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Summary. We present several non-linear 4-point interpolatory schemes, derived
from the “classical” linear 4-point scheme. These new schemes have variable ten-
sion parameter instead of the fixed tension parameter in the linear 4-point scheme.
The tension parameter is adapted locally according to the geometry of the control
polygon within the 4-point stencil. This allows the schemes to remain local and
in the same time to achieve two important shape-preserving properties - artifact
elimination and convexity-preservation. The proposed schemes are robust and have
special features such as “double-knot” edges corresponding to continuity without
geometrical smoothness and inflection edges support for convexity-preservation. A
convergence proof is given and experimental smoothness analysis is done in detail,
which indicates that the limit curves are C1.

1 Introduction

1.1 An Overview of the 4-point Scheme

We explore the 4-point subdivision scheme [2] defined by the following mask:

pk+1
2i = pki , (1)

pk+1
2i+1 = (pki + pki+1)(w + 1/2)− w(pki−1 + pki+2), (2)

where
{
pki
}
i

is a given control point sequence and w is a tension parameter. It

is known that the 4-point scheme is C1 for 0 < w < 1
8 . The tension parameter

plays a crucial rôle in the geometrically controlled schemes, so now we take a
closer look at it. For the trivial value of w = 0 the 4-point scheme generates
the piecewise linear interpolant to the initial control polygon. For the value
w = 1

16 the limit curve of the 4-point scheme has the best possible Hölder
regularity RH = 2 − ε, i.e., it is almost C2. Also, only for this value of w,
the scheme reproduces polynomials of degree up to 3 [2]. For 0 < w < 1/16,
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Fig. 1. Hölder regularity of the 4-point scheme for w ∈ [0, 1
8
].

RH is monotone in w, 1 ≤ RH < 2 − ε (Fig. 1). So for the value w = 1
16 the

4-point scheme has the best regularity and approximation properties.
Fig. 2(upper left) demonstrates the visual effect when changing the tension

parameter from 0 to 1
16 : for smaller w the generated curves are closer to

the initial control polygon. With w = 1
16 , the smoothest curve is produced.

However, w = 1
16 may cause unpleasant problems as shown in Fig. 2(upper

right). Lowering the tension parameter to w = 0.01 (Fig. 2(lower left)) solves
these problems, but now the curve, which is still C1, is hardly recognisable
visually from the initial control polygon. So we conclude that an appropriate
choice of one tension parameter for an entire control polygon is not always
possible.

Fig. 2. (Upper left) the effect of w on the shape of the limit curve, (upper right)
problems with the visual quality caused by w = 1

16
, (lower left) visually non-smooth

curve caused by w = 0.01, (lower right) specific wki for each edge of the control
polygon alleviates the artifacts and keeps the visual appearance of the curve smooth
enough.

1.2 Adaptive Tension Parameter

The idea of using different tension parameters for the edges of a given control
polygon at each refinement step was initially investigated in [6]. While it was
proved that the non-uniform 4-point scheme in the form
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pk+1
2i = pki , (3)

peki = pk+1
2i+1 = (pki + pki+1)(wki + 1/2)− wki (pki−1 + pki+2), (4)

produces C1 limit functions if wki is always chosen in [ε . . . 1
8 − ε] with ε > 0,

one still needs to find a procedure for prescribing an appropriate wki for every
subdivision step. In this paper, we present several such procedures, where
the choice of the tension parameter depends on the geometry of the control
polygon. We call them geometrically controlled 4-point schemes or shortly
geometrically controlled schemes.

For a given sequence of control points at refinement level k, P k =
{
pki
}
i
,

where pki ∈ R2 or pki ∈ R3, we define eki = pki+1 − pki . The subdivision rule (2)
is then expressed as

peki = (pki + pki+1)(w+
1

2
)−w(pki−1 + pki+2) = pki +

eki
2

+w(eki−1 − eki+1) . (5)

This gives an interesting geometrical interpretation of the insertion rule of
the 4-point scheme: the position of peki is actually a displacement vector dki
from the middle point of the edge eki , which depends on the difference between
the neighbouring edges, scaled by w. We extend its definition to the case of
variable tension parameter:

dki = wki (eki−1 − eki+1) . (6)

2 Displacement-safe Geometrically Controlled Schemes

2.1 Definition and Basic Properties

The first class of geometrically controlled schemes which we present here is
aimed at solving problems in the shape of the limit curves such as those in
the example in Fig. 2(upper right). There are two main questions which have
to be answered in order to create such an artifact-free scheme:

1. How to detect possible locations in a given control polygon which create
artifacts in the limit curve?

2. What subdivision rules to apply in such locations in order to avoid arti-
facts and at the same time to preserve the limit curve continuity and, if
possible, its smoothness?

Our approach for selecting the tension parameter wki = ω(i, k) tries to answer
these two questions, by the composition of two functions wki = f(g(i, k)):

1. a characterising function g : Ik → [0 . . . c]. Here Ik is the set of all edge
indices in a given refinement level k. g(i, k) characterises the regularity of
eki in P k.
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2. a selecting function f : [0 . . . c]→ [0 . . .W ]. f(x) maps the range of g(i, k)
into the range of the available tension parameters.

We restrict our choice to functions which satisfy the following conditions:

1. g(i, k) depends only on pki−1, pki , pki+1, pki+2, which ensures that our non-
linear schemes have the same support as the original 4-point scheme.

2. g(i, k) is invariant under similitudes.
3. g(i, k) = 0⇔

∣∣eki
∣∣ = 0 and f(x) = 0⇔ x = 0, i.e., wki = 0⇔

∣∣eki
∣∣ = 0, i.e.,

we use the average operation for zero-length edges, thus creating corners.
In the vicinity of such edges the limit curve is not G1 anymore. We choose
this behaviour for the following reasons:

a) To prevent the loops (see Fig. 8, row 3, column 1).
b) To mimic the behaviour of NURBS curves - while we keep the uniform

parametrisation, we allow corners to be defined by repeated control
points in the geometry.

4. g(i, k) > 0 ⇔
∣∣eki
∣∣ > 0 and 0 < f(x) < W ⇔ x > 0, where W is some

predefined value for the tension parameter, corresponding to the regular
edges. We usually take W = 1

16 .
5. f(1) = W . g(i, k) = 1 characterises the regular edges of P k, i.e., ar-

eas where we can safely use subdivision rules which generate curves with
maximum smoothness without creating artifacts.

We found out experimentally that the linear 4-point scheme produces visually-
pleasing curves when the edges included in the insertion rule (5) are equidis-
tant. Based on that observation we propose the following two possible combi-
nations of characterising/selecting functions:

g(i, k) =
3
∣∣eki
∣∣

∣∣eki−1

∣∣+
∣∣eki
∣∣+
∣∣eki+1

∣∣ , f(x) =

{
Wx , 0 ≤ x ≤ 1,

W (3−x)
2 , 1 < x ≤ 3,

(7)

g(i, k) =
3
∣∣eki
∣∣

∣∣eki−1

∣∣+
∣∣eki
∣∣+
∣∣eki+1

∣∣ , f(x) =

{
Wx , 0 ≤ x ≤ 1,
W , 1 < x ≤ 3.

(8)

We define g(i, k) = 0 if
∣∣eki−1

∣∣+
∣∣eki
∣∣+
∣∣eki+1

∣∣ = 0.
Furthermore, the geometrically controlled schemes should not introduce

new corners during the subdivision process by multiplying consequent control
points, i.e., creating zero-length edges. Therefore we introduce the notions:

Definition 1. A geometrically controlled 4-point scheme is safe if for every
(i, k), such that

∣∣eki
∣∣ > 0, the newly inserted control point peki = pk+1

2i+1 satisfies

peki 6= pk+1
2i and peki 6= pk+1

2i+2.

Definition 2. A geometrically controlled 4-point scheme is displacement-safe,
if there exist 0 < C < 1

2 , such that for every (i, k) such that
∣∣eki
∣∣ 6= 0,

∣∣dki
∣∣ ≤

C
∣∣eki
∣∣.
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Lemma 1. If a given geometrically controlled 4-point scheme is displacement-
safe, then it is safe.

Lemma 2. If 0 < W < 1
8 , then the geometrically controlled schemes defined

by (7) or (8) are displacement-safe.

Proof. Suppose that g(i, k) ≤ 1. Then we have

∣∣dki
∣∣ =

3W
∣∣eki
∣∣

∣∣eki−1

∣∣+
∣∣eki
∣∣+
∣∣eki+1

∣∣
∣∣eki−1 − eki+1

∣∣ <
3
8

∣∣eki
∣∣ (
∣∣eki+1

∣∣+
∣∣eki−1

∣∣)∣∣eki−1

∣∣+
∣∣eki
∣∣+
∣∣eki+1

∣∣ ≤
3

8

∣∣eki
∣∣ .

If g(i, k) > 1, then

3
∣∣eki
∣∣

∣∣eki−1

∣∣+
∣∣eki
∣∣+
∣∣eki+1

∣∣ ≥ 1⇔ 2
∣∣eki
∣∣ ≥

∣∣eki−1

∣∣+
∣∣eki+1

∣∣ ,

Hence, if g(i, k) > 1,
∣∣eki+1 − eki−1

∣∣ ≤
∣∣eki+1

∣∣ +
∣∣eki−1

∣∣ < 2
∣∣eki
∣∣. Since W >

W (3−x)
2 when x > 1 then

∣∣dki
∣∣ ≤W

∣∣eki+1 − eki−1

∣∣ < 2W
∣∣eki
∣∣ < 1

4

∣∣eki
∣∣ .

Corollary 1. The two proposed geometrically controlled schemes are safe.

An important consequence of the displacement-safe condition is that pk+1
2i+1

will be close to the the subdivided edge eki even if the neighbouring points
pki−1 and pki+2 are very far away. A similar property is not true for the original
4-point scheme and our experiments show that it is the major reason for
the appearance of artifacts in the generated limit curves. It also leads us to
the idea of proposing a geometrical scheme based on the displacement-safe
definition:

g(i, k) = C
W

|eki |
|eki+1−eki−1| , f(x) = min(Wx,W ) (9)

where 0 < C < 1
2 , 0 < W < 1

8 and g(i, k) = 0 ⇔
∣∣eki+1 − eki−1

∣∣ = 0. (9) per-
forms on par with the two other proposed schemes in terms of visual quality,
while having an additional global parameter C affecting its behaviour.

2.2 Convergence and Smoothness

We cite relevant results from [6].

Theorem 1. If for every (i, k), wki ∈
[
0 : 1

8 − ε
]

for some ε > 0 then the
non-uniform 4-point scheme (3), (4) produces C0 limit functions. If for every
(i, k), wki ∈

[
ε : 1

8 − ε
]

for some ε > 0 then the scheme (3), (4) generates C1

limit functions.
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Corollary 2. The proposed geometrically controlled displacement-safe schemes
produce C0 limit functions.

Proof. By construction wki ∈ [0 : W ], where W ∈
[
ε : 1

8 − ε
]

and we apply
component-wise Theorem 1.

Remark 1. C1 continuity of the limit curves of the displacement-safe schemes
is not guaranteed since the tension parameters are not bounded away from
zero. It can be achieved by the following modification. First we perform several
unmodified subdivision steps; then, in every step, we select the new tension
parameters so that they will not be smaller than those used in the previous
step. Here are two possible strategies to achieve this:

wk+1
2i = max(w̃k+1

2i , wki ), wk+1
2i+1 = max(w̃k+1

2i+1, w
k
i ) or

wk+1
2i = max(w̃k+1

2i ,min(wki , w
k
i−1)), wk+1

2i+1 = max(w̃k+1
2i+1,min(wki , w

k
i+1)) ,

where w̃k+1
2i , w̃k+1

2i+1 are computed as in the unmodified scheme. Since wki > 0
away from the corner control points (which correspond to repeated vertices in
the initial control polygon), and no new corner points are introduced during
the subdivision, we can define ε = mini{wKi | wKi > 0} for the last refinement
step K used with the unmodified rules. Then in view of Theorem 1 this suffices
for proving C1 away from the predefined corners.

Although by applying these modified methods the displacement-safe con-
dition is broken, the visual appearance of the limit curves is similar to the
unmodified schemes limit curves, mainly because most of the artifacts are in-
troduced in the first few steps. As in the unmodified schemes, the modified
schemes do not increase the support of the 4-point scheme. The cost of using
the modification is the additional memory required for keeping the values of
the tension parameters used at the previous step.

3 Convexity-preserving Geometrically Controlled
Scheme

An important shape-preserving property is convexity-preservation. A con-
siderable amount of research related to subdivision schemes and convexity-
preservation was conducted in [3, 4, 5]. The scheme proposed in [4] is the only
one which works in the geometrical case, while the schemes investigated in [5]
preserve convexity only in the functional case. The method presented in [3]
chooses a global w depending on the initial convex functional data, such that
the limit function of the 4-point scheme is convex.

Here we define a geometrically controlled scheme which preserves convexity
in the geometrical case. The scheme handles correctly not only closed convex
polygons (Fig. 3(left)), but also open convex polygons (Fig. 3(middle)) and
other interesting cases (Fig. 3(right)).

We examine the 4-point scheme stencil for a given eki and distinguish three
configurations (Fig. 4):
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Fig. 3. Convex polygons – (left) closed, (middle) open, (right) self-intersecting.

Definition 3. pki−1, pki , pki+1, pki+2 form a convex stencil if pki−1, p
k
i+2 lie in a

common half-plane with respect to the line defined by pki , p
k
i+1. If at least one

of pki−1, pki+2 lies on the line through pki , pki+1, then the points form a straight
stencil. Otherwise they form an inflection stencil.

Definition 4. eki is a convex edge if pki−1, pki , pki+1, pki+2 form a convex sten-
cil. It is a straight edge if the control points form a straight stencil. Otherwise
it is an inflection edge.

Fig. 4. Stencils – (left) convex, (middle) straight, (right) inflection.

Remark 2. Our definition for a convex stencil/edge is independent of the con-
vexity of the edge with respect to the entire control polygon. So under convex
we term both convex and concave stencils/edges in a given control polygon.
However, in Sect. 4 we employ a special treatment to inflection edges and
obtain co-convexity-preservation.

Definition 5. The polygon P k is strictly convex if every eki in P k is convex.

Definition 6. The polygon P k is convex if every eki in P k is either convex
or straight.

Definition 7. A line tki passing through pki is a convex tangent if the points
pki−1, p

k
i+1 lie in a common half-plane with respect to tki . If pki−1 or pki+1 lies

on tki , it is a straight tangent. Otherwise tki is an inflection tangent.
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Suppose we have defined a convex tangent ∀pki ∈ P k. ∀eki we define the points

Mk
i =

pki+pki+1

2 , Lki = tki ∩ (Mk
i + λki d̃

k
i ), Nk

i = tki+1 ∩ (Mk
i + νki d̃

k
i ), d̃ki =

eki−1 − eki+1, λki , ν
k
i ∈ R (Fig. 5). We use the values λki , ν

k
i as bounds on wki .

In case λki , ν
k
i > 0 we take 0 < wki < min(λki , ν

k
i ) in order to guarantee that

if P k is strictly convex, so is P k+1. To see that this is necessary, assume that
wki = vki and wki+1 = λki+1. Then pk+1

2i+1 = Nk
i and pk+1

2i+3 = Lki+1, and since

Nk
i ∈ tki+1 and Lki+1 ∈ tki+1, the points pk+1

2i+1, pk+1
2i+2 = pki+1, pk+1

2i+3 lie on tki+1

and P k+1 fails to be strictly convex. So we define µki = C ·min(λki , ν
k
i ), where

0 < C < 1 is a user defined constant. We bound wki in the range of values
which guarantees convergence: wki = min(W,µki ), where 0 < W < 1

8 .

Remark 3. It is possible that λki < 0 or that νki < 0. Negative bounds on wki
are ignored. We simply substitute λki = W

C if λki < 0 and νki = W
C if νki < 0.

Fig. 5. Convexity-preserving scheme – inserting rule.

To prove that the resulting scheme is convexity-preserving and convergent
we use the following notation, illustrated in Fig. 6:

• Every convex tangent tki divides the plane in two half-planes: ηki and ξki
such that pki−1, p

k
i+1 ∈ ηki .

• Every inflection tangent t̂ki divides the plane into two half-planes: η̂ki and

ξ̂ki such that pki−1 ∈ η̂ki and pki+1 ∈ ξ̂ki .
• Every edge eki defines a line lki , which divides the plane in two half-planes:

τki and σki .
• If eki is convex, then pki−1, p

k
i+2 ∈ τki .

• If eki is inflection, then pki−1 ∈ τki and pki+2 ∈ σki .
• If eki is straight, then either pki+2 ∈ lki and pki−1 ∈ τki , or pki−1 ∈ lki and

pki+2 ∈ σki .
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Fig. 6. Convexity-preserving scheme – illustration of the proof of Lemma 3.

Lemma 3. If eki and eki−1 belonging to an arbitrary P k are convex, then ek+1
2i

and ek+1
2i−1 constructed by the convexity-preserving scheme are convex.

Proof. Let us examine ek+1
2i . The lines tki and lki , which cross at pki , divide

the plane into four quadrants Q0 = ξki ∩ σki , Q1 = ξki ∩ τki , Q2 = ηki ∩ τki
and Q3 = ηki ∩ σki (Fig. 6). Since ek+1

i and eki−1 are convex edges and tki
is a convex tangent then by construction pk+1

2i+1 ∈ Q3 and pk+1
2i−1 ∈ Q2. By

definition, pk+1
2i+2 = pki+1 ∈ Q3 ∩ Q2. Thus, the line lk+1

2i containing ek+1
2i is in

the interior of the cone Q3 ∪Q1, and the points pk+1
2i−1, pk+1

2i+2 are in the same

half-plane relative to ek+1
2i . This proves that ek+1

2i is convex. The proof of the
convexity of ek+1

2i−1 is similar.

Remark 4. The requirement that eki−1 is convex is necessary for the convexity

of ek+1
2i , since in case eki−1 is an inflection edge and eki is convex, it is possible

to construct P k such that ek+1
2i is an inflection edge.

Remark 5. In the case that P k is open, we treat the boundary edges ek0 , e
k
N−1 ∈

P k as convex, by adding “boundary points” pk−1, pkN+1 such that ek+1
1 and

ek+1
2N−2 are also convex. We do this is by taking pk−1 = pk0 and pkN+1 = pkN and

t0 ⊥ e0 and tN ⊥ eN−1. Any other choice of pk−1 and pkN+1 such that ek0 and

ekN−1 are convex, generates convex boundary edges ek+1
1 , ek+1

2N−2.

Corollary 3. Given a strictly convex P k, the refined control polygon P k+1

produced by the convexity-preserving scheme is also strictly convex.

Proof. We apply Lemma 3 for every inner edge ek+1
i ∈ P k+1, and Remark 5

for the boundary edges.

The proposed scheme can handle correctly convex control polygons as well. If
pki−1, pki , pki+1 lie on the same line then a convex tangent tki does not exist, and
we take tki to be a straight tangent. Application of the scheme with a straight
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tki obviously leads to µki−1 = µki = 0, i.e., wki−1 = wki = 0. Thus ek+1
2i−2, ek+1

2i−1,

ek+1
2i , ek+1

2i+1 are straight. Furthermore if eki is convex, but eki−1 is straight, then

ek+1
2i is also convex, since pk+1

2i−1 ∈ eki−1 and the proof of Lemma 3 still applies.
This proves the following claim:

Corollary 4. Given a convex P k, the refined control polygon P k+1 produced
by the proposed scheme is also convex, so that for every convex eki ∈ P k the
edges ek+1

2i , ek+1
2i+1 ∈ P k+1 are convex and for every straight eki ∈ P k the edges

ek+1
2i , ek+1

2i+1 ∈ P k+1 are straight.

Lemma 4. Given an initial convex control polygon P 0, the convexity-preserving
scheme produces convex C0 limit curve, which is a linear segment between the
boundary points of each straight edge of P 0 and is a strictly convex curve
between the boundary points of each strictly convex sub-polygon of P 0.

Proof. By construction wki ∈ [0 : W ], where W ∈
[
ε : 1

8 − ε
]
. Applying

component-wise Theorem 1, we conclude that the scheme is convergent and
that the limit curve is continuous.

Since all the edges between the boundary points of a straight edge in P 0

lie on that straight edge in every P k, the limit curve is a line segment between
these two boundary points. To see that the limit curve between the boundary
points of a strictly convex sub-polygon of P 0 is strictly convex, assume that
part of such a segment of the limit curve is a line segment s. Then for k large
enough there are three points pki−1, pki , pki+1 on s. This contradicts Corollary
4, since all edges in P k between the boundary points of a convex edge in P 0

are convex and the strictly convex sub-polygon consists only of convex edges.

We propose the following ways to approximate the tangents tki :

1. tki = pki+1 − pki−1

2. tki ⊥ bki , where bki is the bisector of the angle defined by pki−1, pki , pki+1

3. tki is the tangent at pki of the the circle passing through pki−1, pki , pki+1

The first method is the simplest and most natural. The tangent coincides with
the tangent of the quadratic function passing through pki−1, pki , pki+1, it is easy
and fast to compute and it gives the best results in visual quality. Certainly
other choices are also possible.

4 Co-convex Geometrically Controlled Scheme

While convexity-preservation is a very useful property it is still not enough
to handle a lot of “real world” situations. Artists and engineers which employ
CAD systems often desire to have the freedom to define curves which consist
of convex and concave parts, joined smoothly. Here we present an extension of
the scheme defined in Sect. 3 that produces curves which preserve convexity



Geometrically Controlled 4-Point Interpolatory Schemes 313

and concavity according to the convexity/concavity of the edges of the initial
control polygon. We call it the co-convex geometrically controlled 4-point
scheme.

As we mentioned in Remark 4, in case eki−1 is an inflection edge, it is not

enough that eki is convex for ek+1
2i to be convex. To guarantee that ek+1

2i is
convex when eki is convex, we have to ensure that pk+1

2i−1 ∈ τk+1
2i . We define

additional inflection tangents t̂ki , t̂ki+1 for the boundary points pki , pki+1 of an

inflection edge eki and compute L̂ki = t̂ki ∩ (Mk
i + λ̂ki d̃

k
i ), N̂k

i = t̂ki+1 ∩ (Mk
i +

ν̂ki d̃
k
i ), λ̂ki , ν̂

k
i ∈ R (Fig. 7(left)). We replace the negative values among λki , νki ,

λ̂ki , ν̂ki with W
C and select wki for eki as:

µki = C · min
(
λki , ν

k
i , ν̂

k
i , λ̂

k
i

)
, wki = min(W,µki ), 0 < W <

1

8

We define the inflection tangents t̂ki as the bisector of the angle defined by
pki−1, pki , pki+1. Any other line dividing this angle can also be used. For k > 0
we do not employ convexity-preserving rules when subdividing edges which
are descendants of the inflection edges in the refinement hierarchy of P 0 - we
use the original 4-point scheme for them (Fig. 7(right)). To see why, examine
the following 4-point stencil: p0

i−1 = (0,−1), p0
i = (0, 0), p0

i+1 = (1, 0), p0
i+2 =

(1, 1). Regardless of the used tangents the inserted point is p1
2i+1 = (0, 0.5).

Therefore the configuration p1
2i, p

1
2i+1, p1

2i+2 is straight and if we apply the
convexity-preserving rule, it will lead to a line segment on the limit curve
between p0

i and p0
i+1. Still this is probably not the intention of the designer,

who can add an additional point on the edge e0
i in order to create a straight

segment in the curve.

Fig. 7. Co-convex scheme – (left) insertion rule for an inflection edge, (right) co-
convex limit curve with the computed convex tangents. Note the segments corre-
sponding to the inflection edges where the linear 4-point scheme is used.
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Lemma 5. If the edge eki ∈ P k is convex, then the edges ek+1
2i and ek+1

2i+1

constructed by the proposed co-convex scheme are convex.

Proof. Let us examine ek+1
2i . In case eki−1 is convex, we apply Lemma 3. If

eki−1 is an inflection edge, then pki ∈ ξ̂ki with respect to the tangent t̂ki and by

construction pk+1
2i−1 ∈

(
ηki ∩ η̂ki

)
⊂ Q2, which implies the convexity of ek+1

2i .

The proof for ek+1
2i+1 is analogous.

Remark 6. If the subdivided edge eki defines a corner, i.e.,
∣∣eki
∣∣ = 0, then

similar to the schemes defined in Sect. 2 we prevent loops by using wki = 0. If∣∣eki
∣∣ = 0, but

∣∣eki−1

∣∣ > 0 we threat eki−1 as convex edge and define the tangent

tki ⊥ ei−1. By symmetry if
∣∣eki+1

∣∣ > 0, we define the tangent tki+1 ⊥ ei+1.

Finally we are able to define a robust co-convex scheme with the following
properties:

Lemma 6. Given an arbitrary control polygon P 0 the proposed co-convex
scheme produces a C0 limit curve with the following properties: (a) For every
convex sub-polygon of P 0 the corresponding curve segment is strictly convex.
(b) For every straight edge e0

i the corresponding curve segment is a line seg-
ment. (c) All inflection points on the curve are contained in segments of the
curve corresponding to inflection edges in P 0.

Remark 7. A corner point or a control point p0
i in P 0 joining two consecutive

straight edges e0
i−1 and e0

i can also be inflection points in the limit curve.

Remark 8. The convexity-preserving and co-convex schemes which we propose
can be easily applied to 3D control points. Given a tangent line, we define a
tangent plane T ki = {P : P = λot

k
i +λ1(eki−1×eki )+pki }. Then all intersections

are performed using the tangent plane. If eki−1× eki = ∅, then either eki = ∅ or
eki−1 = ∅, or eki and eki−1 are on the same line. The first two cases are corner
cases and we can define T ki to be perpendicular to the non-zero edge. The
third one is a straight configuration and every tangent plane passing through
the line defined by eki can be used.

Remark 9. One could also combine the co-convex scheme with a displacement-
safe scheme in order to get rid of artifacts. This is done easily by taking the
minimum of the tension parameters determined by the two schemes. The
resulting tension parameter satisfies both conditions and thus the limit curve
is artifact-free and co-convex.

5 Experimental Analysis of Smoothness and Examples

For non-linear schemes the conventional tools for checking smoothness are not
applicable. An experimental method for analyzing these schemes is employed
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Fig. 8. Examples: left column – the original 4-point scheme with w = 1/16, mid-
dle column – the displacement-safe scheme (9) with C = 0.2, right column – the
convexity-preserving scheme with C = 0.9.

in [1, 5] by checking numerically the Hölder regularity of several computed
limit curves. Since the parametrization we use is uniform, we can employ the
algorithm proposed in [5], which is related to the following definitions:

Definition 8. An l times differentiable function f : Ω ⊂ R → R is said to
have Hölder regularity RH = l + α, if there exist C <∞ such that:

∣∣∣∣
∂lf(x1)

∂xl1
− ∂lf(x2)

∂xl2

∣∣∣∣ ≤ C |x1 − x2|α , ∀x1, x2 ∈ Ω .

Definition 9. An interpolatory subdivision scheme is said to have Hölder reg-
ularity RH = l + αl, if there exist C <∞ and h > 0 such that:
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lim
k→∞

l!2kl
∣∣(∆lfk)i+1 − (∆lfk)i

∣∣ ≤ C(2−kh)αl

where (∆fk)i = fki+1 − fki and ∆l is defined recursively as ∆∆lf = ∆l+1f .

We define ρkl = l!2kl maxi
∣∣(∆lfk)i+1 − (∆lfk)i

∣∣ and under the assumption
that ρkl ≈ C(2−kh)αl , one can define the contraction factor λl and compute
an estimate of αl:

λl :=
ρk+1
l

ρkl
≈ C(2−(k+1)h)αl

C(2−kh)αl
= 2−αl , αl := −log2

(
ρk+1
l

ρkl

)
.

Computing αl makes sense only if αj ≈ 1 for j = 0, 1, . . . , l − 1. The
proposed method is verified by applying it to schemes for which RH has been
determined analytically - for example the 4-point scheme with w = 1

16 is
proved to have RH = 2 − ε, and the above method obtains numerically the
values α1 ≈ 1 and α2 ≈ 0. Our implementation checks αl of the geometrically
controlled schemes component-wise, i.e., for fi = xi we compute αxl , for fi =
yi we compute αyl , and for fi = zi we compute αze . αl then is defined as
αl = min(αxl , α

y
l , α

z
l ).

Since RH of the original 4-point scheme depends on the tension parame-
ter, not surprisingly the geometrically controlled schemes have different RH
depending on the initial geometry. We tested the proposed schemes on the
examples given in the paper and we also applied the schemes (7), (8) and the
co-convex scheme on about 220K randomly generated control polygons (Fig.
9). All of the curves generated by the schemes (7), (8) after 18 subdivision
steps were C1, i.e., α0 ≈ 1 and α1 > 0, while only 0.019% of the curves
generated by the co-convex scheme were not C1. This leads us to the conclu-
sion that the proposed displacement-safe schemes are most probably C1, and
the co-convex scheme is also C1 away from corners and straight edges. It is
clear also, that the co-convex scheme sacrifices regularity in order to achieve
convexity-preservation in some cases (Fig. 9).
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