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GEOMETRICALLY ISOLATED NONISOLATED SOLUTIONS

AND THEIR APPROXIMATION

Herbert B. KELLER
California Institute of Technology
Pasadena, Calif. 91125

RESUME

Une solution x=x° de 1'équation F(x)=0 est dite "isolée" si la dérivée de Fréchet
F'(x%) est non singuliére. Elle est dite "g@ométriquement isolée" si il n'y a pas
d'autre solution dans "x—x°l|5p pour un certain p >0. Les solutions isolées sont
toujours géométriquement isolées. Dans ce travail on donne des conditions suffi-
santes pour qu'une solution non isolée soit néanmoins géométriquement isolée.

On &tudie ensuite des méthodes d'approximation de la forme générale

FaGg) =0

pour approcher les solutions non isolées qui sont géométriquement isolées. Les
résultats obtenus sont, en un certain sens, négatifs, puisque 1'on montre que
sous des conditions de consistance assez fortes, le probléme approché peut
avoir un nombre pair (&ventuellement zéro) ou un nombre pair de solutions au
voisinage de x°, ce nombre &tant dépendant de la "multiplicité&" de la solution
x9. Si la précision est en O(hP) et si la multiplicitéd est N, alors 1'erreur
d'approximation est en O(hP/N). Les relations qui existent entre ces résultats
et 1'approximation des points de bifurcation et de retournement est bri&vement
analysée.

ABSTRACT

A solution x=x° of F(x)=0 is said to be "isolated if the Fréchet derivative F'(x°)
is nonsingular. It is said to be "geometrically isolated" if no other solution

is in : [[x-x0|| <p for some p >0. Isolated solutions are always geometrically
isolated. Sufficient conditions are obtained to insure that a nonisolated solu-
tion is also geometrically isolated. We then study the application of approxima-
tion methods, in the general form Fu(x,)=0, to approximate nonisolated solutions
which are geometrically isolated. Under strong consistency conditions the results
are somewhat negative — the approximations may have an even number (including
zero) or an odd number of roots near x©, depending upon the "multiplicity" of

X0 as a root. If the accuracy }s O(hP) and the multiplicity is N, then the
approximations have error O(hP N). The relation of these results to limit and
bifurcation points is discussed briefly.




1. INTRODUCTION.
A solution X = X

° of

(1.1) F(X) = 0,
in an appropriate Banach space setting, is said to be isolated if the Fréchet

derivative F'(X°) is nonsingular. We shall say that a solution x° is geometri-

cally isolated if it is the only solution of (1.1) in some neighborhood of

x°. 0f course an isolated solution is also geometrically isolated, as we show
in §2, but the converse is mot true. Indeed the terminology is somewhat unfor-
tunate since a nonisolated solution, Xo, that is one for which F'(Xo) is
singular, may also be geometrically isolated. In §2 we derive sufficient
conditions for this to occur. We do this for scalar equations and more
generally for nonisolated solutions for which the null space of F'(x°) is one

dimensional. We also consider the case of an n-dimensional null space in §2.

Computations of approximations to a solution of (1.1) can be studied in terms

of a family of approximating problems, say in the form
(1.2) Fh(xh) =0, ¥h e(O,hOJ .

A general theory of such approximations for isolated solutions is developed

in [5]. In particular sufficient conditions are given to insure that (1.2)

has a unique solution Xﬁ near each isolated solution x° of (1.1) for each

h e(O,ho], and Xﬁ - X? as h = 0. Further Newton's method is valid and converges
quadratically to the Xﬁ provided that F(X) and Fh(Xh) are "consistent" and

that the Fréchet derivatives Fﬁ(Xh) are Lipschitz continuous, with uniformly
bounded inverses on (O,ho] at appropriate points related to x°. This theory

is not valid for nonisolated solutions and in §3 and 4 we seek to extend it

to geometrically isolated nonisolated solutions.

In §3 we study real roots of scalar analytic equatioms. This simple but ins-
tructive case makes it clear that the situation for geometrically isolated
nonisolated roots is rather complicated ; no solution or multiple solutions
can exist for the approximating equations. The analysis is extended in §4

to the more general (Banach space) setting of nonisolated solutions with a

one dimensional null space. Using the Lyapunoy-Schmidt procedure and the



theory of [5] for isolated solutions we reduce this case to that of the

scalar case treated in §3.

Nonisolated solutions of equations whose linearizations, F'(Xo), have one
dimensional null spaces occur frequently in applications displaying limit
point or bifurcation behaviour [6]. Indeed of all nonisolated solutions
those with one dimensional null spaces are generic, so we have studied

here the dominant case. In §5 we indicate how our theory is related to
attempts to compute simple limit points or simple bifurcation points in
nonlinear eigenvalue problems. The conclusion is unfortunately that direct
attempts at such computations may easily fail or give inconclusive results.
Indeed one way in which such points are located is not to approximate them
directly but rather to approximate an entire arc of solutions on which they
lie [1,6,7]. A more complete study of the approximation of such arcs is
given in [8,12]. Alternative methods for approximating nonisolated solutions
"directly", employ modifications of the problem such that the desired solu-
tion is contained as part of an isolated solution to another (inflated)

problem [9,11].

In an Appendix we show how the simplest sufficient condition of §2, which
insures geometric isolation of a nonisolated solution, also insures another
geometric condition important for the application of Newton's method to the

singular case [2,3,10].

2. GEOMETRICALLY ISOLATED SOLUTIONS.

A solution, X%, of (1.1) is defined to be geometrically isolated if for some

sufficiently small r>0 :
(2.1) F(X) 4 0 ¥ Xes_(X)-{x°,

where
{x : |xx°|| <r}.

)
5. (X7)

It is more or less well known, or at least generally accepted, that isolated

solutions are geometrically isolated. Proofs of this are easily given when




. . o . . . .
F'(X) is continuous on Sr(X ). However the condition of isolation i1s sufficient

as we proceed to show.

Suppose Xo is an isolated but not geometricallyisolated root of (1.1). Then x°

must be the limit point of some sequence of roots, say :

. o
lim Xv = X
V>0

; F(X) =0, v=1,2,3,...

e e, ~ . . o
From the definition of the Fréchet derivative at X we must have

IFx,)- F(X°)+F'(X°)(Xv-X°)H
lim 5 =0
Voo %, 1]

This implies, since x° and the Xv satisfy (1.1), that

lim "F'(X°)¢v||= 0,
Voo

where X - o
_ V

= ] ol =1 v =152,

¢V
But this contradicts the nonsingularity of F'(Xo). A proof using contractions
is given in [5] but it imposes the additional hypothesis that F'(X) is Lipschitz

continuous in Sr(Xo) for some r >0.
In the scalar case, say :
(2.2) £(E) =0, £(+) : R+R, £(§) ¢C (R) ;

.o . _ . . o
it is easy to give sufficient conditions for a nonisolated root, § = &, to

be geometrically isolated. Indeed we define

a"£(£%)

(2.3) a =
gV

1
v or , v =0,1,2,...

and then we have



Lemma 2.4 : Let f(*) : R +IR and £f(§) ¢ Coo(IR). Then & = Eo is a geometrically

isolated, nonisolated solution of (2.2) if for some integer N2 2 :

(2.4) a=a|=...= ay = 0, aN#O.

Proof : That f—;o is a nonisolated root of (2.2) follows from ao=al=0. The
geometric isolation is obvious from the graph of f(£) which simply has Nth
order contact with the £-axis at £=E,o. A formal proof easily follows from the

Taylor expansion and (2.4) which give :

N+1

N
£(€) = ] a,(E£%) +0(€£%" ) ,
(2.5) v=0 |

(€=t Nay+ 0 €-£)]

Clearly the factor [aN+ G(E-—Eo)] cannot vanish in.]£-£0| sr for r sufficiently

small., =

The conditions (2.4) are sufficient but not necessary for geometric isolation

as is shown by

0 » £=0,
£(8) = -
e ]/&2’ E# 0 .

Note however that f(£) is not analytic at £=0.
We turn now to the more general Banach space setting and consider :
(2.6) F(X) =0, F(*) : X»¥ ,Xc¥Y.

Here X and ¥ are appropriate Banach spaces and F(X) is to be analytic in the
present study. We assume that X=X is a nonisolated solution of (2.6) and in
particular that the Fréchet derivative F'(XO) has a one dimensional null space,

N, and range, R , satisfying :

a) ME'(X%) = span {¢},]|6] =1 ;
(2.7)
b) R(F'(XO)) is closed with codim =1




Thus F'(XO) is a Fredholm operator of index zero. Then the adjoint operator,

* *
say F'(Xo)* P> Xt where ¥ and X are the dual spaces of ¥ and X, has

) NE'X®Y) = span {$”} ;
(2.7)
4 RE'X®) = {ye¥ : ¢"y = 0} .

We further assume that the zero eigenvalue of F'(x°) is simple (i.e. has

algebraic multiplicity one) so that we may take
*
(2.7) e) ¢ ¢ =1.

The basic result for geometric isolation is given in

Theorem 2.8 : Let F(*) : X > ¥, X¢ Y have a nonisolated root x=X° of (2.6)

satisfying (2.7). Let F(X) be analytic on Sr(Xo) for some r >0 and set

(2.8) a, = 5 O F"x)00.

Then X° is geometrically isolated if a, # 0.

Proof : We first decompose X and ¥ into the direct sums :

(2.9) a) X = {¢} ®X,, Y= {¢}@w1
where
(2.9) b) X, = {XeX : "X = 0}, ¥, = REYXD).

]

In addition we use the projections :

0" ¥ > {4},

1

c) P
(2.9)

d) Q=I-P:¥~>¥,
Now every point X € Sr(XO)C X has a unique representation in the form
(2.10) a) X = X +EQHV

where



(2.10) b) £ eR, ve X, |Ep+v]| < x.
If F(X) = 0 at a point in Sr(Xo) we must have, using (2.9), (2.10) that :

a) QF(X°+Ep+v) = H(E,v) = 0 ,

(2.11)

b) PF(X°+Ed+v) = 0.

We first examine all points satisfying (2.11a). Note that H : IRX X1 -+ Y] has
H(0,0) = 0. Furthermore the Frechet derivative with respect to v at (§,v) = (0,0) :

D,H(0,0) = QF'(x°) = A
is an isqmorphism on X, > ¥, . Indeed this linear operator is just
Az FED/X)
the restriction of F'(Xo) to .X] and it has a bounded inverse. Now the implicit

function theorem can be applied to (2.11a) and it insures the existence of a

unique one dimensional analytic manifold of solutions, say

(2.12) a) (&,v) = (E,v(&)), |&+v®EI|| <,
where
(2.12) b) v(0) =0, v'(§) = 0.

The last result follows from differentiating the identity
(2.12) c) H(E,v(E)) =0
and evaluating at £=0 to get
QF' (X)) [9+v((0)] = 0 .
But F'(X°)¢ = 0 and v'(0) ¢ XT since v(§)e Xﬁ. So QF'(XO)V'(O) = (0 implies
v'(0) = 0. We have thus shown by the uniqueness part of the implicit function

theorem, that all solutions of (2.11a) in Sr(XO) form the one dimensional

manifold :




(2.13) a)  X°(F) = X%+Ep+v(E) , [[Ep+v(E) || <.

If any point in sr(x°) is a solution of (2.6) it must lie on the manifold
(2.13a). In addition such a solution must satisfy (2.11b). Thus we have
shown that all solutions of (2.6) which lie in Sr(XO) have the form (2.13a)

with a value of £ that satisfies
— % 0o
(2.13) b) £(€) = ¢ F(X(§)) = 0.

Clearly £(0) = 0 so that &= &o = 0 is one root of (2.13b). If EO =0 1s a
geometrically isolated root of (2.13b) then x°(0) = X° is a geometrically
isolated root of (2.6). Thus we have reduced the problem to the scalar case.

Indeed we easily see that
(2.14) a) a = f(0) =0, a, = £'(0) = 0 .

so that Eo = 0 is a nonisolated root. However we continue differentiating f(&)

using (2.13) to get that
(2.14) B)  a, = ‘5 £(0) = ‘7 & P (x°) 06

An application of Lemma 2.4 with N=2 concludes our proof.
It is clear from the above proof how we can obtain additional conditions to

insure geometric isolation when a, = 0. We state these results in

Corollary 2.15 : Let the hypothesis of Theorem 2.8 hold with a, = 0 and set :

| * o o l * 10
(2.15) a)  ay =3, OTF(XD006 + 5 6" FUXDY,,

where wz is the unique solution of

(2.15) b)  F'EDY, = F (X , U, X,

Then X° is geometrically isolated if a, # 0.




Proof : We simply continue as in the proof of Theorem 2.8 to find that

) £ (0) .

W[ —

a3

]

If a,
(2.15b).

0 then F"(X°)¢¢51R(F'(XO)) and ¥, = v'"(0) is uniquely defined by

We need not state additional corollaries but if a2=a3=0 we get that

' fiv(xo)

11}
==

a, =
(2.16) a)

T U E0000+ 7 B (K200, + FXOILp 0+ 200,]
Here ¢3 = v" (0) is the unique solution of
(2.16) b) F'(Xo)lp?’ = -[F™ (x°)¢¢¢+,3F"(x°)¢\p21 , Uy ek .

Clearly a, # 0 implies geometric isolation of x° when a2=a3=0. And so it goes -
but a general formula for the a,, does not seem worthwhile ; in practical problems
one seldom goes higher than aq. Analyticity is not required in any of the above

results but we use it in § 4.

It is perhaps somewhat remarkable that the condition az# 0 has a complefely’
different geometric implication. Specifically it implies that the manifold
on which F'(X) is singular is transversal at X'= x° to the direction of %(F'(XO)).
This is discussed in Appendix I and related to Newton's method for nonisolated

solutions.

The methods employed in the proof of Theorem 2.8 can easily be extended to obtain
sufficient conditiors for geometric isolation when the null space is higher
dimensional. To do this we assume that X = X° is a nonisolated solution of (2.6)

for which F'(Xo) has : an m—dimensional null space

2.17) &) NE'(X7) = span {¢,...,0 }, ||q>j|[ =1 ;




_]0_

a closed range with codim R(F’(Xo)) = m so that
2.17) b)Y  AEED*) = span {$7,. .20}

the eigenvalue zero of F'(Xo) with geometric multiplicity m so that
g .

(2.17) <) ¢§¢k=5jk, jok=1,2,...,m.
Now we state

Theorem 2.18 : Let =Xx° be a nonisolated solution of (2.6) satisfying (2.17).

Set :

' _ _ %O C o1
(2.18) a) aijk = aikj z ¢iF X )¢k¢j , 1,j,k=1,2,...,m.

For any [ = (gl,...,ang ¢ R" define the mxm matrix A(g) by

(2.18) b) Aij(c) = aijkck , 1,j=1,2,...,m

=
fe~—g

Then X° is geometrically isolated if

(2.18) o  A@z #0  ¥|c]=1.

Proof : The proof is a rather clear generalization of that of Theorem 2.8 so

we merely sketch the details. Points near X° are represented a
° m
X=X +. H. + VvV
% €95

where

v eX
m

it
—~—
<
m
B4
-
'—l
<
n
o
A
H
IA
=]
L]

The projections

are used to decompose F(X) = 0 into :

QF(X) =0, PF(X) = 0.
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By the implicit function theorem we find all solutions of
. o [ '
H(E,v) = QmF(X + % Ej¢j+v) = Q
near X°. This gives some m~dimensional manifold
o .
X)) = x°+ §%%+v@n

containing X(0) = x°. The problem is thus reduced to showing that £=0 is é

geometrically isolated root of
£(§) = P F(X(&)) = 0.

However the jacobian matrix

ov (0)

DEGE)|  _ cqtpr(xO 0. -
= @;F' (X% g-L) =0,
£=0 J
so that £=0 is not an isolated root of f(§) = O.

We represent the points £eSp(0) cr™ using polar-coor§inates, say
£ =eg,|lc]=1, cemmﬂ; 0<e<p.

Then we define
g(e,z) = f(ep)

and consider the Taylor expansion :

2 .
g(e,0) =g(0,2) + €5.(0,2) + S g__(0,2) + B(e).
4 2 (%)

We find that

2
Cg(e,0) = 5 A@iT 0.

Thus if (2.18c) holds it follows that g(€,Z) has a geometrically isolated

zero at €=0. ®
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Note that condition (2.18¢) is simply a, # 0 in (2 8) when m=1. It is not

difficult to extend the above results when A(;)c = 0 has geometrically
isolated roots, *z°, on |||l = 1. We need then only examine the vectors
v o
a (+Co) _d’g(e,*g )
~V deV e=0

to find some av(ico) # 0 for v2>3. However the resulting conditions get

rather complicated and we have not bothered to include them here.

3. APPROXIMATING PROBLEMS : SCALAR CASE.

We examine first the simple but important case of approximating the root, go,
of some scalar analytic equation (2.2) by the roots of a family of approximating
analytic functions. Thus in place of (2.2) we consider an approximating family

of problems, say :

£,(6) =0, £ () =R-R,
(3.1) . .
£, (€) analytic on Dr(h)(go) z {£eC : |g—g°| <r(h)} .

The parameter h ¢ (O, h 7 lables the approximation and h is to be sufficiently
small Further the radlus r(h) is a monotone increasing function of h with
r(h ) sufficiently small. Further detailson h and r(h) are given in (3.3).
Approximations of the form (3. 1) to scalar equatlons of the form (2.2) are
common if f(£) involves transcendental functions and d1g1ta1 computer eva-
luation is contemplated. Obviously smaller h corresponds to more accurate
approximations obtained, say, from truncation of infinite series, discreti-
zations of differential equations, numerical quadrature, etc. As a consequence
it is reasonable to aséume that the consistency between f(£) and the fh(g)

is such that ¥ h e(O,ho] and for some p >0 :
P
a) £ (D-E@)] <M ° 5 p 2P, ¥EeD (1 (E))
; ,
(3.2) b) ‘mlfé\))(g°)-f(")(g°)| M Y, p2p s VEl2,em

lfﬁ‘“’@-f;m) €] <R [E-E°] , ¥E €D gy (E).
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We also require that f(N)(g) satisfy a Lipschitz condition similar to (3.2c),

say :
G2 @ g EME) M@ k-], v €Dy € -

The roots of (3.1) as approximations to the roots of (2¢2) are as described in
r(hy (") and sa#isfy (2.2)-(2.4) (i.e.
have a real N-fold zero at £=€o). Let f(g)oand the family {fh(g)} satisfy (3.1)-
(3.2) with m=N. Define ro,h0 and r(h) by :

Theorem 3.3 : Let £(&) be analytic on D

1 IaNI N/p

M [ 1/N

S | .
N|) s ho = (ro mln[ro,

(3.3) r = , r(h) = £ nP/N

o~ |a

Then for each h e(o,hoj the approximate equation q{g) = 0 has exactly N roots in

the open disk : |g—g°| <r(h). When N=2n (2£_N=2n+l) there are 2y (or 2v+l) real

roots in (Eo-r(h),£°+r(h)) for some vy = 0,1,...,n:

¢

Proof : By Taylor'évexpansion about g° we can write
G-4) &) £(0) = gy(Eh) + ay(Ew) ;

where we use (2.4) to get :

gy(&m) = (ay + 5,150V @) - (€1 (-,
(3.4) b) N - -
& = 1 Srr M-t @60
.oov=0 7 : ‘

Although we have written the coefficient of the remainder term as féN)(;(g))

both gN(E,h) and qN(E,h) are analytic in Dr(h )(g°). We have used this form,
0

which does not show the analyticity, since we use (3.2b) to obtain the lower

bound :

ey (€| = (ay Ryl e-€°) [g-€°Y
(3-4) C) ' |a ' o

N o N o
2 2 lg-g I s ¥E EDr(h)(g ).

Here we have used the last term in the definition of ho given in (3.3) and

(3.4c) is valid ¥ h e(O,hOJ.
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It clearly follows from this result that gN(E,h) = 0 has only the N-fold root
£=g° in D ().
On the circle |E-E°| = r(h), bounding the disk D ., (£%), we use (3.2a,b) to

get :
N Py v
lag(Em s I MhTr(h),
V=)
1-rN+‘(h)
< Mg ———————
1=-r(h)
(3.4) ) < oMnP , Whe(0,h°] .

Here we have noted that r(h) <1/2 by (3.3). From (3.4c,d) it follows that
lgN(g,h)l >|qN(£,h)| on lE—Eol = r(h). Then Roche's theorem implies that
£,(€) = 0 has exactly N roots in |£-E°| <r(h).

To determine how many of these roots are real we vonsider f(&) and fh(E) on

IR *TR. We claim that

> 0 for N=2n, even. ;

(3.5) a)  £(E+r(h))«£(E°-r(h))
<0 for N=2n+1, odd.

This follows since, exactly as in the derivation of (3.4c), but using (3.2¢c) :

£ EC:r () ] > () | |aglKgrm) |

o
(3.5)  b) e,

We also claim that

>0 for N=2n,

(3.5 o) £ (E%+r(n) £, (E7-r(h)
<0 for N=2n+l.

This follows from (3.5a) and

(3.5 4d) |fh(£°ir(h))-f(£°ir(h)) | <MhP,

Here we have used (3.2a) and recalled from (3.3) that ]aNer(h)/z > MhP for
all h E(O,hO] . Thus for N even (or odd) fh(g) must have an even (or odd)

number of zeros in [Eo—r(h),£°+r(h)]. However fh(i) has at most N zeros in

this interval.
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If in the hypothesis of Theorem 3.3 the approximations (3.1) only satisfy
consistency in (3.2) for some m <N we can say nothing as to how many roots

£, (€) = 0 has in Dr(h)(g°) for any h>0.

4. APPROXIMATING PROBLEMS : GENERAL CASE.

We now turn to the more general case in which (2.6) is approximated by a family

of problems, say :
(4.1) Fh(Xh) = 0, Fh(') :Xh —}Yh’,xh gYYh.,

for all h e(O,hO]. Here the Banach spaces Xh and Yh, usually finite dimensional,

are related to X and ¥ by means of appropriate bounded linear mappings, L and

ﬂz, such that
X Y
a) Trh:}K—>Xh, 'rrh=Y—>YYh;
(4.2)
b mxll = CsomP I x|, Imiyll = tvomP) 3 iyl .

Norms of any quantity are assumed to be those of the appropriate space to which

the quantity belongs. We also find it convenient to use the notation

4.2) o T X=X, My =0yl .

*

We also require bounded linear mappings, say ﬂY between the dual spaces "

h ’
and Y; of ¥ and Yh’ respectively. These are defined such that for all

*

e X, yey ,
and corresponding images
*

ng 9"z [6") ¢ ¥

*

n [y]h €Y

h 3

there is a p >0 for which :

b.2) @ [67y-6"1 [y | = 08Py,  ¥h e (0,h ]
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The implied uniform consistency over'Y* and ¥ is easily replaced by that over
spheres centered about special elements to be introduced later. However we do
not seek here the weakest conditions but rather to explain the basic ideas.

The interested reader should have no trouble in relaxing many of our constraints.
Further we do not attempt to keep track of all the constants which effect the
size of ho and r(h) as was done in § 3. This is already made clear in the esti-

mates (4.2b) as well as in (4.2d).

We will consider a nonisolated root of (2.6), x° e¢X, for which (2.7) holds.

The approximations (4.1) are required to satisfy ¥h e(O,hOJ :
a) Fh(Xh) analytic on.Sr(h)([XOJh) H
4.3) b  |E(A)D-TF®OL | = o(nPy, VXeSr(h)(XO) ;

o IR G-F s KIxyll, ¥y €S,y (0.

In addition to the simple consistency between F and Fh expressed in (4.3b) we
require much more complicated consistency conditions between the Fréchet deri-
vatives F' and Fﬁ (énd their duals). These conditions are expressed in terms

of corresponding eigenvalues and eigenfunctions. There are at least two distinct
ways in which this can be done. We adopt the one which maintains the closer
analogy to the continuous theory in § 2. Specifically we require that Fﬁ(xh)

and Fﬂ(Xh)* have an eigenvalue, a(Xh), and corresponding eigenfunctions,

¢, (X,) and 9] (X,), such that ¥he (0,h ] , X esr(h)(tx"]h)

F (X)), (X)) = a@®pé ) lo, Gl =1
(4.4) a)

Pl R (K, = a()ep(Ry) 5 0y (K)o (B = 1.

Further these quantities satisfy for some p >0 :

lo, ((x°1,)-063, 1] = 0™ ,
.4 b Jaxp| = om?)
log ((x°1,)=[6"1, || = 0",

where ¢ and ¢* are as in (2.7 a,c).
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Using ¢;([Xo]h) we introduce, Vh_e(O,ho], the subspaces :

4.5) &) E =X X ¢;(r_x°]h)xh =0}, ¥, | = {yc¥ : ¢E(IX°1)yy, = 0},

..

Then we have the direct sum decompositions
_ o _ o
(4.5) b) X = {9 ([X ]h)}®xh’] ,» ¥, = {g, (IX Jh)}eamzh,I ,

. . . . .
and the restriction of Fh(Xh) to Xh’ is defined as

(4.5 o A = FEED/E )

It is required that these restrictions have uniformly bounded inverses at

X, = [Xolh, say
4.5 @ Ja (x°Iplls ¢, ¥he(0,h T

A final consistency condition involving the second Fréchet derivative is given

in terms of
_1 %, .0 " o o o
(4.6) &) a, T g o (CXTIDFNRI )0, (X016 CXT,)

It is required that, with a, from (2.8),

(4.6) b))  |aya, | = omP.

Now our basic approximation result for the general case can be stated as

Theorem 4.7 : Let X° be a nonisolated solution of (2.6) for which (2.7) holds.

Let a % 0 in (2.8) so that x° is a geometrically isolated solution. Let the

family of approximations {F ()} in (4.1)-(4.2) satlsfy (4.3)-(4.6) for some
h >0 and r(h) = r, hp/i w1th h and r, suff1c1ent1y small. Then ¥h e (O, h ]

the approximation

(4.7) a) Fh(Xh) =0

has either two or no solutions in Sr(h)([Xo]h). In the former case each of the two

roots has the form :




_]8..

G.7) b)) X (B) = (X1 ey ((XT1 )+, (©)
where
G o) v (@) By s [EOTX I (B) ][

Furthermore there is a manifold of the form (4.7b,c) with vh(E) analytic such

that with the manifold in (2.13a) :

“.n @ @@ = omP).

- . o) :
Proof : By the decomposition (4.5b) every point Xh eSr(h)([X ]h)c Xh has a

unique representation in the form

) o
(4.8) a) Xh = [X ]h fg¢h([x ]h)+vh
where

(4.8) b)Y vy X J€0, (X1 )+, || <x(h).

h

Then in analogy with (2.9) we introduce the projections

_ o * o 0o

a) B = 6 (1X°1)0, (1X71) + ¥y > {6, ([xT1D)
(4.9)

b) Q = I-P : ¥, ¥ |
Now Xh in (4.8) is a solution of (4.7a) iff :

a) B (E,v) = QF, ((X°1+E0, ([X°T)+v) = 0,
(4.10) . 4

(o] o]
b) PhFh([X ]h+gcph([x ]h)+vh) = 0.

We first determine the solutions of (4.10a) in RXX,, near (E,vh) = (E,[V(E)Jh)
using v(§) from (2.12).

This is done by applying the theory of [5], uniformly in &,on |&] <x(h), for
all h e(O,hO]. Specifically we note from (4.3b) and (2.12b) that :
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G a2 B Erv@1p) 1 = o).

Here we have used (4.4b) and the Lipschitz continuity of Fh(Xh). From (4.10a)
we get, recalling (4.5c¢),

Dy By (Eovy) X (X0, 80, (LX) ) +v,)

1

o o) '
It follows from (4.3c) that
(4.11) b) anhHh(g,vh)—DVhH(g,wh)!ls R vy = [l # v s lw, s xv) 5
and the Banach lemma with (4.5d) implies
41 o o, HEDE )T <const., ¥h'e(0,h 1, |E] <r(h).
h \

Now Theorem 3.6 of [5] can be applied, using (4.1la,b,c), to insure that

¥ h e(O,hOJ there exists a unique solution, vh(E), of
Hh(E,Vh(E)) =0, vh(E) €Xh’i

and satisfying

4.12) a) v (B-v® 1= o@P).

Further vh(i) is analytic in & for IEIS r(h). This follows from the uniqueness
of vh(E) and an application of the implicit function theorem to Hh(i,vh) =0
at (g,vh) = (O’Vh(o))'

We have thus shown that (4.7a) can have a solution in Sr(h)([xojh) only on the

manifold
o ) o} .
(4.12) b) xh(E) =[x +£¢h([x ]h)+vh(€)

on which (4.10a) is satisfied. All solutions of (4.7a) on this manifold are

determined by the solutions of the scalar equation, from (4.10b)

— o ¢}
(4.12) o £®) = §CX°IPF, KE) = 0.
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We now use the scalar theory of § 3, with £(§) as defined in (2.13), to
determine the possible solutions of (4.12c). The hypothesis that az# 0
in (2.8) or (2.14b) implies that £(§) has a geometrically isolated zero at

£=£%= 0. So to apply Theorem 3.3 with N=2 we need only verify that (3.1)-
(3.2) hold with m=2.

The analyticity of fh(i) about £=0 follows from that of vh(E). To verify
(3.2a) we use (2.13),(2.14) and the abbreviations

*

by = Or(X°1),F, 2 F (X (), F 2 FXT(E)),

to write :
* * * - (o]
£ (D)-£(B) = (0p=[8"IF +[0" ]y (F=F, (X7 (E) )
[6™] (x°(£) 1. )-[F1 )+ ([6* 1 [FI. -¢"
+067 1, (F ([X°(6) ) -[F1 )+ ([97 1 [F1, -4 "F) .

The first, thrid and last terms of the above right hand side are estimated

using (4.4b), (4.3b) and (4.2d), respectivély, to get
I, ©-£® || s o@Py+o [xp(&)-x°@ 3 11).

However from (4.4b) again and (4.12;) :

1x2@-1x°® 3, || = 8¢, ((xI L1 +Lvy (DI ] »

0(nP).

Thus (3.2a) holds. We also note that the above establishes (4.74).

To estimate the quantities in (3.2b) we differentiate in (2.13b) and (4.12c)
to get :

a)  £'() = ¢ FXCENIe (DT,

(4.13)
b)  £)(8)

1}

* o v 70 o '
01 (x0T F; (OB Loy (LX) 4w (6.
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Xo it follows that £'(0) = 0. With (4.4a,b) we get

' _ 4% o ' o o '
fh(O) = ¢h([x ]h)Fh([x ]h+vh(0)[¢h([X ]h)+vh(0)] s

o P * o 1
a(lX ]h) [1+0(h )+¢h([x ]h)vh(O)] ,

o(hP).

Here we have used vh(O) = O(hp) and vﬂ(O) = O(hp). The latter follows from
differentiation of Hh(E,vh(E)) = 0 to get

(4.14)

' o * o ' —
QhFh([X ]h+vh(0))[¢h([X ]h)+vh(0) = 0.

But since Qth([Xo]h) = Ah([Xo]h) has a bounded inverse the result easily
follows. Thus (3.2b) holds for v=1. For V=2 we have '

a)

(4.15) b)

£(E) = ¢ F"(X2(E)) [o+v' () Iy (E) 1Ly (BT +0"F' (X°(E))v"(E),
1} — * (o] " o] (o] ' (e} f
£2(8) = o ([X°I)DF) (XD (B)) [, ([X°1 ) +v) (8) L4, ([X°D +vy (B)]

* O (CXOTIEL RNV

Asin the above derivation we easily obtain’

and

So from (4.6)

The Lipschitz
of fh(E). The

f"(O)

SEE)00 = 22,

+0(hp)

"
fh(O) Zaz’h

we find that (3.2b) holds for v=2 also.

continuity required for (3.2c) easily follows from the analyticity

hypothesis for Theorem 3.3 are thus established with N=2. m

It is clear to see how "higher order" cases can be included. For example if

a2=0 we have
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Corollary 4.16 : Let the hypothesis of Theorem 4.7 hold modified only in that

r(h) = rohp/3,, az=0 but aq #0 ﬂ (2.14). Further, with (ﬁ‘l = ¢::1([X°]h) and
o = 0, (X7, let :

_1 X o | ko o "
(4.16) a3 =73 opFn (XTI epopoy + 7 opFp (L% Iy (0)

satisfy

(4.16) b) | =o@P) ¥he(o,nd .

‘33'33,h

Then for each h € (0, h 1 the approx1mat10n (4.7a) has either one or three solu—

tions in S (h)([X ] ) They are all of the form (4.7b,c) and (4. 7d) still holds.

Proof : The proof is an obvious extension of the proof of Theorem 7.4. No new

difficulties arise so we do not include the details. ®

[

Clearly our results easily extend to the cases where a2=a3=0 and a4#0 3 etc...

5. LIMIT POINT AND BIFURCATION EXAMPLES.

The implications of the theory in §4 are quite relevant in attempts
to compute limit points and bifurcation points in nonlinear eigenvalue problems.
We indicate the connection here and in a following paper [8] we develop a more
complete theory of the approximatidﬁ of such critical points on solution arcs.
A related independent study has also been made in [12] where finite element
approximations are considered.

We first recall, for nonlinear elgenvalue problems in the general form
(5.1) Gu,\) =0, G :EXR>¥ ,Xc¥,

that a critical point is a solution (uo,ko) at which the Fréchet derivative

o _ o] (e}
(5.2) G, = DuG(u A )

is singular. In particular we consider here only cases in which

a) ?’((GZ) = span {¢}, [|¢]|=1 3

(5.3) b) ﬁ(Gz) is closed with codim =1 ;

c) ’fz(Gz*) = span {$*}, ¢'¢ =
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Such a critical point is called a "limit point" if in additioh
(5.4) a) ¢*G‘;¢o.

A branch or arc of solutions, say [u(s),A(s)], which contains the limit point,

say (u(0),Ax(0)) (uo,xo), exists locally only for A >0 (or for XA <0) if

(5.4) b) a

* O
¢*G, 99 # 0.

This result was first established in [4] and has more recently been employed
in [9] to aid in computing 1imit‘point solutions. A sketch of the local behavior
of a solution arc of (5.1) through a limit point satisfying (5.4a,b) is given
in Figure 1, as the solid curve [u(s),\(s)].
Now with the critical value of the parameter A= 2° known and kept

fixed we consider the problem of finding the valye x=u® such that
(5.5) F(X) ZG(X,)°) = 0 .

From (5.2)?(5.3).and (5.4b) it is clear that x=u’ is a geometrically isolated
but nonisolated solution of (5.5). Thus if we seek to approximate u® by solving

some family of approximate problems, say
_ o, _ .
(5.6) Fh(Xh) = Gh(Xh,X ) =0,

we may, under appropriate assumptions on the approximations, apply the theory of
§4. Our theory tells us that (5.6) has, for each h sufficiently small either no
solution or two solutions within O(hp/z) of [uo]h. This is clearly consistent

with the arcs of solutions of the approximations
(5.7) Gh(Xh,A) =0

when A is free to vary. Indeed under the more or less obvious consistency assump-—
tions between Gh(Xh,X) and G(X,)A) the solution arcs of (5.7) are as sketched in
Figure | as the dotted curve [uﬁ(s),kl(s)] or as the dot-dash curve‘[uiI(s),AII(s)].
The former yields no solution of (5.6) since the value A° is not attained by

XI(s) on this arc. The latter arc yields two solutions of (5.6) since two different

. I . .
values of Xﬁl(s) are attained when A I(s) = 2% at two distinct values of s.
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The theory for the solution curves of (5.7) is presented in [8] and [12].
However none of these general results can distinguish between cases I and II.
It is the relative magnitudes of the perturbing terms that determines these
details. The same is true of course in our much simpler cases of §3 and §4.

Thus the number of real roots of the quadratic
Pyqg2 P Py - o
[ay*0_(WP)IE™ + 20, (WP)E + O (nP) = 0

with az# 0 and h sufficiently small depends upon the sign of
p
a20c(h ).

It is precisely such an analysis that must be made and since the required
mangitudes can seldom be known, the exact behavior of the approximatioms can

seldom be known.

For bifurcation phenomena the behavior is simila£ and slightly more complicated
to analyse. We content ourselves here with the sketches in Figures 2 and 3 which
show respectively, how the bifurcation point (uo,ko) yields zero and two or

one and three roots of the approximation (5.6). Again a more detailed study is

contained in [8] and [12].
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APPENDIX

Geometric Isolation and Transversality of the Singular Manifold.

We show here how the condition az# 0 for (2.8) which insures that x°
is a geometrically isolated solution of (2.6) when (2.7) holds, also implies
that another important geometric condition is satisfied. For ease of exposition
and to validate the geometric interpretation of our results we here confine
the analysis to the finite dimensional case, say X =Y = E". However the
extension to a Banach space setting is immediate.

Specifically we claim that azf 0 insures that the n-1 dimensional
manifold containing Xo, on which F'(X) is singular, is transversal to the
null space, span {¢}, at X=X°. That is the normal to the manifold at X° and
¢ are not orthogonal to each other. This then insures the existence of a
cone with vertex at X° and axis in the direction of ¢ such that the Newton
iterates for solving (2.6) stay in the "tip" of such a cone, if started there,
and converge to X°. These results on Newton's method in the singular case can
be found in [2,10].

' From the smoothness ofAF(X) it'follows that there exists an eigenvalue

a](X) and eigenvectors ¢(X),¢*(X) on SO(XO)CIEn such that

a)  FOM® = o X6, fe|l=1;
(A1) b)) $TEOF'X = a (XX, T XIGE) = 1 ;

c) ul(Xo) =0

We further assume that- the gradient vector

(A.2) Vo, (x°) # 0,

where V = (31,82,...,3n). Then by the implicit function theorem applie@ to
(A.3) OL](X) =0

at X=X° it follows that (A.3) holds on some smooth n-1 dimensional manifold

M and x° ¢ 7M. Of course the vector Voal(Xo) is orthogonal to 7 at x°.
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Differentiating in (A.la) multiplying by ¢*(X) and evaluating the result at
o] .
X = X yields

Vo, (x%) = ¢" XF 6% .
It follows that
(A.4) a, = Vo, (X)$(X")

and so az# 0 implies that some cone,IX, with vertex at X° and axis parallel
to ¢(Xo) does not intersect the singular manifold 7 within SO(XO) for some
small p >0. The semi-angle of the cone is any angle .less that 90 where

cos 60 = azl “Va (XO)||' Since F'(X) is momsingular in K nSp(Xo) the Newton
iterates are defined throughout this volume. Convergence proofs can then be

given as in [2,10].

Essentially the same derivation as above is independently given in {31
to get (A.4). However the authors were not aware of the fact that 32# 0 implies

geometric isolation and so this extra hypothesis was assumed in their work.



_27_

ACKNOWLEDGEMENTS.

This work was supported by the D.0.E. under Contract EY—76—S-03-070;
Project Agreement N° 12 and by the U.S.A.R.0. under Contract N° DAAG 29-78-C-0011.
I am also greatful to the Guggenheim Foundation and to the Institue National de
Recherche d'Informatique et d'Automatique for support during a visit at INRIA

where this paper was written.
REFERENCES

[1] D.W. Decker and H.B. Keller, Solution branching —A constructive technique,
Proc. Symp. on Flows and Bifs., 1980.
[2] D.W. Decker and C.T. Kelley, Newton's method for singular problems, SIAM
J. Num. Anal. (1979).
[3] A. Griewank and M.R. Osborne, On Newton's method for singular problems,
o preprint 1980.
L4]1 J.P. Keener and H.B. Keller, Perturbed fifurcation theory, Arch. Raf. Mech.
Anal. 50 (1973) 37-71.
[5] H.B. Keller, Approximation methods for nonlinear problems with applications
to two-point boundary value problems, Math. of Comp. 29 (1975) 464-474.
[6] H.B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue
problems, in Applications of Bifurcation Theory, Academic Press, New-York
1977 (pp. 359-384).

[7] H.B. Keller, Constructive methods for bifurcation and nonlinear eigenvalue

problems, Lecture Notes in Math., Vol. 704, Proc. 3rd Int. Symp. on Compt.
Meth. in Appl. Sci. & Eng., Springef-Verlag, Berlin/New-York, 1979 (pp.
241-251).
[8] H.B. Keller, Approximations near limit points and bifurcation points, in
preparation.
[9] G. Moore and A. Spence, Numerical computation ofbsimple turning points,
Bath Univ. Tech. Rept. Math/NA/5(1979). |
(10] G.W. Reddien, On Newton's method for singular problems, SIAM J. Num. Anal.
15 (1978) 993-996.
[11] R. Seydel, Location of bifurcation points, Numer. Math.
(12] F. Brezzi, J. Rappaz and P.A. Raviart, Finite dimensional approximation of
nonlinear problems ; Part II : Limit points ; Part III : Simple bifurcation

points ; in preparation.



Figure 1 -

Figure 2 -

Figure 3 -

- 28 -~

CAPTIONS FOR FIGURES

Limit point branch and two approkimating families : I and II.
For A=)A° case I has no solution and case II has two solutions.

Clearly X° is a double root on the limit point branch.

Bifurcation branches and two approximating families : I and II.
o . .
For A=A case I has no solution and case II has two solutions.
o . . . . . .
Note that X 1is a double root since it lies on two intersecting

branches.

Bifurcation branches and two approximating families : I and II.
For A=\" case I has one solution, labled A, and case II has three
solutions, ®. Note that x° is a triple root since it lies on two

intersecting branches and is a double root on one of these branches.
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