)
⊥ if j = jL(i)

(11)

Likewise, fR(i, j) is the corresponding mapping func-

tion in the right image, where jL(i) is replaced by jR(i) (as

defined in Eq. 1).

After carving a seam, the new disparity map, D̂, is ob-

tained by removing the left seam SL from the previous D

and updating the disparity values of the remaining pixels. In

particular, the updated disparity value, D̂, of a pixel (i, j) is
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Figure 7. Diana Dataset. (a): The input pair of images. (b): The retargeted pair of images produced by our method. (c): The input

disparity map, our result, and the evaluated depth distortion. (d): The result of single image SC on the left image.

given by:

D̂(i, fL(i, j)) = fR(i, j + D(i, j)) − fL(i, j). (12)

Geometric Interpretation: We next describe the geomet-

ric interpretation of the carving. From Eq. 11 it follows

that each pixel may either be shifted one pixel to the left,

or remain in its original location. If a pair of correspond-

ing pixels remains in its original location, the associated

3D point remains the same as in the original scene. When

pixels are shifted, the position of the associated 3D points

change. If the two pixels in a corresponding pair are both

shifted left, the original depth is preserved, namely D̂ = D

(see Eq. 12). The associated 3D point changes its location

accordingly by a left translation, parallel to the image plane.

Most pixels will either remain in their original location or

be shifted together. However, when the ordering constraint

does not hold (see Fig. 4b), a pixel may be shifted in one

of the images, while its corresponding pixel remains in its

original location. In this case, the disparity is changed by

one pixel, which corresponds to a small change in depth.

For example, if the left pixel remains in its location, then

the 3D point moves one step along the left pixel ray.

5. Results

We tested our method on challenging indoor and outdoor

scenes. In all experiments, we used the SGM stereo algo-

rithm [4] to compute the input disparity; hole filling was

performed on regions for which the disparity was not com-

puted. The algorithm was implemented in MATLAB. The

following datasets were considered:

Middlebury: The Middlebury stereo datasets [5], Moebius

(Fig. 5) and Aloe (Fig. 6), are challenging because the scene

is highly textured and contains objects at different depths.

About 20% of the pixels in the original reference image can-

not be removed, since they are either occluding or occluded

(see Fig. 3).

Portrait: A pair of images (Fig. 7), provided by [6]. The

main challenge in this pair is that the salient object, which

covers most of the image, should not be distorted. Also, a

significant part of the left image is out of the field of view

of the right camera, and hence cannot be removed by our

algorithm.

Flicker: A set of stereo images, with large depth range,

downloaded from Flicker (Fig. 8-10). The images were

manually rectified using [2].

A main contribution of our method is the production of

a geometrically consistent retargeted image pair that pre-

serves the original depth values of the remaining points. We

next describe the evaluation of these properties.

Geometric Evaluation: We evaluate depth distortion by

measuring the deviation of the updated disparity values

from their original values. Our evaluation scheme is de-

scribed in Fig.1: a disparity map, D̂SGM, is computed on the

retargeted pair of stereo images. The computed map, D̂SGM,

reflects the geometry contained in the pair of retargeted im-

ages, regardless of the method used to produce them.

The depth distortion is measured by comparing the dis-

parity value of each pixel in D̂SGM with its original value.

In particular, we compute D̂o, which consists of the origi-

nal disparity values, D, after removing the relevant seams

with respect to the reference view. The absolute difference,

|D̂o − D̂SGM|, is shown for all our experiments. For com-

parison, we evaluate the depth distortion caused by inde-

pendent single image retargeting (see Fig. 1b). For quan-

titative evaluation, we define the depth distortion score to

be the percentage of pixels whose depth, D̂SGM , has been

changed by more than one pixel.

Test 1: We tested our algorithm on all the abovementioned

datasets using a fixed set of parameters for the 3D weight:

β = 0.08 and γ = 0.5 (see Eq. 9). The image width was

reduced by 20% for the Middlebury datasets and by 17%
for the rest. The results are presented in Fig. 5-9.

Our experiments show that the output pair is geometri-

cally consistent and the original depth values are preserved.

It is also clearly seen that a significant depth distortion is

caused when naive independent retargeting of each image

is considered. (See right columns in each of the figures.)

To evaluate the appearance distortion, we show the single

image seam carving result of the left image [10]. The large

number of geometric constraints that our method must sat-

isfy limits the number of candidate seams; the constraints

are thus expected to impair the results compared to the sin-

gle image retargeting. Still, the 3D information and the use

of generalized seams compensate for this problem. Our re-

sults are similar (e.g., Fig. 5-6) to those of single image

seam carving and in some cases much better. For exam-

ple, our method successfully preserves the face appearance
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Figure 8. Man Dataset from Flicker. see caption of Fig. 5. Depth

distortion scores: single image SC=49%; stereo pair SC=0.43%.

(Fig. 7) as well as the face depth (Fig. 7(c)), without prior

knowledge, such as face location, used by [12]. Fig. 8

shows another example in which the perspective of the run-

ning track is nicely preserved and the man is not deformed,

in contrast to the single image seam carving.

Test 2: We test a straightforward approach to using the

disparity map. That is, a single image retargeting is com-

puted for the reference image, and the corresponding seams

in the right image are computed directly via the dispar-

ity map. Fig. 2 presents the retargeted images (d-e). The

ground truth disparity map of the original pair, c, should be

compared to the disparity map computed using the SGM on

the naive retargeted pair, f, and to our results, g. It is clear

from these results that the straightforward coupling is insuf-

ficient for obtaining geometric consistency. (The retargeted

images using our results are presented in Fig. 6.)

Test 3: So far we have used fixed parameters for the 3D

weight. However, as can be seen in the second column of

Fig. 10, the man on the left almost “lost” his leg. Allowing

user interaction for setting the weight of objects according

to their depth (the parameter β in Eq. 9) improves the re-

sults (third column in Fig. 10). The head of the person on

the right was not distorted regardless of this parameter, in

contrast to the single image seam carving which distorts it

dramatically. We note that the geometric consistency of the

retargeted images is obtained regardless of the choice of pa-

rameters, and depth distortion remains negligible.

Finally, we compare the disparity computed by our

method, D̂, with that computed by the SGM algorithm on

the retargeted images, D̂SGM. For all the tests described

above, the differences is less than 2%.

6. Conclusions

We extended seam carving to work on a stereo image

pair. Retargeting each image independently will distort the

geometric structure, making it impossible to perceive the

Input Our Results Comparison

Figure 9. Cars Dataset from Ficker. see caption of Fig. 5.Depth

distortion scores: single image SC=70%; stereo pair SC=1.3%.

3D structure of the scene. We have shown how to extend the

single image seam carving to work on a pair of images, and

proved that the proposed algorithm is guaranteed to give a

geometrically consistent result. The retargeted images can

thus be viewed on a stereoscopic display or processed by

any computer vision algorithm. As far as limitations go, we

depend on the quality of the stereo matching, and when the

stereo matching fails, we might fail as well. On the positive

side, our method takes advantage of both appearance and

depth cues and can deal with scenes that are more difficult

to deal with using single image seam carving. We demon-

strated the advantages of our method on several challenging

stereo images.

Appendix A

We formally define the occluded and occluding pixels

and prove that the geometric constraint, C2, is satisfied by

our method. In particular, we prove the operation of remov-

ing a pair of seams pixels and the following update of the

disparity map guarantee that the original visibility of 3D

points in the interpreted scene is preserved. (The consis-

tency with the epipolar geometry was discussed in Sec. 3.)

Definition: Occluded and Occluding Pixels
Let (i, jb) and (i, jf ) be two pixels in the left image. The
pixel (i, jf ) occludes (i, jb) iff jb < jf and the two pixels are
mapped to the same pixel in the right image. That is,

jf + D(i, jf ) = jb + D(i, jb). (13)

It follows that a pixel (i, j) is not an occluding\occluded iff

j + D(i, j) 6= j
′ + D(i, j′) ∀j

′ 6= j. (14)

Lemma #1:

The operation of removing a seam point, pL = (i, jL) pre-

serves the ordering between the remaining pixels on the row

i. Formally, given two pixels, p1 = (i, j1) and p2 = (i, j2):

j1 < j2 ⇔ fL(i, j1) < fL(i, j2), where f is defined in Eq. 11.



Input Low β High β Comparison

Figure 10. People Dataset. The first column shows the input pair and the computed disparity map. The second and third columns show

our results using low and high weights, respectively; the bottom figures show the depth distortion, respectively. The third column shows

the results of applying single image SC to the left input image; the bottom figure shows the depth distortion caused by single image SC.

Depth distortion scores: single image SC=79%; stereo pair SC, low β=2.1%; stereo pair SC, high β=2.6%.

It follows directly from this Lemma that: j1 = j2 ⇔

fL(i, j1) = fL(i, j2).

Proof: If both p1 and p2 are on the same side of the seam,

then by Eq. 11 the order is preserved. Therefore, the only case

to consider is when the seam pixel, (i, jL), is in between the two

pixels: without loss of generality, j1 < jL < j2. In this case,

fL(i, j1) = j1 and fL(i, j2) = j2 − 1. Since this scenario is

possible only if the gap between j1 and j2 is at least one pixel, it

follows that j1 < j2 − 1. In particular, we obtain that j1 < j2 and

fL(i, j1) < fL(i, j2).

Claim: Let pf (i, jf ) and pb = (i, jb) be two pixels in the ref-

erence view. Pixel pf occludes pb in the original image pair iff

(i, fL(i, jf )) occludes (i, fL(i, jb)) after removing the seam pix-

els.

Proof: We have to show that: jb < jf and jf + D(i, jf ) = jb +
D(i, jb) iff fL(i, jb) < fL(i, jf ) and fL(i, jb)+D̂(i, fL(i, jb)) =
fL(i, jf ) + D̂(i, fL(jf )). Using the definition of D̂ (see Eq. 12),

it follows that:

fL(i, jb) + D̂(i, fL(i, jb)) =
fL(i, jb) + fR(i, jb + D(i, jb)) − fL(i, jb) =
fR(i, jb + D(i, jb))

fL(i, jf ) + D̂(i, fL(i, jf )) =
fL(i, jf ) + fR(i, jf + D(i, jf )) − fL(i, jf ) =
fR(i, jf + D(i, jf )),

(15)

Now, using Lemma 1 we obtain that

jb < jf ⇔ fL(i, jb) < fL(i, jf ), and, (16)

fR(i, jb + D(i, jb)) = fR(i, jf + D(i, jf )) ⇔
jb + d(jb) = jf + d(jf ).

(17)

To complete the proof, the above equations are put together:

fL(i, jb) + D̂(fL(i, jb)) = fL(i, jf ) + D̂(i, fL(i, jf )) ⇔
jb + D(i, jb) = jf + D(i, jf ),
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