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SUMMARY

We develop an Optimal Transportation Meshfree (OTM) particle method for advection-diffusion in which
the concentration or density of the diffusive species is approximated by Dirac measures. We resort to an
incremental variational principle for purposes of time discretization of the diffusive step. This principle
characterizes the evolution of the density as a competition between the Wasserstein distance between two
consecutive densities and entropy. Exploiting the structure of the Euler-Lagrange equations, we approximate
the density as a collection of Diracs. The interpolation of the incremental transport map is effected through
mesh-free max-ent interpolation. Remarkably, the resulting update is geometrically exact with respect to
advection and volume. We present three-dimensional examples of application that illustrate the scope and
robustness of the method.
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1. INTRODUCTION

Advection-diffusion problems have been traditionally regarded as defining time-evolutions in linear

spaces. For instance, the classical analysis of the heat equation regards its solutions as elements of

the Sobolev space L2(0, T ;H1
0 (Ω)) with time derivatives in L2(0, T ;H−1(Ω)), [1]. The traditional

formulation of numerical approximation schemes for advection-diffusion problems correspondingly

works fully within this linear space structure and aims to approximate the governing PDEs by

recourse to, e. g., finite-difference or finite-element discretization schemes. Such schemes are

inevitably beset by a toxic combination of spurious oscillations, instabilities, poor accuracy, lack

of monotonicity, numerical diffusion, leaking of mass and others (e. g., [2]). Despite massive and

sustained efforts to overcome them, such deficiencies have shown remarkably stubborn staying

power.

More recently, it has been recognized, starting with the seminal work of Jordan, Kinderlehrer

and Otto [3, 4, 5], that the linear functional-analytical framework is not-at-all natural or convenient

and that a more natural and productive framework is to regard advection-diffusion problems as

transport problems defining time-evolutions in spaces of measures. From this new perspective,

the essential difficulties experienced by linear-space-based approximation schemes for advection-

diffusion problems maybe be regarded as the ’punishment’ for the ’crime’ of formulating the
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2 L. FEDELI, M. ORTIZ AND A. PANDOLFI

problems in an unnatural linear-space setting. Indeed, as we shall see, the overwhelming advantage

of transport methods is that they are geometrically exact, i. e., they are exact with respect to

advection and volume. This property effectively eliminates in one fell swoop the difficulties

experienced by traditional linear-space methods in dealing with advection and volume, albeit at

the expense of working in a somewhat more challenging non-linear space, or manifold, framework.

In a parallel development, particle methods have attained considerable acceptance in solid and

fluid mechanics, e. g, the Smoothed Particle Hydrodynamics method (SPH) [6, 7], the Material Point

Method [8], the Reproducing Kernel Particle method [9], the Corrective Smoothed Particle Method

[10], the Modified Smoothed Particle Hydrodynamics method [11], the Optimal-Transportation

Meshfree method (OTM) [12], and others. Particle methods have the appeal of reducing problems

to the evolution of interacting discrete particles, in seeming analogy with molecular dynamics.

There is also a clear connection between particle methods and transport of measures. Indeed,

the particles maybe regarded as Dirac-delta approximations of otherwise continuous measures,

or densities. However, continuum transport problems differ from true particle-dynamics problems

in one important respect: in continuum transport problems, the velocity field that governs the

instantaneous motion of the particles depends on local density gradients, not just particle positions.

This differential structure introduces additional regularity requirements of the density interpolation,

such as conformity, and is at the core of the difficulties that plague particle methods such as SPH.

The differential structure of the mobility law of continuum transport problems in fact necessitates

two types of representations: one for the measure itself, e. g., represented as a collection of

Diracs; and a more regular representation for the transport velocity field, e. g., based on meshfree

conforming interpolation. This double representational requirement was recognized in connection

with the OTM method [12], but has remained obscure in much of the literature on particle methods.

The objective of the present work is to develop an OTM particle method for advection-diffusion

in which the concentration or density of the diffusive species is approximated by Dirac measures.

The new OTM formulation hybridizes elements of a Galerkin approximation with those of an

updated Lagrangian approach in the context of optimal transport theory, to provide an alternative to

traditional schemes formulated in linear spaces. We resort to the JKO variational principle [3, 4, 5]

for purposes of time discretization of the diffusive step. This principle characterizes the evolution

of the density as a competition between the Wasserstein distance, which penalizes departures from

the initial conditions, and entropy, which tends to spread the density and make it uniform over

the domain. Remarkably, the resulting update is geometrically exact with respect to advection and

volume. We specifically regard the JKO incremental functional as a functional of an incremental

transport map which rearranges the density over the time step. Finally, we proceed to discretize

the JKO functional in space. This step requires two types of discretization, one for the density and

another for the incremental transport map. Exploiting the structure of the Euler-Lagrange equations,

which are linear in the density, we may treat said density as a measure and approximate it as a

collection of Diracs. The interpolation of the transport map requires more regularity as, in particular,

the transport map carries Jacobian information. We specifically resort to the max-ent interpolation

scheme proposed by [13]. This interpolation scheme is meshfree and conforming and supplies

converging approximations in general W 1,p spaces [14].

The paper is organized as follows. In Sec. 2.1, we describe how to reformulate the classical

diffusion equations as an optimal transportation problem, specifically how a variational structure

naturally emerges from time discretization. In Sec. 2.3, we present the approximation used to

discretize the density and the incremental transport map. In Sec. 3 we present numerical schemes

that illustrate the scope and properties of the resulting OTM approach. Finally, in the Appendix we

collect the main mathematical elements that underpin the present approach.
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OPTIMAL TRANSPORTATION THEORY AND ADVECTION-DIFFUSION PROBLEMS 3

2. FORMULATION OF THE METHOD OF APPROXIMATION

We consider the advection-diffusion initial-boundary-value problem











∂tρ+∇ · (ρu) = κ∆ρ, in Ω× [0, T ],

κ∇ρ · n = 0, in ∂Ω× [0, T ],

ρ(x, 0) = ρ0(x), in Ω,

(1a)

(1b)

(1c)

where ρ is the unknown density or concentration, ρ0 is its initial value, u is a given advection

velocity field, κ is a diffusion coefficient, Ω is a bounded domain in R
d and n is the outward unit

normal at the boundary.

As stated, problem (1) is defined for densities of sufficient regularity in an appropriate linear

space (cf., e. g., [1]). In particular, equation (1) does not make sense for general measures such as

Dirac masses and, therefore, it is not in a form suitable for the formulation of particle methods.

In order to eliminate this obstacle, we proceed to reformulate problem (1) as a problem of

transport of measures. We begin by noting that (1a) can be equivalently reformulated as the pair

of first-order partial-differential equations

∂tρ+∇ · (ρv) = 0,

ρv = ρu− κ∇ρ,

(2a)

(2b)

where v is a velocity field that results from the combined effect of advection and diffusion. We

identify (2a) as the continuity equation of Eulerian continuum mechanics and (2b) as a mobility law

combining the effects of advection and diffusion. The corresponding Lagrangian formulation of the

transport problem is

ρ(ϕ(x, t), t) =
ρ0(x)

det∇ϕ(x, t)

∂tϕ(x, t) = v(ϕ(x, t), t),

(3a)

(3b)

where ϕ : Ω× [0, T ]→ Ω is the transport map. Eq. (3a) simply states that ρ(x, t) is the pushforward

of ρ0(x) by the transport map ϕ(·, t), whereas eq. (3b) relates the transport map to the particle

velocity.

As stated, the transport problem (2) still requires regularity of the density, but a further weakening

of the equations permits extending them to general Radon measures. Thus, (3a) can be reformulated

more generally in integral form as

∫

Ω

η(y)ρ(y, t) dy =

∫

Ω

η(ϕ(x, t))ρ0(x) dx, (4)

for all continuous test functions η with compact support in Ω. We note that the densities ρ0 and ρ now

enter linearly into the integrals. Provided that ϕ has sufficient regularity, (4) admits the extension to

measures
∫

Ω

η(y)dµ(y, t) =

∫

Ω

η(ϕ(x, t))dµ0(x), (5)

where, now, the distribution of the diffusive species is described by a time-dependent measure µ(·, t)
with initial value µ0. Evidently, the regular form (4) of the pushforward operation is recovered

when dµ0(x) = ρ0(x)dx and dµ(y, t) = ρ(x, t)dy for absolutely continuous densities ρ0 and ρ,

respectively. In addition, expressing (3b) weakly, we obtain

∫

Ω

∂tϕ(ϕ
−1(y, t), t) · ξ(y) dy =

∫

Ω

v(y, t) · ξ(y) dy, (6)

where ξ are test functions satisfying the boundary condition

ξ · n = 0. (7)

()



4 L. FEDELI, M. ORTIZ AND A. PANDOLFI

Inserting the mobility law (2b) into (6), gives

∫

Ω

∂tϕ(ϕ
−1(y, t), t) · ξ(y) dy =

∫

Ω

(

ρ(y, t)u(y, t)− κ∇ρ(y, t)
)

· ξ(y) dy. (8)

An integration by parts further gives

∫

Ω

∂tϕ(ϕ
−1(y, t), t) · ξ(y) dy =

∫

Ω

(

u(y, t) · ξ(y) + κ div ξ(y)
)

ρ(y, t) dy, (9)

where we have used (7). As in the case of the pushforward operation, this weak reformulation of the

mobility law admits the extension to measures

∫

Ω

∂tϕ(ϕ
−1(y, t), t) · ξ(y) dy =

∫

Ω

(

u(y, t) · ξ(y) + κ div ξ(y)
)

dµ(y, t), (10)

suitable to approximation by particle methods. Eqs. (5) and (10) may be thought as jointly defining

an evolution for both the measure µ and the transport map ϕ. In particular, we note that the preceding

extension to measures requires consideration of the transport map ϕ as an additional unknown of

the problem.

2.1. Time discretization

We begin by approximating problem (2) in time. To this end, let t0 = 0 < t1 < · · · < tN = T be

a discretization of the time interval (0, T ). The goal is now to determine corresponding discrete

approximations ρ0, ρ1, . . . , ρN of the densities and discrete approximations ϕ0→1, ϕ1→2, . . . ,
ϕN−1→N of the incremental transport maps.

We begin by noting that eq. (1a) may be regarded as an evolution equation in which the operator

is the sum of two operators: advection and diffusion. This additive structure immediately suggests

splitting the time integration into advective and diffusive fractional steps. The advective fractional

step is governed by the advection equation

∂tρ+∇ · (ρu) = 0, (11)

which follows formally from (1a) by setting κ = 0. Conveniently, the advection equation can be

solved exactly. Thus, let χ : Ω× [0, T ]→ Ω be the flow corresponding to the given advection

velocity field u, i. e.,

∂tχ(x, t) = u(χ(x, t), t). (12)

Then, the incremental advection of the density ρk at time tk is the pushforward (#) of ρk through

χk→k+1

ρk+1 = χk→k+1#ρk, (13)

where

χk→k+1(y) = χ(χ−1(y, tk), tk+1) (14)

is the incremental advection mapping.

Next, we turn to the diffusive fractional step, governed by the diffusive equation

∂tρ = κ∆ρ, (15)

formally obtained from (1a) by setting u = 0, and to the temporal discretization of the diffusion

step. We characterize the incremental evolution of the density by means of the JKO functional

F (ϕk→k+1) =
1

2

d2W (ρk, ρk+1)

tk+1 − tk
+

∫

Ω

κρk+1 log ρk+1 dx, (16)

()
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where dW is the Wasserstein distance between measures and

ρk+1 ◦ ϕk→k+1 = ρk/ det
(

∇ϕk→k+1

)

. (17)

The incremental transport map ϕk→k+1 then follows from the minimum problem

F (ϕk→k+1)→ min! (18)

We may formally verify that this formulation indeed supplies a time discretization of the mobility

law (2b) in the limit of zero advection. Thus, taking variations we obtain (cf. Appendix, eq. (60),

also [15])

〈DF (ϕk→k+1), ξk+1〉 =
1

tk+1 − tk

∫

Ω

〈x− ϕk+1→k(x), ξk+1(x)〉ρk+1(x) dx

−

∫

Ω

κ(log ρk+1 + 1)∇ · (ρk+1ξk+1) dx,

=
1

tk+1 − tk

∫

Ω

〈x− ϕk+1→k(x), ξk+1(x)〉ρk+1(x) dx

+

∫

Ω

κ∇ρk+1 · ξk+1 dx,

(19)

where we write

ϕk+1→k = ϕ−1
k→k+1, (20)

and the variations satisfy the boundary condition

ξn+1 · n = 0. (21)

Enforcing stationarity for all admissible variations yields

ρk+1(x)
x− ϕk+1→k(x)

tk+1 − tk
= −κ∇ρk+1(x), (22)

which is indeed a time discretization of (2b).

We note that the density ρk+1 still enters (19) nonlinearly and differentiated. In order to facilitate

particle approximations, we perform an integration by parts leading to the weak stationarity

condition
∫

Ω

ρk+1(y)
y − ϕk+1→k(y)

tk+1 − tk
· ξ(y) dy =

∫

Ω

κρk+1(y)∇ · ξ(y) dy. (23)

We verify that, indeed, the density ρk+1 now enters this weak stationarity condition linearly and

undifferentiated.

Likewise, the incremental mass conservation relation (2a) must now be understood in a weak or

distributional sense, i. e., as the requirement that

∫

ρk(x)η(x) dx =

∫

ρk+1(y)η
(

ϕ−1
k→k+1(y)

)

dy, (24)

for all test functions η. Again we verify that the density ρk+1 now enters this weak form of the

transport equation linearly and undifferentiated.

2.2. Spatial discretization

Next, we turn to the question of spatial discretization of the weak semi-discrete Fick’s law (23) and

the weak form of the transport equation (24). The structure of the latter reveals the need for two

types of approximations: i) the discretization of the density ρk+1, and ii) the discretization of the

incremental transport map ϕk+1→k. We consider these two approximations in turn.

()
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2.2.1. Spatial discretization of the density. As already noted, the density ρk+1 enters (23) and

(24) linearly and undiffrentiated. Therefore, a natural and computationally convenient spatial

discretization may be effected by considering mass densities of the particle type

ρh,k(x) =

M
∑

p=1

mp,kδ
(

x− xp,k
)

, (25)

where xp,k represents the position at time tk of a material-point of mass mp, δ
(

x− xp,k
)

is the

Dirac-delta distribution centered at xp,k, and M is the number of material-points. For discrete mass

distributions of the form (25), eq. (24) reduces to

M
∑

p=1

mp,kη(xp,k) =

M
∑

p=1

mp,k+1η(xp,k), (26)

which must be satisfied for all test functions η. Hence,

mp,k = mp,k+1 = mp, (27)

i. e., the material-points must have constant mass, and representation (25) reduces to

ρh,k(x) =

M
∑

p=1

mpδ
(

x− xp,k
)

, (28)

with constant {mp, p = 1, . . . ,M}. Thus, the weak and transport reformulation of the problem

results trivially in exact mass conservation, simply by keeping the mass of all particles constant.

2.2.2. Spatial discretization of the incremental transport map. A full spatial discretization

additionally requires the interpolation of the incremental transport map ϕk→k+1. Since ϕk→k+1

and its variations enter the governing equations (23) and (24) in differential form, the attendant

interpolation must be conforming. To this end, we start by simplifying equation (23) by recourse to

the change of variables

x = ϕk+1→k(y),

y = ϕk→k+1(x),

ξ(x) = η(ϕk→k+1(x)),

η(y) = ξ(ϕk+1→k(y)),

(29a)

(29b)

(29c)

(29d)

with the result
∫

Ω

ρk(x)
ϕk→k+1(x)− x

tk+1 − tk
· ξ(x) dx =

∫

Ω

κρk(x)tr(∇η(ϕk→k+1(x))∇ϕk→k+1(x)) dx. (30)

We consider general linear interpolation schemes of the form

ϕh,k→k+1(x) =

N
∑

a=1

xa,k+1Na,k(x), (31)

where a indexes a nodal point set within Ω, {Na,k, a = 1, . . . , N} are the corresponding first-

order consistent nodal shape functions at time tk, and {xa,k+1, a = 1, . . . , N} ≡ xk+1 is the array

of unknown nodal coordinates at time tk+1. Consistency here means, specifically, that the shape

functions satisfy the identities
N
∑

a=1

Na,k(x) = 1,

N
∑

a=1

xa,kNa,k(x) = x.

(32a)

(32b)

()
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In addition, we interpolate the weight functions as

ξh(x) =

N
∑

a=1

ξaNa,k(x) (33)

and

ηh(y) =

N
∑

a=1

ξaNa,k(ϕh,k+1→k(y)). (34)

Inserting these representations into (30) defines the fully-discrete problem

∫

Ω

ρk(x)
ϕh,k→k+1(x)− x

tk+1 − tk
· ξh(x) dx =

∫

Ω

κρk(x)tr(∇ηh(ϕh,k→k+1(x))∇ϕh,k→k+1(x)) dx.

(35)

However

∇ηh(ϕh,k→k+1(x)) =

N
∑

a=1

ξa∇Na,k(x)∇ϕh,k+1→k(ϕh,k→k+1(x)), (36)

or

∇ηh(ϕh,k→k+1(x)) =

N
∑

a=1

ξa∇Na,k(x)(∇ϕh,k→k+1)
−1(x), (37)

whereupon (35) reduces to

∫

Ω

ρk(x)
1

tk+1 − tk

(

N
∑

b=1

(xb,k+1 − xb,k)Nb,k(x)

)

·

(

N
∑

a=1

ξaNa,k(x)

)

dx =

∫

Ω

κρk(x)

(

N
∑

a=1

ξa · ∇Na,k(x)

)

dx.

(38)

Enforcing this equation for all nodal weights {ξa, a = 1, . . . , N} gives the system of equations

∫

Ω

ρk(x)
1

tk+1 − tk

(

N
∑

b=1

(xb,k+1 − xb,k)Nb,k(x)

)

Na,k(x) dx =

∫

Ω

κρk(x)∇Na,k(x) dx. (39)

Finally, inserting the discrete density (28) into (39) gives the particularly simple semi-discrete

evolution equation

Mk

xk+1 − xk
tk+1 − tk

= fk, (40)

with always positive definite mass matrix

Mk,ab =

M
∑

p=1

mpNa,k(xp,k)Nb,k(xp,k), (41)

abbreviated Mk ≡ {{Mk,ab, a = 1, . . . , N}, b = 1, . . . , N}, and nodal flux array

fk,a =

M
∑

p=1

mpκ∇Na,k(xp,k), (42)

abbreviated fk ≡ {fk,a, a = 1, . . . , N}. We note that the mass matrices Mk are symmetric.

()



8 L. FEDELI, M. ORTIZ AND A. PANDOLFI

2.3. Update algorithm

Eq. (40) can be solved for the updated nodal coordinates, with the result

xk+1 = xk + (tk+1 − tk)M
−1
k fk. (43)

This scheme amounts to transporting the nodes ballistically over each time step with nodal velocities

vk = M−1
k fk. (44)

The resulting update for the diffusive fractional step is summarized in the following algorithm.

Algorithm 1 OPTIMAL TRANSPORT SCHEME FOR THE HEAT EQUATION.

1: Initialization: Update nodal coordinates xa,k, material-point coordinates xp,k, by means of the

advection map χ.

2: Recompute shape functions Na,k(xp,k) and derivatives ∇Na,k(xp,k) from advected nodal and

material-point sets.

3: Compute mass matrix Mk and nodal fluxes fk:

Mk,ab =

M
∑

p=1

mpNa,k(xp,k)Nb,k(xp,k)

fk,a =

M
∑

p=1

mpκ∇Na,k(xp,k)

4: Diffusive update nodal coordinates:

xk+1 = xk + (tk+1 − tk)M
−1
k fk

5: Update material-point coordinates:

xp,k+1 = ϕh,k→k+1(xp,k)

6: Update material-point volumes:

vp,k+1 = det∇ϕh,k→k+1 vp,k

7: Update material-point mass densities:

ρp,k+1 =
mp

vp,k+1

8: Reset k ← k + 1. If k = N exit. Otherwise go to (2).

This forward solution has the usual structure of explicit time-integration and updated-Lagrangian

schemes. However, the scheme differs fundamentally from the classical schemes for advection-

diffusion equations, which have a linear-space structure. Thus, the present scheme relies on the

transport of nodes and mass points to evolve the system. In particular, all the finite kinematics of the

motion, including advection and the mass density and volume updates, are geometrically exact.

()
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As in common practice with explicit schemes, the linear solver implied in (43) can be rendered

trivial by mass lumping. Thus, for instance, row-sum lumping yields the diagonal mass matrix

Mk,lumped = diag

{

M
∑

p=1

mpNa,k(xp,k), a = 1, . . . , N

}

. (45)

Although this additional approximation strictly deviates from the minimum principle (16) and,

therefore, constitutes a variational crime, it is nevertheless adopted for convenience in all numerical

examples.

We note that we are left with considerable latitude in the choice of shape functions. In the

examples that follow, we choose to use meshfree max-ent shape functions [13] computed from the

convected nodal coordinates. The continuous reconstruction of the shape functions has the effect

of automatically reconnecting the material-points and the nodal set, with no need of remapping the

information carried by the material-points. This property of the method is particularly convenient

for nonlinear and history-dependent extensions of the method, in which the local material state often

includes additional internal variable information.

From the computational point of view, a challenging aspect of methods based on optimal

transportation theory is the periodic redefinition of the nodal and material point neighbor lists, which

requires the use of efficient search algorithms [12]. For large-scale problems, the reconstruction

of neighbor-list adds overhead to the calculations. We mitigate this overhead by performing

neighbor-list updates only when the distortion of a local neighborhood reaches a certain prespecified

tolerance. The shape function update is performed at every step.

3. EXAMPLES OF APPLICATION

We present selected numerical simulations that showcase the range and robustness of the approach

in examples involving pure diffusion, pure advection, and combined advection-diffusion. In all

calculations, the initial nodal-point set is obtained through an auxiliary Delaunay triangulation of the

support of the initial density, with material points then placed at the barycenters of the corresponding

tetrahedra.

The critical step for the advection step is determined by a Courant condition bases on particle

velocity and mean-free path between particles. For the small particle velocities in the examples

under consideration, diffusion controls the critical time step. The time-step requirement is estimated

with the following relation

∆t≪
∆x2

κ
. (46)

where ∆x is the minimum distance between two nodes belonging to the same material-point

neighborhood. It is also possible to advance the advection and diffusive steps with different time

steps using subcycling, but such extensions of the method are beyond the scope of the paper. The

time step is recomputed frequently, in particular after the redefinition of the connectivity table. In

all examples, diffusion and possibly advection take place concurrently within confined volumes.

Neumann boundary conditions are enforced by controlling the position of the nodes. Thus, nodes

exiting the domain are repositioned on the boundary. No constraints are applied to the material-

points.

3.1. Pure diffusion in a spherical volume

We consider mass diffusion in a spherical volume from an initial configuration in the form of a

sphere of radius R0 = 1 with uniform density ρ0 = 1. The mass is discretized into particle sets

of three different sizes ranging from 593 to 4, 997 material points, cf. Table I. Material-points are

subsequently free to diffuse within a sphere of radius R1 = 7. For the fine mesh, Fig. 1(a) shows

the initial configuration of material-points (red) and nodes (green), whereas Figs. 1(b)-1(c) show

the final configuration attained by the material points and nodes, respectively. We note that the mass

()



10 L. FEDELI, M. ORTIZ AND A. PANDOLFI

Mesh Nodes material-points hmin

Coarse 235 593 0.26

Medium 442 1,259 0.17

Fine 1,510 4,997 0.12

Table I. Meshes to be used for the convergence analysis.

(a) Initial configuration (b) Final configuration of material-
points

(c) Final configuration of nodes

Figure 1. Expanding sphere problem, fine mesh. Configurations of the particle system, expanding from an initial
spherical volume of radius R0 = 1 within a spherical container of radius Rf = 7. Each particle is colored according

to its density, i. e., the mass of the particle divided by its volume. Nodes are uniformly colored.

(a) Density and dimensionless volume (b) Radius

Figure 2. Expanding sphere problem. Time history of global variables for three different discretizations, cf. Table I. (a)
Average density (in logarithmic scale) and dimensionless volume occupied by the material-points. (b) Maximum distance

of the nodes from the center of the sphere.

distribution evolves towards a uniform density in which the material points are uniformly distributed

and carry ostensibly the same volume, Fig. 1(b). For the three particle-set sizes, Fig. 2(a) displays

the time history of the average density of the system and the volume occupied by the material-

points. The expected monotonic trend towards uniform density is also clear from these figures. In
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terms of the minimum principle (16), this trend may be understood as the result of a competition

between entropy, which favors a uniform distribution, and the Wasserstein distance, which penalizes

the movement of the particles. Fig. 2(b) shows the time history of the radius of the support of the

particles, which experiences a steady expansion from its initial value until such time as the particles

collide with the boundary of the container. Note that freezing the nodal points at the boundary of the

sphere enforces condition (1b). These results are nearly independent of the number of particles over

the range considered, which demonstrates the fast convergence of the method and the high accuracy

of relatively coarse approximations.

3.2. Advection-diffusion in a hollow cylinder

As a second example, we consider the problem of advection-diffusion in a circular annulus with

square cross section and periodic boundary conditions, Fig. 3a. The external radius of the channel

is 0.5 and the internal radius 0.25. The initial mass density is uniform within a spherical region

spanning the cross section of the channel. The density is discretized into 723 nodes and 2,215

material-points. The advection velocity field corresponds to a rigid-body motion at a constant

angular velocity of 4. We consider the case of pure advection, κ = 0, and the case of combined

advection-diffusion with diffusivity κ = 0.001.

Successive snapshots of the density evolution in the pure-advection problem spanning the short-

term part of the solution are shown in Fig. 3. Remarkably, the density function is advected exactly

by the algorithm with no numerical diffusion or spurious noise of any type. This type of behavior

is, of course, a manifestation of the geometrically exact character of the algorithm and is in sharp

contrast to linear-space schemes, which experience difficulty in dealing with advection.

Fig. 4 collects successive snapshots of the advection-diffusion solution. In this case, a certain

amount of diffusion tending to spread out the mass distribution is superimposed on the overall

circular motion imparted by the advective flow. Eventually, the particles fill the entire channel and

the mass density attains a uniform value. The robustness and stability with which the algorithm

transports the mass particles and accounts for complex particle-particle and particle-boundary

interactions is noteworthy.

Fig. 5 shows the time history of the average material-point density and of the volume occupied by

the material-point set for the pure advection and the advection-diffusion problems. As expected,

the average density and occupied volume remain exactly constant for pure-advection, again a

manifestation of the geometrically exact nature of the method. In the advection-diffusion problem,

the average density steadily decreases and, correspondingly, the occupied volume increases with

time. The smoothness of the average quantities in time is noteworthy.

A number of considerations of spatial and time resolution need to be carefully born in mind.

Firstly, max-ent meshless shape functions such as formulated in [13] are defined through a convex

programming problem that is sure to yield solutions when the domain is convex. If, contrariwise,

the boundary has concave regions, the nodal point set must resolve the minimum radius of curvature

R, or feature size, for the max-ent shape functions to be well defined. Thus, we must have

∆x≪ R , (47)

which places spatial resolution requirements in terms of the geometry of the domain. In addition,

as already noted the explicit nature of present formulation places restrictions on the time step,

cf. eq. 46. Combining (46) and (47) we additionally have

∆t≪
R2

κ
, (48)

which places temporal resolution requirements in terms of the geometry of the domain. The

consequences of insufficient resolution are illustrated in Fig. 6, corresponding to the problem of

advection diffusion in a circular channel of square cross-section discussed in the foregoing with

a larger diffusivity of κ = 0.01, which tightens the resolution requirements. Thus, whereas the

material and nodal point sets provide sufficient resolution for a diffusivity κ = 0.001, they fail to
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(a) t = 0.0 (b) t = 0.3

(c) t = 3.0 (d) t = 3.0, detail

Figure 3. Pure advection in a circular channel of square cross section. The initial density is uniform over a spherical
region spanning the cross section of the channel. The advection velocity field corresponds to a rigid-body motion at
constant angular velocity. Snapshots of the material-point set at three successive times. The last image shows a close-up

of the last configuration. Material points are colored according to the density, and the nodes are in blue.

do so for the larger diffusivity, with the result that the material and nodal point sets spill over the

concave part of the boundary and exit the domain of analysis.

3.3. Advection and diffusion in a bucket

The long-term behavior of the method is illustrated by means of the problem of advection-diffusion

in a circular cylinder, Fig. 7. The radius of the cylinder is 0.5 and its length is 0.25. The initial

mass density is uniform within a spherical region spanning the length of the cylinder. The density

is discretized into 723 nodes and 2,215 material-points. The advection velocity field corresponds

to a rigid-body motion at a constant angular velocity of 4. We consider three diffusivities of values

κ = 0.005, κ = 0.0075, and κ = 0.01.

Fig. 7 shows successive snapshots of the material-point distribution for the case of diffusivity

κ = 0.0075. As may be observed from the figure, the material and nodal point set spreads from its

initial location and tends towards a configuration of uniform density. The long-term stages of the

solution are thus characterized by the fine mixing of the material points. Again, the robust manner

in which the method effects the requisite mixing of material points is noteworthy.
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(a) t = 0.3 (b) t = 0.6

(c) t = 3.0 (d) t = 3.0, detail

Figure 4. Advection-diffusion in a circular channel of square cross section. The initial density is uniform over a spherical
region spanning the cross section of the channel. The advection velocity field corresponds to a rigid-body motion at
constant angular velocity. Snapshots of the material-point set at three successive times. The last image shows a close-up

of the last configuration. Material points are colored according to the density, and the nodes are in blue.

Fig. 8 shows the time history of the average material-point density and of the volume occupied by

the material-point set for the pure advection and the advection-diffusion problems. As expected, the

the average density steadily decreases and, correspondingly, the occupied volume increases, with

time. However, two distinct regimes are clearly discernible in the evolution of the system. The first

stage corresponds to the free spreading of the initial distribution of mass, followed by a second stage

corresponding to the mixing of the material points. Interestingly, mixing is observed to accelerate

the diffusion process during the mixing phase of the solution.

4. CONCLUDING REMARKS

We have developed an Optimal Transportation Meshfree (OTM) particle method for advection-

diffusion problems regarded as optimal transport of measures. Thus, in sharp contrast to traditional

methods of approximation, which regard advection-diffusion as an evolution of a density function

taking place is a suitable linear space, here mass distribution is viewed as a measure evolving in a

()



14 L. FEDELI, M. ORTIZ AND A. PANDOLFI

Figure 5. Advection-diffusion in a circular channel of square cross section. The initial density is uniform over a spherical
region spanning the cross section of the channel. The advection velocity field corresponds to a rigid-body motion at
constant angular velocity. Time evolution of the average material-point density and the volume occupied by the material-

point set.

(a) t = 0.3 (b) t = 0.6, detail

Figure 6. Under-resolved advection-diffusion in a circular channel of square cross section exhibiting spill over the the
material and nodal sets across the boundary.

non-linear space, or manifold. The method follows after the OTM formulation of [12] for fluid and

solid flows and represents a scalar version of that method. As in the vector OTM method, we resort

to the incremental variational principle of Jordan, Kinderlehrer and Otto, [3, 4, 5], for purposes of

time discretization of the diffusive step. This principle characterizes the evolution of the density as

a competition between the Wasserstein distance between two consecutive densities and entropy. By

virtue of the structure of the Euler-Lagrange equations, sufficiently weakened so as to be linear and

undifferentiated in the density, we may approximate the density as a collection of Dirac masses. The

interpolation of the incremental transport map, which needs to be conforming, is effected through

mesh-free max-ent interpolation [13]. Remarkably, the resulting update is geometrically exact with

respect to advection and volume, which overcomes the chronic problems of spurious diffusion and

oscillations that afflict linear-space methods. We present three-dimensional examples of application

that illustrate the scope and robustness of the method.
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(a) 0.0 (b) t = 0.1 (c) t = 0.2

(d) t = 0.3 (e) t = 1.0

Figure 7. Advection-diffusion in a circular cylinder. The initial density is uniform over a spherical region spanning
the length of the cylinder. The advection velocity field corresponds to a rigid-body motion at constant angular velocity.

Snapshots of the material-point set at three successive times.

Figure 8. Advection-diffusion in a circular cylinder. The initial density is uniform over a spherical region spanning the
length of the cylinder. The advection velocity field corresponds to a rigid-body motion at constant angular velocity. Time

evolution of the average material-point density and the volume occupied by the material-point set.

The addition of distributed sources and sinks is straightforward and it simply requires allowing

the mass of each particle to change with time. Non-zero Neumann boundary conditions can also

be implemented simply by injecting particles or allowing particles to escape through the boundary.

Finally, Dirichlet boundary conditions can be enforce by placing fixed particles consistent with a

prescribed density on the boundary.

The accuracy and robustness of the OTM method have been assessed by means of selected

advection-diffusion test problems. The numerical tests exhibit clearly the geometrically exact nature

of the method with respect to advection and volume. Thus, advection is handled directly by means

of a pushforward of the mass density by the advection flow. In addition, the volume of the material

points is updated by means of the Jacobian of the incremental transport map. Both operations are

geometrically exact, in contrast to the conventional Eulerian treatment of advection and volume
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through upwinding and the solution of a Poisson problem. The numerical solutions generally exhibit

a remarkable robustness and accuracy, even for coarse approximations, enabling, for instance, the

simulation of mixing of phases and the propagation of density fronts.

We have noted that the method, as presented here, is subject to spatial and temporal resolution

requirements, in particular as regards the need to resolve concave regions of the boundary. However,

it should be carefully noted that said resolution requirements are directly tied to the particular

implementation adopted here and are not inherent to the optimal transport treatment of advection-

diffusion problems. Thus, the convex-programming nature of max-ent interpolation, and its relation

to convex domains, may be relaxed by considering signed shape functions [16]. In addition,

the explicit character of the implementation presented here can be generalized by considering

incremental minimum principles, other than JKO (16), in the spirit of variational integrators

[17, 18, 19, 20]. This extension enables, in particular, the formulation of implicit and asynchronous

time-integration schemes.

Finally, we note the connection between transport problems and gradient flows Wasserstein spaces

(e. g., [21, 22]). This connection suggests the applicability of the present approach to broad classes

of problems in mechanics and physics, including flow in porous media, Oswald ripening, the Cahn-

Hilliard equation, and others. These generalizations and extensions define worthwhile directions for

further study but are beyond the scope of this paper.
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A. ELEMENTS OF OPTIMAL TRANSPORTATION THEORY

For completeness, in this appendix we collect basic elements of optimal transportation theory that underpin
the Optimal Transportation Meshfree (OTM) method presented in the foregoing. A complete account of the
theory may be found, e. g., in [15, 23].

Let Ω ⊆ R
d an open convex set and let P(Ω), the space of Borel probability measures on Ω. If µ ∈ P(Ω)

and ϕ : Ω → Ω is a Borel map, ϕ#µ ∈ P(Ω) denotes the push-forward of µ through ϕ, defined by

ϕ#µ(B) := µ(ϕ−1(B)) for every B Borel ∈ P(Ω). (49)

Let πi, i = 1 . . . n be the canonical projection operator from a product space Ω× · · · × Ω onto Ω,

π
i(z1, . . . , zn) := zi. (50)

Given µ1 ∈ P(Ω) and µ2 ∈ P(Ω) the class Γ(µ1, µ2) of transport plans or couplings between µ1 and µ2
is defined as

Γ(µ1, µ2) := {γ ∈ P(Ω× Ω)} : π1#γ = µ1, π
2
#γ = µ2}. (51)

We denote by P2(Ω) the space of Borel probability measures with finite second moment: µ ∈ P(Ω) belongs
to P2(Ω) iff:

∫

Ω

|x− x0|
2dµ(x) < +∞, for some (and thus every) point x0 ∈ Ω. (52)

For every pair of measures µ, ν ∈ P2(Ω) we consider the transport cost

d
2
W (µ, ν) := min

{
∫

Ω×Ω

|x− y|2dγ(x, y) : γ ∈ Γ(µ, ν)

}

. (53)

By the direct method of calculus of variations, the minimum problem (53) admits at least a solution. The
minimum value dW (µ, ν) defines a distance between the measures µ, ν ∈ P2(Ω) and the metric space

(P2(Ω), dW ) is referred to as the (L2-) Wasserstein space on Ω. We denote by P
a
2 (Ω) the subset of P2(Ω)

formed by the absolutely continuous measures with respect to the Lebesgue measure,

P
a
2 (Ω) := {µ ∈ P2(Ω) : µ≪ Ld}. (54)

The following result establishes the existence and uniqueness of optimal transport plans induced by maps,
or optimal transport maps, got the case in which the initial measure µ belongs to P

a
2 (Ω).

Theorem A.1 (Existence and uniqueness of optimal transport maps [24, 25] )
For any µ ∈ P

a
2 (Ω) and ν ∈ P2(Ω), the Kantorovich optimal transport problem (53) has a unique solution

γ, which is concentrated on the graph of a transport map, namely, the unique minimizer of Monge’s optimal
transport problem

min

{
∫

Ω

|x− ϕ(x)|2dµ(x) : ϕ#µ = ν

}

. (55)

The map ϕ is cyclically monotone and there exists a convex function φ : Ω → R such that ϕ(x) = ∇φ(x)
for µ− a.e. x ∈ Ω.
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We also recall that the manifold µ ∈ P2(Ω) can be endowed with a canonical differential structure. In
particular, the tangent space to P2(Ω) at the point µ is defined as

TanµP2(Ω) := {ξ : ξ = ∇η, η ∈ C∞
c (Ω)}

L2(Ω,µ)
, (56)

where the elements of TanµP2(Ω) may be regarded as velocity fields. Indeed, for any absolutely continuous
curve t 7→ µt ∈ P2(Ω) with µ0 = µ, there exists a unique ξ ∈ TanµP2(Ω) such that

∂

∂t
µt

∣

∣

∣

∣

t=0

+∇ · (µξ) = 0 in D′(Ω). (57)

In particular, if µt ∈ P
a
2 (Ω), and ρt is its density with ρ0 = ρ, then

d

dt

∣

∣

∣

∣

t=0

∫

Ω

ρt(x)η(x)dx =

∫

Ω

ξ(x) · ∇η(x)ρ(x)dx, (58)

for all test functions η ∈ D(Ω). Thus, changes in densities in P
a
2 (Ω) are to be regarded as mass fluxes

induced by velocity fields.
We also recall the following differentiation formula. Let b > a, ρa, ρb ∈ P

a
2 (Ω) and let ρt ∈ P

a
2 (Ω),

t ∈ [a, b], be such ρ(·, a) = ρa, ρ(·, b) = ρb and

∂ρt

∂t
+∇ · (ρtξ) = 0, (59)

for some C1, globally bounded, velocity field ξ. Then [15],

d

dt
d
2
W (ρa, ρt) ↾t=b= 2

∫

Ω

〈x− ϕρb , ξ(x)〉dρb(x) (60)

where ϕρb is the unique optimal transport map between ρa and ρb.
We conclude by showing that the first variation in P2(Ω) of the entropy

S(ρk+1) =

∫

Ω

ρk+1 log ρk+1 dx (61)

gives (19) and (22). Thus, let ξ ∈ C∞

c (Ω) be a smooth vector field with compact support. Define the variation
y = ψ(x, t) = ψt(x) as

∂ty = ξ(y), y(0) = x. (62)

Let ρt be the pushforward measure of ρk+1 by ψt, i. e.,

∫

Ω

ρt(x)η(x) dx =

∫

Ω

ρk+1η(ψt(x)) dx, (63)

for all η ∈ C∞

0 (Ω). Since ψt is regular, (63) is equivalent to the relation between densities

(

det(∇ψt) ρt
)

◦ ψt = ρk+1. (64)

In particular,
∫

Ω

ρt dx =

∫

Ω

ρk+1 dx, (65)

and ρt is in P2(Ω). In addition, we have

∫

Ω

ρt(x) log(ρt(x)) dx=

∫

Ω

ρk+1(x) log(ρt(ψt(x))) dx=

∫

Ω

ρk+1 log

(

ρk+1(x)

det∇ψt(x)

)

dx, (66)

and
1

t
(S(ρt)− S(ρk+1)) = −

1

t

∫

Ω

ρk+1(x) log(det∇ψt(x)) dx. (67)

Write

Jψt
:= det∇ψt. (68)
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Then, we have

d

dt

[

Jψt

]

|t=0 =

[

∂ Jψt

∂∇ψt
·
∂∇ψt
∂t

]∣

∣

∣

∣

t=0

=

[

Jψt
(∇ψt)

−T · ∇

(

∂ψt

∂t

)]∣

∣

∣

∣

t=0

=
[

Jψt
(∇ψt)

−T · ∇ξ
]
∣

∣

∣

t=0
= I · ∇ξ = ∇ · ξ,

(69)

where we have used that ψ(x, 0) = id. Taking the limit t→ 0, we find

d

dt
S(ρt)|t=0 = −

∫

Ω

ρk+1(x)∇ · ξ(x) dx, (70)

as advertised.
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