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Geometrically non-linear anisotropic inelasticity based
on �ctitious con�gurations: Application to the coupling
of continuum damage and multiplicative elasto-plasticity‡

A. Menzel and P. Steinmann∗;†
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SUMMARY

The objective of this contribution is the formulation and algorithmic treatment of a phenomenological
framework to capture anisotropic, geometrically non-linear inelasticity.
In addition to the intermediate con�guration of multiplicative elasto-plasticity, we further introduce

two microscopic con�gurations of Lagrangian and Eulerian type which characterize the so-called �cti-
tious undamaged material. This kinematical framework enables us to apply two well-established pos-
tulates based on standard terminology in non-linear continuum mechanics. Concerning the free energy
function, the postulate of strain energy equivalence is adopted and in view of the plastic dissipation
potential the concept of e�ective stress is a natural outcome of the underlying kinematical assumptions.
Finally, we focus on the integration technique for the class of obtained evolution equations and present

numerical examples for a prototype model to underline the applicability of the proposed framework.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is a desirable feature of a continuum damage theory to provide su�cient freedom to cap-
ture the anisotropic nature of damage. Thus the state of damage has to be described by at
least a second order tensor, see Reference [1]. In this contribution, the underlying mech-
anism to incorporate the e�ects of damage is provided by the hypothesis of strain energy
equivalence between microscopic and macroscopic con�gurations, see References [2–5]. The
approach allows the interpretation as covariance of the free energy with respect to super-
posed di�eomorphisms, which are identi�ed here with a damage deformation gradient. As
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2234 A. MENZEL AND P. STEINMANN

an interesting aspect, the present damage metric based formulation may formally be related
to the classical understanding of damage as an area reduction. Moreover, damage conditions
formulated in the appropriate dissipative quantities and evolution laws for the damage metric
and the internal variables are a natural outcome of the applied thermodynamically consistent
framework. Thereby, the assumed dissipation potential essentially a�ects the type of damage
evolution. In particular, we deal with initially anisotropic materials and deformation induced
anisotropy.
Based on this idea, we develop a model formulation for anisotropic damage which is

kinematically coupled to large inelastic deformations whereby the well-established framework
of multiplicative elasto-plasticity is adopted, see e.g. References [6–11] references cited therein
and the discussion by Naghdi [12]. For conceptual clarity, we restrict ourselves to the rate-
independent case without loss of generality. In particular, the previously highlighted framework
of Lagrangian �ctitious, microscopic con�gurations is adopted which has until now been
mainly used in continuum damage mechanics; see e.g. Br�unig [13] for a similar approach.
In this contribution, we relate elements of the tangent spaces of an undamaged, microscopic
con�guration and the standard intermediate con�guration of multiplicative elasto-plasticity via
a damage deformation gradient. Thereby, the previously mentioned covariance postulate is
applied to the free energy function and the assumed damage dissipation potential. On top of
this, a second �ctitious con�guration of Eulerian type is introduced and claimed to represent
an isotropic setting with respect to the assumed plastic dissipation potential. Then, based on
an essential kinematic assumption, the well-accepted concept of e�ective stress with respect
to the construction of a yield function is a natural outcome of standard transformations in
non-linear continuum mechanics, compare e.g. Reference [14].
The paper is organised as follows: To set the stage, the underlying kinematics related to

the introduction of �ctitious con�gurations are given in Section 2. Based on this, we set
up the speci�c format of the free Helmholtz energy function, see Section 3. Later on, the
theory of non-standard dissipative materials with application to multiplicative elasto-plasticity
is highlighted in Section 4. Thereby, the incorporated Finger-type metric tensor in terms of a
�ctitious linear tangent map is treated as an internal variable and denoted as damage metric
tensor. Section 5 deals with the construction of the incorporated dissipation potential. Finally,
we focus on the integration of the obtained evolution equations—Section 6—and give some
numerical examples in simple shear and a general �nite element setting, see Section 7.

2. KINEMATICAL FRAMEWORK OF FICTITIOUS CONFIGURATIONS

For convenience of the reader, this section starts with a brief reiteration on essential kinematics
of non-linear continuum mechanics and multiplicative elasto-plasticity. Based on this, we
highlight the concept of �ctitious con�gurations and introduce the applied notation. For more
background information on non-linear kinematics in terms of convective co-ordinates, we refer
to the works of Green and Zerna [15], Lodge [16] and Marsden and Hughes [17].

2.1. Notation for the overall motion

Let the material and spatial con�guration of the considered body be denoted by B0⊂ E3 and
Bt ⊂ E3. The non-linear map of material points X∈V3 onto spatial points x(X; t)∈V3 is

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:2233–2266



ANISOTROPIC DAMAGE COUPLED TO PLASTICITY 2235

Figure 1. Non-linear point map � and linear tangent maps F“; F“
p; F“

e ; �F“; �F“
e ; F̃“.

represented by x=�(X; t) with �(X; t) :B0×R→Bt , compare Figure 1. Thereby, let the de-
nomination ‘material point’ allow the interpretation of a su�ciently large domain on the scale
of the microstructure of the corresponding material. Next, referring to convected co-ordinates
�i(x; t) and �i(X), the natural and dual base vectors are characterized by the derivatives

gi = @�ix :T ∗Bt →R; gi = @x�i :TBt →R

Gi = @�iX :T ∗B0→R; Gi = @X�i :TB0→R
(1)

and in addition, the spatial and material metric tensors are given as

g[ = gijgi ⊗ g j :TBt ×TBt →R

g] = gijgi ⊗ gj :T ∗Bt ×T ∗Bt →R

G[ = GijGi ⊗ G j :TB0×TB0→R

G] = GijGi ⊗ Gj :T ∗B0×T ∗B0→R

(2)

Moreover, we apply mixed-variant identity-tensors de�ned via

g“= gi ⊗ gi :TBt →TBt ; G“=Gi ⊗Gi :TB0→TB0 (3)

Then on a local chart, the linear tangent map of the direct motion is characterized by

F“(X; t)= @X�= @�i�⊗ @X�i= gi ⊗Gi ∈ :TB0→TBt (4)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:2233–2266



2236 A. MENZEL AND P. STEINMANN

with det F“ ∈R+. For notational simplicity we introduce the corresponding linear tangent map
of the inverse motion �(x; t)=�−1 :Bt ×R→B0 via

f “(x; t)= @x�= @�i�⊗ @x�i=Gi ⊗ gi :TBt →TB0 (5)

with det f “ ∈R+ being obvious. Based on this, several kinematic tensors can be introduced
like the right and left Cauchy–Green tensors (whereby we agree to the identi�cation of the
dual of the motion gradient with it’s transposed)

C[ = �∗g[=[F“]t · g[ ·F“= gijGi ⊗G j

B] = �∗g]=F“ · g] · [F“]t = gijGi ⊗Gj

(6)

which enter e.g. the de�nition of the Green–Lagrange strain tensor E[= 1
2[C

[ −G[].

2.2. Essential kinematics of multiplicative elasto-plasticity

Let the natural and dual tangent space of the intermediate con�guration within multiplicative
elasto-plasticity be denoted by TBp and T ∗Bp, respectively. Similarly to Equation (1), the
corresponding tangent and dual vectors read

Ĝi :T ∗Bp→R; Ĝi :TBp→R (7)

which are obviously not derivable from positions vectors since the intermediate con�guration
is generally incompatible. Consequently, the metric tensors and the identity in Bp are given as

Ĝ[ = ĜijĜi ⊗ Ĝ j :TBp×TBp→R

Ĝ] = ĜijĜi ⊗ Ĝj :T ∗Bp×T ∗Bp→R

Ĝ“ = Ĝi ⊗ Ĝi :TBp→TBp

(8)

It is then obvious that the elastic and plastic linear tangent maps which de�ne the multiplicative
decomposition of the deformation gradient with respect to the direct motion, F“=F“

e ·F“
p, are

given by

F“
p = Ĝi ⊗Gi :TB0→TBp; F“

e = gi ⊗ Ĝi :TBp→TBt (9)

and det F“
p; det F“

e ∈R+. We now introduce in analogy to Equation (5),

f “p =Gi ⊗ Ĝi:TBp→TB0; f“e = Ĝi ⊗ gi :TBt →TBp (10)

for the sake of notational simplicity with det f “p ; det f “e ∈R+ being obvious. Based on this
setting, typical kinematic tensors can be constructed similar to Equations (6), namely

Ĉ[
e = F

“
e
?g[=[F“

e ]
t · g[ ·F“

e = gij Ĝi ⊗ Ĝ j

B̂]
e = f

“
e ?g]= f “e · g] · [f “e ]t = gij Ĝi ⊗ Ĝj

(11)

whereby, the notations [•]? and [•]? indicate pushforward and pullback operations, respec-
tively. Furthermore, the elastic Green–Lagrange strain tensor with respect to the intermediate
con�guration is again obtained in standard format and reads Ê[

e =
1
2 [Ĉ

[
e − Ĝ[].
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2.3. Introduction of �ctitious con�gurations

Next, on top of the spatial (Bt), the intermediate (Bp) and the material (B0) con�gurations,
we introduce additional �ctitious con�gurations which are generally incompatible.
We �rst consider a �ctitious or rather e�ective con�guration which is assumed to be

isotropic with respect to the free Helmholtz energy density and attached to the intermedi-
ate con�guration of multiplicative elasto-plasticity. The corresponding tangent space and the
dual space are denoted by T �B and T ∗ �B, respectively. Consequently, the direct �ctitious linear
tangent map �F“ allows interpretation as an a�ne pre-deformation and de�nes the �ctitious
natural and dual base vectors

�Gi :T ∗ �B→R; �Gi :T �B→R (12)

which are again not derivable from position vectors. Continuing in this direction, we obtain
�ctitious metric tensors and the second order identity as

�G[ = �Gij �Gi ⊗ �G j :T �B×T �B→R
�G] = �Gij �Gi ⊗ �Gj :T ∗ �B×T ∗ �B→R
�G“ = �Gi ⊗ �Gi :T �B→T �B

(13)

Likewise, the linear tangent maps of the direct and inverse �ctitious mapping follow straight-
forward

�F“= Ĝi ⊗ �Gi :T �B→TBp; �f “= �Gi ⊗ Ĝi :TBp→T �B (14)

with det �F“; det �f “ ∈R+ —see Figure 1 for a graphical representation.
Second, think of a �ctitious or rather e�ective con�guration which is isotropic with respect

to an assumed plastic dissipation potential and also attached to the previously introduced
�ctitious con�guration and to the spatial setting Bt . The corresponding tangent space and the
dual space are denoted by T B̃0 and T ∗B̃0, respectively. Similar to Equation (12), we obtain
�ctitious natural and dual base vectors

g̃i :T
∗B̃→R; g̃i :T B̃→R (15)

whereby again no interpretations as derivatives with respect to position vectors hold. The cor-
responding �ctitious metric tensors and the second order identity consequently follow straight-
forward as

g̃[ = g̃ijg̃
i ⊗ g̃ j :T B̃×T B̃→R

g̃] = g̃ijg̃i ⊗ g̃j :T
∗B̃×T ∗B̃→R

g̃“ = g̃i ⊗ g̃i :T B̃→T B̃

(16)

Likewise, the linear tangent maps of the direct and inverse �ctitious mapping read as

�F“
e = g̃i ⊗ �Gi :T �B→T B̃; �f “e = �Gi ⊗ g̃i :T B̃→T �B

F̃“ = gi ⊗ g̃i :T B̃→TBt ; f̃ “= g̃i ⊗ gi :TBt →T B̃
(17)
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2238 A. MENZEL AND P. STEINMANN

and det �F“
e ; det �f “e ; det F̃“; det f̃ “ ∈R+ —see again Figure 1 for a graphical representation. In

particular, we end up with the useful relations

F̃“=F “
e · �F“ · �f “e ; f̃ “= �F“

e · �f “ · f “e (18)

3. CONSTRUCTION OF THE FREE ENERGY DENSITY

For the construction of the free Helmholtz energy density  p0 with respect to the intermediate
con�guration, a contra-variant energy metric tensor (Finger-type) is introduced in the progres-
sion of this contribution which we denote by �A] and Â] with respect to the �ctitious and the
intermediate con�guration, respectively. Thereby, the push-forward operation

�F“
?
�A]= �F“ · �A] · [ �F“]t := Â] (19)

is implied throughout. Now, as the key idea of this framework, the �ctitious energy metric
tensor is chosen to be equal to the �ctitious contra-variant metric tensor, �A] := �G], and thus
replaces this metric within the construction of the free Helmholtz energy density. Hence the
�ctitious con�guration is isotropic and, remarkably, standard isotropic constitutive equations
can be applied to model anisotropic material behaviour, e.g. in the intermediate con�guration.
Note that besides this speci�c choice, no further assumptions enter the proposed formulation.
Isotropy is included in particular if the energy metric tensor Â] is a spherical tensor whereas
otherwise anisotropy comes into the picture.
Next, to demonstrate the nature of this energy metric tensor, we choose a speci�c ansatz

for the �ctitious dual vectors �Gi with respect to the anisotropic intermediate con�guration

�Gi=[ �F“]t · Ĝi := �0 Ĝi +
2∑

j=1
�j Â]

N̂ i
j

Â[

N̂[
j (20)

whereby Â[
N̂[

j are co-variant unit-vectors and
Â]
N̂ i
j = �Gi · Â]

N̂]
j denote the components of their

contra-variant complement. With these relations at hand, the two-point tensor �F“= Ĝi ⊗ �Gi

results in

�F“ := �0Ĝ“ +
2∑

j=1
�jÂ“

j with Â“
j =

Â]
N̂]

j ⊗ Â[
N̂[

j (21)

For the restrictions on the scalars �0;1;2 in order to guarantee det �F“ ∈R+, see Reference [18].
Consequently, straightforward computations based on Equation (19) and �A] := �G] render the
symmetric energy metric tensor

Â]=�0Ĝ] + �1Â]
1 + �2Â]

2 + 2�3[Â
]
1 · Ĝ[ · Â]

2]
sym (22)

whereby the abbreviated notations �0 = �20; �1 = 2�0�1 + �21; �2 = 2�0�2 + �22; �3 = �1�2 and
the symmetry operation [•]symij = 1

2[[•]ij + [•]tij]= 1
2 [[•]ij + [•]ji] (with respect to a Cartesian

frame) have been introduced. Thereby, the rank one tensors Â]
1;2 allow similar interpretations

as structural tensors. Moreover, based on the spectral decomposition theorem of symmetric
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second order tensors, the useful relation

Â] =
3∑

i=1

Â ]
�i

Â ]
N̂]

i(spe)⊗ Â ]
N̂]

i(spe) = �0Ĝ] +
2∑

i=1
�i

Â ]
N̂]

i(spe)⊗ Â ]
N̂]

i(spe) (23)

holds with Â ]
�i¿0; �0 = Â ]

�3; �1 = Â ]
�1 − Â ]

�3; �2 = Â ]
�2 − Â ]

�3; compare Reference [19]. The
representations (22) and (23) are obviously identical if �3 = 0.
In the following, as the key idea of the proposed damage formulation, the energy metric

tensor Â] is introduced as an internal variable which accounts for damage evolution and is
thus denoted as damage metric tensor. Consequently, the �ctitious linear tangent map �F“ no
longer remains constant as degradation takes place and allows the interpretation as damage
deformation gradient. Nevertheless, the �ctitious con�guration represented by T �B; T ∗ �B as
portrayed in Figure 1, persists isotropic and undamaged. On the contrary, the intermediate
con�guration, as well as the material and spatial settings B0 and Bt , might be damaged and
anisotropic.
In this context, we adopt the common ansatz of an additive decomposition of the free

Helmholtz energy density into an elastic or rather damage contribution and an additional hard-
ening term de�ned by a scalar-valued hardening variable �, i.e.  p0 (Ê

[
e ; �; Â]) := dam p0 (Ê

[
e; Â])+

har 0(�) in Bp. For the crucial relation between the intermediate and the attached �ctitious
con�guration we obtain

dam � 0( �E
[
e; �A

]) + har 0(�)= dam p0 (Ê
[
e; Â

]) + har 0(�) (24)

Conceptually speaking, the free Helmholtz energy density remains invariant under any (co-
variant) action of a non-singular linear tangent map, here �F“, whereby it is obvious that the
considered elastic strain tensor transforms as

�f? �E [
e = [ �f

“]t · �E[
e · �f “= Ê[

e (25)

Since the �ctitious con�guration is assumed to be isotropic, three (basic) invariants in terms of
�E[
e and �A] determine the elastic or rather damage contribution to the free Helmholtz energy
density. Application of standard transformations as highlighted in Equations (19) and (25)
render two corresponding sets of invariants

�E[
e
�A]
In= �G“ : [ �E[

e · �A]]n= Ĝ“ : [Ê[
e · Â]]n= Ê[

e Â
]
In (26)

with n=1; 2; 3. These relations underline that we are practically dealing with the postulate of
strain energy equivalence, see e.g. Reference [20]. Indeed, the incorporation of Equation (22)
into Equation (26) yields a set of invariants which can be expressed as functions of the set of
invariants for general orthotropy in terms of structural tensors as highlighted e.g. by Spencer
[21]. A detailed discussion on the underlying restrictions is given in Reference [18]. For the
geometrically linear case, it is straightforward to show that we essentially deal with a subclass
of rhombic symmetry.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:2233–2266
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4. NON-STANDARD DISSIPATIVE MATERIALS

In this section, we apply the concept of non-standard dissipative materials. For a general
overview of the underlying theory see e.g. References [22, 23] or [24] and references cited
therein.
The local form of the isothermal Clausius–Duhem inequality reads with respect to the

intermediate con�guration

D
p
0 = [M̂

“]t : L̂“ − @Ê[
e
 p0 : DtÊ[

e − @Â] 
p
0 : DtÂ] − @� 

p
0 Dt�¿0 (27)

whereby the notation Dt denotes the material time derivative, [M̂“]t characterizes the Mandel
tensor, i.e. the pull-back of the mixed-variant representation of the Kirchho� stress M̂“=
f “e ·m“t ·F“

e with [m“]t = g[ · �], and

L̂“= f “e · l“ ·F“
e = f

“
e ·Dt F“

e + Dt F“
p · f “p = L̂“

e + L̂
“
p (28)

determines the mixed-variant pull-back of the spatial velocity gradient l“=DtF“
e · f “e +

F“
e ·DtF“

p · f “p · f “e with respect to the intermediate con�guration. Now, by taking the relationship

2DtÊ[
e = Dt[F“

e ]
t · g[ ·F“

e + [F
“
e ]
t · g[ ·DtF“

e = [L̂
“
e]
t · Ĉ[

e + Ĉ
[
e · L̂“

e = 2[Ĉ
[
e · L̂“

e]
sym (29)

into account, the dissipation inequality allows the representation

D
p
0 = [M̂

“]t : L̂“ − [Ĉ[
e · @Ê[

e
 p0 ] : L̂

“
e − @Â] 

p
0 : DtÂ] − @� 

p
0 Dt�

= [[M̂“]t − Ĉ[
e · @Ê[

e
 p0 ] : L̂

“ + [Ĉ[
e · @Ê[

e
 p0 ] : L̂

“
p − @Â] 

p
0 : DtÂ] − @� 

p
0 Dt�¿0 (30)

Following the standard argumentation of rational thermodynamics, appropriate stress quantities
are de�ned by

[M̂“]t := Ĉ[
e · @Ê[

e
 p0

:= Ĉ[
e · @Ê[

e

dam p0
:= Ĉ[

e · Ŝ]

−Ẑ[ := @Â]  
p
0

:= @Â]
dam p0

−H := @� 
p
0

:= @�
har 0

(31)

Thereby, with respect to the representation of the basic invariants in Equation (26), the deriva-
tives of the damage contribution of the free Helmholtz energy function dam p0 =

dam p0 (
Ê[
e Â

]
I1;2;3)

take the following format

Ŝ] =
3∑

n=1
n@Ê[

e Â
]
In
dam p0 Â

] · [Ê[
e · Â]][n−1]

−Ẑ[
=

3∑
n=1

n@Ê[
e Â

]
In
dam p0 Ê

[
e · [Â] · Ê[

e]
[n−1]

(32)
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Now, with these de�nitions at hand, the reduced format of the isothermal dissipation inequality
results in

redD
p
0 = [M̂

“]t : L̂“
p + Ẑ

[ : DtÂ] +HDt� = Ŝ] : D̂[
p + Ẑ

[
: DtÂ] +HDt�¿0 (33)

whereby the symmetric tensor D̂[
p = [Ĉ[

e · L̂“
p]
sym has been introduced, compare Reference [25]

with application to the more general framework based on an Eshelby stress tensor and
det F“

p �=1. Note that Ŵ[
p = [Ĉ[

e · L̂“
p]
skw, which characterizes the plastic spin with respect to

Ĉ[
e , is obviously undetermined within the representation in Equation (33).
Next, following the standard framework, we introduce an admissible elastic cone with

respect to the intermediate con�guration

Ap = {([M̂“]t ; �F“; H ; Ĝ“)| yie�p([M̂“]t ; �F“; H ; Ĝ“)

:= pla�p([M̂“]t ; �F“; Ĝ“) + har�(H)60} (34)

which is determined by the convex functions pla�p and har�. Moreover, we assume the
existence of a dissipation potential of Lemaitre-type, see e.g. Reference [14], namely

pot�p([M̂“]t ; �F“; H; Ẑ[; Ĝ“; Â]) := yie�p([M̂“]t ; �F“; H ; Ĝ“) + dam�p(Ẑ[; Â]) (35)

which will be speci�ed in Section 5. In this context, appropriate evolution equations allow
e.g. the following representation

L̂“
p = Dt�@[M̂“]t

pot�p = Dt�@[M̂“]t
pla�p

DtÂ] = Dt�@Ẑ[
pot�p = Dt�@Ẑ[

dam�p

Dt� = Dt�@H
pot�p = Dt�@H

har�

(36)

Obviously, we deal with associated evolution equations for the plasticity and hardening con-
tributions but the damage part, nevertheless, remains non-associated.

Remark 4.1
Recall that, in view of Equation (33), an alternative format of an associated evolution equation
for L̂“

p can be introduced via

D̂[
p =Dt�@Ŝ]

pla�p =Dt�@[M̂“]t
pla�p : @Ŝ][Ĉ[

e · Ŝ
]
]

=Dt�@[M̂“]t
pla�p : 12 [Ĉ

[
e �⊗ Ĝ“ + Ĉ[

e ⊗ Ĝ“]

=Dt�[Ĉ[
e · @[M̂“]t

pla�p]sym (37)
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2242 A. MENZEL AND P. STEINMANN

compare Reference [26] and Equation (A4) for the de�nition of the non-standard dyadic
products.

5. CONSTRUCTION OF THE INELASTIC POTENTIALS

In this section we discuss the construction of the inelastic potentials. Thereby, we choose
di�erent approaches concerning each single contribution. For the damage part, we apply the
fundamental covariance postulate with respect to the intermediate and the Lagrangian �ctitious
con�guration. Concerning the scalar-valued hardening contribution, well-established constitu-
tive equations are adopted. Finally, a speci�c kinematic assumption is incorporated for the
plasticity framework, which enables us to essentially deal with the postulate of e�ective stress.

5.1. Construction of the damage potential

The choice of the assumed damage potential signi�cantly a�ects the evolution of damage and
the anisotropic character of the material. Recall that we reiterate here a speci�c case of the
most general framework de�ned by general, e.g. isotropic, tensor functions in terms of Ẑ[

and Â], compare Reference [27].
For the damage contribution dam�p(Ẑ[; Â]), see Equation (35), we once more consider the

fundamental covariance postulate in analogy to the free Helmholtz energy density. It obviously
turns out that, similar to Equation (26), we again deal with only three invariants (n=1; 2; 3)
which determine dam�p

�Z[ �A]
In= �G“ : [ �Z[ · �A]]n= Ĝ“ : [Ẑ[ · Â]]n= Ẑ[Â]

In (38)

since the �ctitious con�guration is isotropic with respect to the damage potential, �A] := �G].
Based on this assumption, the general form of the dissipation potential reads as

dam�p(Ẑ[; Â])= dam�p( Ẑ[Â]
I1;2;3) (39)

5.1.1. Prototype models. Two speci�c representations seem to be natural and will be high-
lighted in the progression of this contribution, compare Reference [28].

The direct formulation introduces the damage rate coaxial to a symmetric, positive semi-
de�nite second order tensor �̂](Â]). Obviously, the simplest choice �̂] := Â] is based on the
introduction of the �rst damage stress invariant (�1 ∈R+)

dam�p�x
:= 1
2 �1

Ẑ[Â]
I 21 =

1
2 �1[Ẑ

[ : Â]]2

⇒DtÂ] = Dt��1[Ẑ[ : Â]]Â]
(40)

Please note that the damage rate and the damage metric itself are coaxial. Nevertheless, since
the damage metric could be non-spherical, we denote this type of damage evolution as quasi
isotropic.
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The formulation based on conjugate variables constructs the damage rate as a linear map of
the damage stress via a symmetric, positive semi-de�nite fourth order tensor �̂](Â]). Then the
simple choice �̂] ∝ Â] �⊗ Â] ends up with a quadratic form being proportional to the second
damage stress invariant (�2 ∈R+)

dam�pcha
:= 1
2 �2

Ẑ[Â]
I2 = 1

2 �2Ẑ
[ : [Â] �⊗ Â]] : Ẑ[

⇒DtÂ] = Dt��2Â] · Ẑ[ · Â]
(41)

see Equation (A4) for the de�nition of the non-standard dyadic product. Now, the damage
rate and the damage metric no longer commute which motivates the terminology anisotropic
damage.

Obviously, these two types of damage functions in connection with the property of the
initial damage metric tensor Â]|t0 de�ne a general classi�cation of the coupling of hyper-
elasticity and damage. Naturally, there are four di�erent categories which account for ini-
tial and deformation induced anisotropy, see Reference [29]. Please note that if we assume
Â]|t0 =�0Ĝ] within a linear St. Venant–Kirchho� material and quasi isotropic damage evo-
lution, this category is directly related to the classical isotropic [1 − D] damage formulation
via Â]=�0Ĝ]=[1−D]Ĝ]. Then �0 no longer remains constant but rather characterizes three
identical eigenvalues Â]

�1;2;3 which degrade for increasing damage. Moreover, recall that by
starting with an initially isotropic material but taking anisotropic damage evolution into ac-
count, we may end up with anisotropic behaviour in the elastic domain for unloading after
damage evolution has taken place.

5.2. Construction of the hardening potential

In the sequel, we adopt a well-established format for the proportional hardening potential,
namely

har� :=− 1
3 [Y0 −H ]2 (42)

with Y0 ∈R+, which results within the associated framework in the �ow rule
Dt�=Dt� 2

3 [Y0 −H ] (43)

5.3. Construction of the plastic potential

Next, for the de�nition of the invariants which enter the plastic contribution of the dissipa-
tion potential, we assume the Eulerian �ctitious tangent space T B̃ to represent an isotropic
con�guration. Now, similar to �A] within the damage formulation, p̃[ denotes a co-variant
dissipation metric. In the following, p̃[ := g̃[ is assumed throughout and we thus de�ne an
isotropic con�guration for

pla�̃= pla�̃(�̃]; p̃[) := pla�̃(�̃]; g̃[) (44)

whereby �̃]= f̃ “?�] represents the pull-back to T B̃ of the Kirchho� stress tensor in Bt . Now,
standard transformations yield the plastic potential with respect to the intermediate con�gura-
tion

pla�̃= pla�̃( �F“
?
�f “e ?�̃]; �f “? �F“

e
?p̃[)= pla ��( �F“

?
�S]; �f “? �P[)= pla�p(Ŝ]; P̂[) (45)
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Please note that Ŝ]= �F“
?
�f “e ?f̃ “e ?�]= f “e ?�] denotes the pull-back of the Kirchho� stress to

the intermediate con�guration. Based on this, we make the key assumption of the proposed
plasticity framework, namely that the �ctitious elastic linear tangent map �F“

e equals the elastic
linear tangent map F“

e of the multiplicative decomposition. Consequently, in view of the
involved Cauchy–Green-type tensors, we obtain the crucial relationship

�F“
e

:=F“
e ⇒ �P[ = �F“

e
?p̃[=[ �F“

e ]
t · p̃[ · �F“

e ≡ F“
e
?g[=[F“

e ]
t · g[ ·F“

e = Ĉ
[
e (46)

based on p̃[ := g̃[. In this direction, the plastic part of the yield function with respect to the
intermediate con�guration results in

pla�̃(�̃]; p̃[) = pla�̃( �F“
?
�f “e ?�̃]; �f “? �F“

e
?p̃[)= pla�p(Ŝ]; �f “? �P[)

≡ pla�p(Ŝ]; �f “?Ĉ[
e)=

pla�p( �f “?Ĉ[
e · Ŝ]; Ĝ“)

= pla�p([M̂“
d ]
t; Ĝ“)= pla�p([M̂“]t ; �F“; Ĝ“) (47)

with the modi�ed Mandel stress [M̂“
d ]
t ≡ �f “?Ĉ[

e · Ŝ]. Thereby the fundamental covariance pos-
tulate has been applied and an appropriate set of invariants is given by

p̃[�̃]In = g̃“ : [p̃[ · �̃]]n

= �G“ : [ �P[ · �S]]n= �P[ �S]
In

≡ Ĝ“ : [ �f “?Ĉ[
e ·Ŝ]]n= �f “?Ĉ[

e Ŝ
]
In

= Ĝ“ : [Ĉ[
e · �f “?Ŝ]]n= Ĉ[

e
�f “

?Ŝ]
In

≡ Ĝ“
: [[M̂“

d ]
t]n= Ĝ“[M̂ “

d]
t
In (48)

for n=1; 2; 3. Note that in contrast to the free Helmholtz energy density and the dam-
age potential, the linear tangent map �F“ explicitly enters the yield function. Pausing for a
moment, we see that this is obviously a nice feature since the introduction of a damage
spin within the coupling to plasticity is possible. Note that the set of invariants allows the
representations

�f “?Ĉ[
e Ŝ

]
In = Ĝ“ : [Ĉ[

e[ �f “]t
· Ŝ]]n=

Ĉ[
e [ �f “ ]t

Ŝ]

In

Ĉ[
e
�f “

?Ŝ]
In = Ĝ“ : [Ĉ[

e · Ŝ]
�f “]n=

Ĉ[
e Ŝ

]
�f “In

Ĝ“[M̂ “
d ]
t
In = Ĝ“ : [Ĉ[

e[ �f “]t · Ŝ]]n= Ĝ“ : [Ĉ[
e · Ŝ]

�f “]n

with Ĉ[
e[ �f “]t = [[ �f “]t �⊗ [ �f “]t] : Ĉ[

e

and Ŝ]
�f “ = [�f “ �⊗ �f “] : Ŝ]

(49)
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for n=1; 2; 3, which underlines that the modi�ed Mandel stress tensor [M̂“
d ]
t ≡ Ĉ[

e[ �f “]t
· Ŝ]

entering the plastic part of the yield function, is essentially obtained by a linear map of
Ĉ[
e via the fourth order tensor [ �f “]t �⊗ [ �f “]t which accounts for anisotropy and degradation.
Conceptually speaking, the appropriate metric tensor, with respect to the intermediate con-
�guration, is modi�ed such that anisotropy and degradation are incorporated into the yield
function. Alternatively, a modi�ed or rather e�ective stress tensor can be introduced to con-
struct the appropriate set of invariants which is then determined by the linear mapping of Ŝ]

under the action of �f “ �⊗ �f “. Then, referring to the Lagrangian �ctitious con�guration, we deal
with the well-accepted concept of e�ective stress for the construction of the plastic potential.
Next, in view of Equation (36)1, the corresponding associated evolution equation is given

as

L̂“
p = Dt�@[M̂“]t

pot�p =Dt�@[M̂“
d ]
t
pla�p : @Ŝ][M̂“

d ]
t : @[M̂“]t Ŝ

]

= Dt�@[M̂“
d ]
t
pla�p : 12 [[Ĉ

[
e[ �f “]t · B̂]

e] �⊗ Ĝ
“
+ Ĉ[

e[ �f “]t ⊗ B̂]
e]

with @Ŝ][M̂“
d ]
t = 1

2 [Ĉ
[
e[ �f “]t

�⊗ Ĝ“ + Ĉ[
e[ �f “]t ⊗ Ĝ

“
]

and @[M̂“]t Ŝ
] = B̂]

e �⊗ Ĝ“

(50)

whereby the applied relation B̂]
e = [Ĉ[

e]
−1 has been introduced in Equation (11)2. Summarizing,

we obtain the more compact format

L̂“
p =Dt� 1

2 [B̂
]
e · Ĉ[

e[ �f “]t · @[M̂“
d ]
t
pla�p + B̂]

e · [@[M̂“
d ]
t
pla�p]t · Ĉ[

e[ �f “]t ]

= Dt�[B̂]
e · [Ĉ[

e[ �f “]t · @[M̂“
d ]
t
pla�p]sym]

:=Dt�N̂“
�f “(N̂“

d ; Ĉ
[
e[ �f “]t ; B̂

]
e) with N̂“

d = @[M̂“
d ]
t
pla�p (51)

which has a surprisingly similar structure compared to Equation (37).

Remark 5.1
For the sake of transparency, consider the isotropic case of a spherical damage mapping with
‖ �F“‖ :=

√
3[1−D]. The proposed framework then boils down to the classical isotropic [1−D]

damage formulation with coupling to plasticity, see e.g. References [30, 31].

5.3.1. Prototype model. Concerning the plastic part of the dissipation function, the evolution
of the damage spin is neglected for clarity’s sake and thus the rotational term of �f “ is not
incorporated; for a discussion on plastic spin, we refer to Reference [32] and references cited
therein. In this context, the polar decomposition theorem yields

�F“ = �R“ · �U“= V̂“ · �R“; �f “ = �r“ · û“= �v“ · �r“
�R“ : T �B→TBp; �r“ : TBp→T �B

�U“ : T ∗ �B×T �B→R; û“ : T ∗Bp×TBp→R

V̂“ : T ∗Bp×TBp→R; �v“ : T ∗ �B×T �B→R

(52)
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with [ �R“]t = [ �R“]−1 = �r“ and det �R“=1 whereby û“; V̂“ and �v“; �U“ turn out to be symmetric
with respect to Ĝ“ and �G“, respectively. Furthermore, note that the �ctitious right and left
stretch tensors are now determined by the damage metric tensor Â] if the rotational part
equals the identity mapping; �R“ ≡ �r“. In particular, we obtain

Â] ≡ �U“ · �G] · [ �U“]t ≡ V̂“ · �G] · [V̂“]t ; [Â]]−1≡ [û“]t · �G[ · û“ ≡ [�v“]t · �G[ · �v“ (53)

With these assumptions at hand, the following restricted format of the plastic dissipation
function is a natural outcome,

pla�p := pla�p([[[�v“]t �⊗ [�v“]t] : Ĉ[
e] · Ŝ]; Ĝ“)

= pla�p([M̂“
d [ �v“]t ]

t; Ĝ“)= pla�p( Ĝ“[M̂ “
d [ �v“ ]t

]t I1;2;3) (54)

whereby a similar abbreviation as de�ned in Equation (49) has been applied. Recall that the al-
ternative representation of the invariants, which was directly related to the postulate of e�ective
stress referring to the �ctitious con�guration, results in the representation pla�p(Ĉ[

e · [[û“ �⊗ û“] :
Ŝ]]; Ĝ“). Next, we de�ne a stress deviator with respect to the intermediate con�guration (recall
p̃] := g̃])

dev�̃] := �̃] − 1
3 [p̃

[ : �̃]]p̃]

devŜ] := Ŝ] − 1
3 [Ĉ

[
e[ �v“]t : Ŝ

]]B̂]
e �U“

dev[M̂“
d[ �v“]t ]

t := [M̂“
d[ �v“]t ]

t − 1
3 [Ĝ

“ : [M̂“
d[ �v“]t ]

t][Ĝ“]t = Ĉ[
e[ �v“]t · devŜ]

(55)

which allows the setup of a v. Mises-type function

pla�p([M̂d[ �v“]t ]
t; Ĝ“) := Ĝ“ dev[M̂ “

d [ �v“ ]t
]t I2 = Ĝ“ : [Ĉ[

e[ �v“]t · devŜ]]2 (56)

Finally, for completeness, we take the relation

dev“Ĝ“ := @[M̂“
d[ �v“ ]t

]t
dev[M̂“

d[ �v“]t ]
t = [Ĝ“]t �⊗ Ĝ“ − 1

3 [Ĝ
“]t ⊗ Ĝ“ (57)

into account, dev
“
Ĝ“ : [M̂“

d[ �v“]t ]
t = dev[M̂“

d[ �v“]t ]
t being obvious, and with these de�nitions at hand

the v. Mises-type model results in the associated evolution equation

L̂“
p = Dt�N̂“

[ �v“]t (N̂
“
d ; Ĉ

[
e[ �v“]t ; B̂

]
e)

with N̂“
d = @ dev[M̂“

d[ �v“ ]t
]t
pla�p : dev

“
Ĝ“=2 dev[M̂“

d[ �v“]t ]
t : [[Ĝ“]t ⊗ Ĝ“]

and Ĉ[
e[ �v“]t = [[�v“]t �⊗ [�v“]t] : [[F“

e ]
t · g[ ·F“

e ]

for [Â]]−1 ≡ [�v“]t · �G[ · �v“

and B̂]
e = f “e · g] · [f “e ]t

(58)

compare Equation (51).
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6. INTEGRATION OF THE EVOLUTION EQUATIONS

Let the time interval of interest be given by N time steps T=
⋃N

n=0[
nt; n+1t]. In the following

we highlight a strain driven staggered algorithm with respect to the Lagrange multiplier Dt�
and the variables F“

e ; Â]; �. Recall that loading and unloading have to be checked by each
trial step at n+1F“. Thereby, in view of the iteration for the Lagrange multiplier, usual scalar-
valued schemes can be applied, e.g. Newton’s method or regula-falsi-type algorithms. For
an outline of the numerical setting for multiplicative elasto-plasticity, we refer to References
[26, 33].
Owing to the non-coaxiality of the damage metric tensor and the correlated �ow direction—

for the general anisotropic framework—no exponential integration scheme as in the isotropic
case is conveniently available. Thus the simplest implicit integration technique, i.e. Euler
backward, is applied for both damage types throughout this contribution. In this context, we
obtain for the quasi isotropic setting

n+1Â]= nÂ] +	��1[ n+1Ẑ[ : n+1Â]] n+1Â] (59)

and concerning the general anisotropic case, one ends up with

n+1Â]= nÂ] +	��2 n+1Â] · n+1Ẑ[ · n+1Â] (60)

The application of di�erent higher order Runge–Kutta integration schemes in the present
context is discussed in Reference [29].
For the hardening variable, we once more adopt an Euler backward integration which results

in

n+1�= n�+	� 2
3 [Y0 −H ] (61)

Although plastic incompressibility is not a key issue here since plasticity is coupled to
continuum damage, we apply an exponential integration scheme for F“

p. The corresponding
evolution equation is constructed via Equations (28) and (58) and reads as

DtF“
p · f “p = L̂“

p =Dt�N̂“
[ �f “]t ⇒ DtF“

p =Dt�N̂“
[ �f “]t ·F“

p (62)

Based on this, straightforward application of the exponential integration scheme results in

n+1F“
p = exp(	� n+1N̂“

[ �f “]t ) · nF“
p ⇒ n+1f “p =

nf “p · exp(−	� n+1N̂
“
[ �f “]t ) (63)

see Reference [34]. In this direction, the elastic part of the deformation gradient allows the
representation

n+1F“
e =

n+1F“ · n+1f “p =
n+1F“

etri · exp(−	� n+1N̂
“
[ �f “]t ) (64)

whereby n+1N̂“
[ �f “]t

is obviously not coaxial to n+1Ĉ[
e = [

n+1F“
e]
t · g[ · n+1F“

e , compare Equa-
tions (52) and (58).
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With these integration schemes at hand, we are able to set up an outline of the applied
algorithm which reads for the above mentioned staggered approach as follows:

(Finite Element Method) for given n+1F“ do
if yie�p|n+1¿0 then

(scalar-valued iteration) dowhile | yie�p(	�)|n+1¿tol
	�= · · ·

(Newton-type method) dowhile ‖damR̂[‖+ ‖ plaR“‖+ | harR|¿tol
: : :

n+1Â]
k+1 =

n+1Â]
k +	Â

]

n+1F“
ek+1 =

n+1F“
ek +	F

“
e

n+1�k+1 = n+1�k +	�
enddo

enddo
endif

Here, we choose a modi�ed regula falsi scheme for the iteration of the Lagrange multiplier
and a Newton algorithm to compute the set of internal variables. This strategy results in the
following system of linear equation within each Newton iteration




damĴ“
Â]

damĴ
“
F“
e

plaJ“Â]
plaJ“F“

e

harJ�


 ◦



	Â]

	F“
e

	�


 =



− damR̂]

− plaR“

− harR


 (65)

whereby the notation ◦ denotes the appropriate type of contraction and additional abbreviations
have been introduced, in particular the residua

damR̂] = n+1Â]
k − nÂ] −	��2 n+1Â

]
k · n+1	̂]

k · n+1Â]
k

plaR“ = n+1F“
e k − n+1F“

etri · exp(−	� n+1N̂“
[f“]tk)

harR = n+1�k − n� −	� 2
3 [Y0 − n+1Hk]

(66)

and the Jacobians
damĴ“

Â] = @n+1Â]
k

damR̂]; damĴ“F“
e
= @n+1F“

e k

damR̂]

plaJ“
Â] = @n+1Â]

k

plaR“; plaJ“F“
e
= @n+1F“

e k

plaR“

harJ� = @n+1�k
harR

(67)

An outline on the ‘exact’ derivation of a Jacobian similar to plaJ“F“
e
is discussed by de

Souza Neto [35]. We nevertheless adopt a numerical perturbation scheme in this contribution
to compute the Jacobians for the subsequent numerical examples. Moreover, within a �nite
element setting, it turns out to be advantageous to apply this �nite di�erence approximation in
addition to the global tangent operator. For convenience of the reader, Appendix A reiterates
the adopted algorithm.
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Figure 2. Stereographic projection.

7. EXAMPLES

Within the following numerical examples, where we discuss the overall anisotropic behaviour
of the proposed framework, a typical compressible Neo–Hook material is adopted. In particular
we choose

dam p0 =
	
2
[ Ĉ

[
e Â

]
J1 − 3]− 	 ln( Ĉ[

e Â
]
J3) +

�
2
ln2( Ĉ[

e Â
]
J3) with

Ĉ[
e Â

]
J1 = 3 + 2 Ê[

e Â
]
I1

Ĉ[
e Â

]
J3 = 1 + 2 Ê[

e Â
]
I1 − 2 Ê[

e Â
]
I2 + 8

3
Ê[
e Â

]
I3 + 2 Ê[

e Â
]
I 21 − 4 Ê[

e Â
]
I1 Ê[

e Â
]
I2 + 4

3
Ê[
e Â

]
I 31

(68)

Moreover, concerning the hardening part of the free Helmholtz energy function, we account
for the established additive decomposition into a saturation-type contribution and a quadratic
term with respect to the scalar-valued hardening variable

har 0(�)
:=[Y∞ − Y0][�+ �−13 exp(−�3�)− �−13 ] +

1
2 �4�

2 (69)

with Y∞; Y0; �3;4 ∈R+ and Y∞¿Y0. The hardening stress consequently results in

H (�)= [Y0 − Y∞][1− exp(−�3�)]− �4� (70)

In order to highlight the principal directions of speci�c symmetric second order tensors,
like e.g. stress and strain, the method of stereographic projection is applied which is well-
known from crystallography and represents a homomorphism O3+→M2, see Figure 2 for an
illustration. Moreover, in case that two tensors—say Ê[

e and Ŝ]—are not coaxial, we can
compute a non-vanishing scalar

�(Ê[
e ; Ŝ

])=
‖Ĝ[ · Ŝ] · Ê[

e − Ê[
e · Ŝ] · Ĝ[‖

‖Ŝ]‖‖Ê[
e‖

(71)

which we call anisotropy measure. In addition, the preferred direction of the initial anisotropy
metric or rather damage metric tensor can be determined by spherical co-ordinates, say #1;2.
Assuming a Cartesian frame, one possible representation of AN
=

∑3
i=1

AN i

 ei ∈U2 reads as

AN 1

 = sin(#

1

) sin(#

2

);

AN 2

 = cos(#

2

);

AN 3

 = cos(#

1

) sin(#

2

) (72)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:2233–2266



2250 A. MENZEL AND P. STEINMANN

Figure 3. Simple shear, anisotropic elasto-plasticity: Kirchho� stress �]
and modi�ed Mandel stress [M̂“

d [ �v“]t ]
t .

7.1. Homogeneous deformation in simple shear

For the discussion of a homogeneous deformation in simple shear (F= I+ � e1⊗ e2 with re-
spect to a Cartesian frame ei and I= �ij ei ⊗ ej), the setting of anisotropic elasto-plasticity
and the coupling to quasi isotropic and anisotropic damage are considered. In both cases
the initial anisotropy, or rather damage metric Â]|t0 is assumed to be non-spherical. In
particular, we choose the anisotropy metric to be determined by the spherical co-ordinates
#11 =

5
6 �; #21 =

1
6 �; #12 =

1
3 �; #22 =

1
2 � and the scalars �0 = 1; �1 = 1=4; �2 = 1=2, see Equa-

tions (21) and (72). Thus, from the beginning, the elastic behaviour is anisotropic. The mate-
rial parameters for the Neo–Hook material, Equation (68), are assumed as 	=104; �=103.
Moreover, let the hardening part be determined by Y0 = 103; Y∞=2× 103 and
�3;4 = 10.
It is clearly seen in the subsequent numerical examples that the evolution of the deviatoric

norm of the modi�ed Mandel tensor ‖dev[M̂“
d [ �v“]t ]

t‖, which essentially enters the yield function,
displays a typical saturation e�ect. Contrary, due to the incorporated continuum damage, the
corresponding norm of the spatial Kirchho� stress ‖dev�]‖, decreases. In the sequel, components
of tensorial �elds refer to Cartesian frames, e.g. [•]ij= ei · [•]] · e j.

7.1.1. Anisotropic elasto-plasticity. To set the stage, we �rstly discuss a purely elasto-plastic
body whereby no damage evolution takes place, �1;2 = 0. In this context, Figures 3–5 highlight
the overall anisotropic behaviour. Representative properties of the Kirchho� stress and the non-
symmetric, modi�ed Mandel tensor are given in Figure 3. The anisotropy measure in terms
of strain and stress, �(Ê[

e ; Ŝ]), shows a strong dependence on the shear number � and, due
to the fact that no damage evolution is incorporated, all eigenvalues of the anisotropy metric
remain constant during the deformation process, see Figure 4. In addition, the non-coaxiality
of stress and strain is highlighted in Figures 5 for di�erent shear numbers � by applying
the method of stereographic projection. Next, we reverse the shear direction and consider
unloading=reloading with respect to the deformation history �∈ [0→ 1; 1→ 0]. Figures 6 and
7 monitor the contributions of the Kirchho� stress, the modi�ed Mandel stress, the anisotropy
measure and the damage eigenvalues which are trivially constant for the considered setting.
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Figure 4. Simple shear, anisotropic elasto-plasticity: Anisotropy measure �(Ê[
e ; Ŝ]) and eigenvalues

of the anisotropy metric Â]
�1; 2; 3.

Figure 5. Simple shear, anisotropic elasto-plasticity: Stereographic projection of
strain (Ê[

e : •) and stress (Ŝ] : ∗).

Figure 6. Simple shear, anisotropic elasto-plasticity: Kirchho� stress �] and
modi�ed Mandel stress [M̂“

d[ �v“]t ]
t .

Against intuition, we do not observe an exclusive reloading behaviour as experienced in
an isotropic setting, i.e. Â] ∝ Ĝ]. Apparently, this immediate loading e�ect results from the
incorporated anisotropy and the comparatively small threshold. Finally, in analogy to Figure 5
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Figure 7. Simple shear, anisotropic elasto-plasticity: Anisotropy measure �(Ê[
e ; Ŝ

]
) and eigenvalues

of the anisotropy metric Â]
�1; 2; 3.

Figure 8. Simple shear, anisotropic elasto-plasticity: Stereographic projection of
strain (Ê[

e : •) and stress (Ŝ] : ∗).

we discuss the evolution of the principal directions of strain and stress for reverse loading
within the shear interval �∈ [0→ 2:5; 2:5→ 0:1], see Figure 8.

7.1.2. Anisotropic elasto-plasticity coupled to quasi isotropic damage. Next, we consider the
coupling to quasi isotropic damage, with �1 = 102 and �2 = 0. Similar to the previous setting,
Figure 9 monitors the Kirchho� stress and the non-symmetric, modi�ed Mandel tensor. Now
the eigenvalues of the damage metric decrease, see Figure 10. Apparently, these eigenvalues,
Â]
�1;2;3, are uniformly scaled down during the deformation process which is due to the nature
of quasi isotropic damage evolution. Moreover, Figure 11 highlights the non-commutativity
of strain and stress for di�erent shear numbers � and the case of reverse loading is visualised
in Figures 12–14 in analogy to Section 7.1.1.

7.1.3. Anisotropic elasto-plasticity coupled to anisotropic damage. Lastly, we take aniso-
tropic damage evolution into account with �1 = 0 and �2 = 102. Figures 15–22 highlight the
corresponding results in analogy to the previous settings. Please note that besides �(Ê[

e ; Ŝ])
Figures 16 and 20 monitor the anisotropy measure �(Â]; Â]|t0) which underlines the evolution
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Figure 9. Simple shear, anisotropic elasto-plasticity coupled to quasi isotropic damage: Kirchho� stress
�] and modi�ed Mandel stress [M̂“

d [ �v“]t ]
t .

Figure 10. Simple shear, anisotropic elasto-plasticity coupled to quasi isotropic damage: Anisotropy
measure �(Ê[

e ; Ŝ]) and eigenvalues of the damage metric Â]
�1; 2; 3.

Figure 11. Simple shear, anisotropic elasto-plasticity coupled to quasi isotropic damage: Stereographic
projection of strain (Ê[

e : •) and stress (Ŝ] : ∗).

of the principal axes of the damage metric. Furthermore, due to the nature of anisotropic
damage, the eigenvalues of the damage metric now degrade di�erently during the deformation
process. The same e�ect is clearly re�ected by the method of stereographic projection in
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Figure 12. Simple shear, anisotropic elasto-plasticity coupled to quasi isotropic damage: Kirchho� stress
�] and modi�ed Mandel stress [M̂“

d [ �v“]t ]
t .

Figure 13. Simple shear, anisotropic elasto-plasticity coupled to quasi isotropic damage: Anisotropy
measure �(Ê[

e ; Ŝ]) and eigenvalues of the damage metric Â]
�1; 2; 3.

Figure 14. Simple shear, anisotropic elasto-plasticity coupled to quasi isotropic damage: Stereographic
projection of strain (Ê[

e : •) and stress (Ŝ] : ∗).

Figures 18 and 22 where the contributions of the actual damage metric Â] are compared to
the initial damage metric Â]|t0 . Similar to the previous examples, Figures 17 and 21 visualize
the non-coaxiality of strain and stress for di�erent shear numbers �.
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Figure 15. Simple shear, anisotropic elasto-plasticity coupled to anisotropic damage: Kirchho� stress
�] and modi�ed Mandel stress [M̂“

d [ �v“]t ]
t .

Figure 16. Simple shear, anisotropic elasto-plasticity coupled to anisotropic damage: Anisotropy
measure �(Ê[

e ; Ŝ]); �(Â]; Â]|t0 ) and eigenvalues of the damage metric A]
�1; 2; 3.

Figure 17. Simple shear, anisotropic elasto-plasticity coupled to anisotropic damage: Stereographic
projection of strain (Ê[

e : •) and stress (Ŝ] : ∗).
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Figure 18. Simple shear, anisotropic elasto-plasticity coupled to anisotropic damage: Stereographic
projection of the actual damage metric (Â] : •) and the initial damage metric (Â]|t0 : ∗).

Figure 19. Simple shear, anisotropic elasto-plasticity coupled to anisotropic damage: Kirchho� stress �]

and modi�ed Mandel stress [M̂
“
d [ �v“]t ]t .

Figure 20. Simple shear, anisotropic elasto-plasticity coupled to anisotropic damage: Anisotropy measure
�(Ê[

e ; Ŝ]); �(Â]; Â]|t0 ) and eigenvalues of the damage metric A]
�1; 2; 3.
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Figure 21. Simple shear, anisotropic elasto-plasticity coupled to anisotropic damage: Stereographic
projection of strain (Ê[

e : •) and stress (Ŝ] : ∗).

Figure 22. Simple shear, anisotropic elasto-plasticity coupled to anisotropic damage: Stereographic
projection of the actual damage metric (Â] : •) and the initial damage metric (Â]|t0 : ∗).

7.1.4. Numerical aspects. As mentioned in Section 6, we applied a regula-falsi-type algorithm
for the iteration for the Lagrange multiplier and Newton’s method based on approximated
Jacobians for the damage and plastic contributions and the exact Jacobian for the hardening
part. Concerning the scalar-valued iteration scheme for the Lagrange multiplier, one has to
make a choice for two initial values in order to start the computation. The trial guess zero
is obvious but the second value a�ects the convergence of the iteration. Table I highlights
this in�uence within the setting of anisotropic elasto-plasticity coupled to anisotropic damage

evolution for the rather large load step �∈ [0; 0:5] whereby ‖R‖ abbreviates the sum ‖damR̂]‖+
‖ plaR“‖.
Moreover, the convergence of the Newton algorithm inside each regula-falsi step is cru-

cially a�ected by the incorporated perturbation parameter 
 for the numerically approximated
Jacobians, compare Appendix A. Within the above examples, the chosen machine precision
corresponds to a storeup of 16 digits. The in�uence of the perturbation parameter is given in
Table II within the load step �∈ [0; 0:5].

7.2. Stamping of a sheet

Within the subsequent �nite element setting we account for anisotropic elasto-plasticity cou-
pled to anisotropic damage evolution whereby the chosen set of material parameters is identical
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Table I. In�uence of di�erent initial values for 	�1 on the convergence of the regula-falsi-type iteration
for the Lagrange multiplier within the load step �∈ [0; 0:5].

	�1 yie�p 	�1 yie�p 	�1 yie�p

No. 0.000 E− 16 2.068 E + 08 0.000 E− 16 2.068 E + 08 0.000 E− 16 2.068 E + 08

1 1.000 E− 06 1.018 E + 08 1.000 E− 05 2.803 E + 07 1.000 E− 04 1.325 E + 06
2 1.969 E− 06 7.710 E + 07 1.156 E− 05 2.482 E + 07 1.010 E− 04 1.301 E + 06
3 4.995 E− 06 4.640 E + 07 2.369 E− 05 1.246 E + 07 1.370 E− 04 3.621 E + 05
4 9.569 E− 06 2.905 E + 07 3.591 E− 05 7.704 E + 06 1.500 E− 04 1.282 E + 05
5 1.722 E− 05 1.726 E + 07 5.570 E− 05 4.217 E + 06 1.580 E− 04 1.955 E + 04
6 4.454 E− 05 1.017 E + 07 7.963 E− 05 2.259 E + 06 1.590 E− 04 1.260 E + 03
7 6.607 E− 05 5.821 E + 06 1.070 E− 04 1.079 E + 06 1.600 E− 04 1.335 E + 01
8 9.232 E− 05 3.198 E + 06 1.330 E− 04 4.418 E + 05 1.600 E− 04 9.230 E− 03
9 1.200 E− 04 1.628 E + 06 1.500 E− 04 1.351 E + 05 1.600 E− 04 1.752 E− 03
10 1.420 E− 04 7.330 E + 05 1.580 E− 04 2.416 E + 04 1.600 E− 04 4.346 E− 07
11 1.550 E− 04 2.679 E + 05 1.590 E− 04 1.631 E + 03
12 1.590 E− 04 6.663 E + 04 1.600 E− 04 2.128 E + 01
13 1.600 E− 04 8.115 E + 03 1.600 E− 04 1.902 E− 02
14 1.600 E− 04 2.836 E + 02 1.600 E− 04 3.610 E− 03
15 1.600 E− 04 1.255 E + 00 1.600 E− 04 1.141 E− 06
16 1.600 E− 04 8.920 E− 04 1.600 E− 04 1.711 E− 09
17 1.600 E− 04 1.690 E− 04
18 1.600 E− 04 1.202 E− 08

Table II. In�uence of di�erent perturbation factors 
 on the convergence of the local Newton iteration
within the load step �∈ [0; 0:5] for 	�1 = 10−4.

‖R‖ for 
=10−12 ‖R‖ for 
=10−8 ‖R‖ for 
=10−4

No. step 1 step 2 step 1 step 2 step 1 step 2

1 2.970 E + 01 3.264 E− 06 2.995 E + 01 3.451 E− 06 3.001 E + 01 9.142 E− 06
2 7.390 E + 01 2.570 E− 09 7.397 E + 01 1.584 E− 11 7.448 E + 01 1.522 E− 08
3 9.324 E + 00 9.383 E + 00 9.366 E + 00
4 7.997 E− 01 6.915 E− 01 6.663 E− 01
5 1.296 E− 01 1.217 E− 01 1.191 E− 01
6 3.985 E− 03 3.525 E− 03 3.360 E− 03
7 4.920 E− 06 4.418 E− 06 5.030 E− 06
8 1.405 E− 09 1.889 E− 12 1.771 E− 09

to that in Section 7.1.3 but �2 = 10. The considered specimen consists of a plate-like structure
of dimensions 10× 10× 0:5 and a rigid square block with a cross-sectional area 2:5× 2:5, see
Figure 23. The discretization of the plate is performed by 16× 16× 8 enhanced eight node
bricks, Q1E9, as advocated by Simo and Armero [36]. Boundary conditions and the applied
loading are given in Figure 24.
A typical necking behaviour is indicated by the load-displacement curve in Figure 25.

Furthermore, the subsequent plots refer to a deformation ‖u‖=1:46 which is almost triple
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Figure 23. Anisotropic elasto-plasticity coupled to anisotropic damage evolution: Geometry and
discretization of the specimen.

Figure 24. Anisotropic elasto-plasticity coupled to anisotropic damage evolution: Boundary conditions
and loading of the specimen.

of the plate thickness. Figure 26 monitors the distribution of the deviatoric norm of the
Kirchho� stress ‖ dev�]‖. In addition, one quarter of the body is zoomed. Even though geom-
etry, boundary conditions and loading imply certain symmetries, the response of the spec-
imen is completely non-symmetric which is due to the incorporated anisotropies. Appar-
ently, the property of the contribution of the deviatoric norm of the modi�ed Mandel stress
‖dev[M̂“

d [ �v“]t ]
t‖ is di�erent from those of the Kirchho� stress, see Figure 27. The smallest

eigenvalue of the damage metric tensor is visualized in Figure 28. Please note that Â]
�1

boils down from 1.00 to 0.55 which underlines a high degree of damage evolution. A typi-
cal indicator for anisotropy is the anisotropy measure �(Ê[

e ; Ŝ]) as highlighted in Figure 29.
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Figure 25. Anisotropic elasto-plasticity coupled to anisotropic damage
evolution: Load-displacement curve.

Figure 26. Anisotropic elasto-plasticity coupled to anisotropic damage evolution: Deviatoric norm
of the Kirchho� stress ‖ dev�]‖.

Figure 27. Anisotropic elasto-plasticity coupled to anisotropic damage evolution: Deviatoric norm
of the modi�ed Mandel stress ‖ dev[M̂“

d [ �v“]t ]
t‖.
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Figure 28. Anisotropic elasto-plasticity coupled to anisotropic damage evolution:
Smallest damage eigenvalue Â]

�1.

Figure 29. Anisotropic elasto-plasticity coupled to anisotropic damage evolution:
Anisotropy measure �(Ê[

e ; Ŝ]).

Moreover, the evolution of the principal axes of the damage metric is represented via the non-
vanishing scalar �(Â]; Â]|t0) which allows interpretation as representing deformation induced
anisotropy, see Figure 30. Finally the contributions of the hardening variable � are monitored
in Figure 31.

7.2.1. Numerical aspects. As previously mentioned, we numerically approximated the algo-
rithmic tangent operator within the �nite element setting, compare Appendix A. In this con-
text, Table III monitors the dependence of the global convergence, ‖R‖, of the �nite element
scheme on the perturbation factor 
, similar to Section 7.1.4. Thereby we choose one load
step that results from ‖u‖=0 in ‖u‖=0:34 and Â]

�1 ∈ [1; 0:98] whereby the computations
have been performed with the arc-length method. Recall that the applied machine precision
corresponds to 16 decimal precisions.
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Figure 30. Anisotropic elasto-plasticity coupled to anisotropic damage evolution:
Anisotropy measure �(Â]; Â]|t0 ).

Figure 31. Anisotropic elasto-plasticity coupled to anisotropic damage evolution: Hardening variable �.

Table III. In�uence of di�erent perturbation factors 
 on the convergence
of the global Newton iteration within the load step ‖u‖∈ [0; 0:34].


=10−12 
=10−8 
=10−4

No. ‖R‖ ‖R‖ ‖R‖
1 2.6998 E + 03 2.6983 E + 03 2.6985 E + 03
2 6.8412 E + 02 6.7962 E + 02 6.8185 E + 02
3 5.9166 E + 01 5.1878 E + 01 5.1816 E + 01
4 2.4510 E + 00 1.0577 E + 00 1.0275 E + 00
5 1.4148 E− 01 2.0344 E− 02 2.0650 E− 02
6 1.2744 E− 02 8.3972 E− 07 2.4782 E− 04
7 7.6180 E− 04 2.7513 E− 09 3.2112 E− 05
8 4.7580 E− 05 4.5746 E− 06
9 5.2422 E− 06 6.5566 E− 07
10 1.1622 E− 06 9.4023 E− 08
11 1.3666 E− 07 1.3699 E− 08
12 1.8831 E− 08
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8. SUMMARY

The main goal of this contribution was the development of a framework for geometrically
non-linear, anisotropic inelasticity with special emphasis on continuum damage coupled to
plasticity. As the key idea, �ctitious isotropic con�gurations have been introduced which
are determined by �ctitious linear tangent maps. Thus, we practically dealt with a reduced
representation of orthotropy which is, nevertheless, of crucial importance for engineering ap-
plications.
The corresponding Finger-type tensor, in terms of a �ctitious linear tangent map, was used

as a damage metric which allowed to incorporate initial anisotropy as well as deformation
induced anisotropy. Conceptually speaking, the applied covariance relation corresponds to the
postulate of strain energy equivalence.
Then, for the coupling to plasticity, another �ctitious con�guration for the yield function

has been introduced. Thereby, a speci�c kinematical assumption de�nes a stress tensor of
Mandel-type which enters the yield function with respect to the intermediate con�guration of
multiplicative elasto-plasticity. This particular stress tensor accounts, in view of the plasticity
framework, for anisotropy and degradation.
Within the outline of the applied numerical setting, the integration of the obtained evolu-

tion equations has been highlighted in detail whereby simple Euler backward and exponential
schemes have been adopted. Summarizing, it turns out that the considered anisotropic frame-
work results in a manageable numerical setting which is a main advantage of the proposed
formulation. Concerning future research, the incorporation of an appropriate regularization
technique will be of main importance.
In conclusion, this contribution aims at the clari�cation of how to formulate and to

computationally treat anisotropic second-order continuum damage coupled to plasticity within
a geometrically non-linear setting in a kinematically and thermodynamically consistent
way.

APPENDIX A: APPROXIMATION OF JACOBIANS

For a general outline on approximation schemes for Jacobians, typically within a Newton
iteration, we refer to Denis and Schnabel Reference [37]. This technique has been applied to a
�nite element setting under large, inelastic deformations by Miehe [38]. Recently, P
erez-Foguet
et al. [39, 40] discussed this method within small strain, inelastic �nite element applications
and placed special emphasis on—what we call—the local and global iteration. Here, we adopt
the outline given by Miehe [38]—on the local and global level—and end up with the algorithm
highlighted in Table A1. Thereby, we have chosen an Eulerian setting for the algorithmic
tangent operator within a �nite element setting and S[(k; l); S] (k); �̂[

(l); �̂
] (k; l) denote admissible

base vectors in Bt and Bp, respectively, with i; j; (k); (l)=1; 2; 3. The numerical computation
of the Jacobians damĴ“F“

e
and plaJ“Â] is similar to the outline given in Table A1 and the exact

format of harJ� is obvious.
In order to underline that the numerical approximation of the Jacobians is appropriate for

the presented framework, we give an example of the exact, analytical evaluation of one single
fourth order contribution. Thus, the derivation of the ‘simplest’ Jacobian damĴ“

Â] is highlighted.
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Table A1. Numerical approximation of Jacobians (
1; 2; 3�1).

Numerical derivatives wrt Â]

n+1Â(kl)
1 = n+1Â] + 
1�̂] (k)⊗ �̂] (l)

damR̂
(kl)

1 = damR̂ ( n+1Â

(kl)

1 ; : : :)

dam Ĵ
ij
Â] (kl) 
1

= [damR̂
ij(kl)

1 − damR̂

ij
]=
1

Numerical derivatives wrt F“
e

n+1F(k)e 
2 (l) =
n+1F“

e + 
2S] (k)⊗ �̂[
(l)

plaR(k)
2 (l)
= plaR( n+1F(k)e 
2 (l); : : :)

plaJ i (l)
F“
e j(k)
2

= [plaRi (k)

2j (l)

− plaRi
j]=
2

Algorithmic tangent operator

n+1F
3 (kl) =
n+1F“ +


3
2
[[g] · S[(k)]⊗ [S[(l) · F“] + [g] · S[(l)]⊗ [S[(k) ·F“]]

n+1�
3 (kl) =
n+1�( n+1F
3 (kl); : : :)

algeij(kl)
3 = [�ij
3 (kl) − �ij]=
3 − [gik� jl + gil� jk + �ikg jl + �ilg jk ]=2

In the case of quasi isotropic damage evolution, we obtain

damĴ“
Â] = [1−	��1 n+1Ẑ[ : n+1Â]] symĜ“

−	��1 n+1Â] ⊗ [ n+1Ẑ[ − n+1Â] : @2n+1Â] ⊗ n+1Â] 
p
0 ] (A1)

and anisotropic damage results in

damĴ“
Â] =

sym]
Ĝ“ +	��2[ n+1Â] �⊗ n+1Â]] : @2n+1Â] ⊗ n+1Â] 

p
0

−	��1[Ĝ“ �⊗ [ n+1Â] · n+1Ẑ[]Ĝ“ ⊗ [ n+1Â] · n+1Ẑ[]]SYM (A2)

with

sym]
Ĝ“= 1

2[Ĝ
“ �⊗ Ĝ“ + Ĝ“ ⊗ Ĝ“] (A3)

whereby the non-standard dyadic products read (with respect to a Cartesian frame)

[•]ij �⊗ [◦]kl=[•]ik[◦]jl; [•]ij ⊗ [◦]kl=[•]il[◦]jk (A4)

and the major symmetry operation is de�ned as 2[•]SYMijkl =[•]ijkl + [•]klij, respectively.
Moreover, the evaluation of the incorporated Hessian yields after some straightforward
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computations

@2
n+1Â] ⊗ n+1Â] p0 = @2Ê[Â] I1 Ê[Â] I1

 p0 Ê
[ ⊗ Ê[

+4@2Ê[Â] I2 Ê[Â] I2
 p0 [Ê

[ · Â] · Ê[]⊗ [Ê[ · Â] · Ê[]

+ 9@2Ê[Â] I3 Ê[Â] I3
 p0 [Ê

[ · Â] · Ê[ · Â] · Ê[]⊗ [Ê[ · Â] · Ê[ · Â] · Ê[]

+ 4@2Ê[Â] I1 Ê[Â] I2
 p0 [Ê

[ ⊗ [Ê[ · Â] · Ê[]]SYM

+12@2Ê[Â] I2 Ê[Â] I3
 p0 [[Ê

[ · Â] · Ê[]⊗ [Ê[ · Â] · Ê[ · Â] · Ê[]]SYM

+6@2Ê[Â] I1 Ê[Â] I3
 p0 [Ê

[ ⊗ [Ê[ · Â] · Ê[ · Â] · Ê[]]SYM

+ @Ê[Â] I2
 p0 [Ê

[ �⊗ Ê[ + E] ⊗ Ê[]

+ 3@Ê[Â] I3
 p0 [Ê

[ �⊗ [Ê[ · Â] · Ê[] + Ê[ ⊗ [Ê[ · Â] · Ê[]]SYM (A5)

For the chosen prototype model, the Neo–Hookian part dam p0 is highly non-linear in Ê
[ and

Â]. Thus is turns out that the numerical approximation of the Jacobian in Equations (A1) and
(A2), and apparently the approximation of the other fourth order Jacobians in Equation (67)
as well, is not immoderately expensive compared to the exact computation.

ACKNOWLEDGEMENTS

Financial support from the Stiftung Rheinland-Pfalz f�ur Innovation under research grant 8312-38 62
61/378 is gratefully acknowledged.

REFERENCES

1. Leckie FA, Onat ET. Tensorial nature of damage measuring internal variables. In Physical Non-Linearities in
Structural Analysis, Hult J, Lemaitre J (eds), IUTAM Symposium Senlis=France 1980. Springer: Berlin, 1981;
140–155.

2. Betten J. Representation of constitutive equations in creep mechanics of isotropic and anisotropic materials.
In Creep in Structures, Ponter ARS, Hayhurst DR (eds), IUTAM Symposium Leicester=UK 1980. Springer:
Berlin, 1981; 179–201.

3. Murakami S. Mechanical modeling of material damage. Journal of Applied Mechanics (ASME) 1988; 55:
280–286.

4. Kattan PI, Voyiadjis GZ. A coupled theory of damage mechanics and �nite strain elasto-plasticity—I. Damage
and elastic deformations. International Journal of Engineering Science 1990; 28(5):421–435.

5. Steinmann P, Carol I. A framework for geometrically nonlinear continuum damage mechanics. International
Journal of Engineering Science 1998; 36:1793–1814.

6. Hansen NR. Schreyer HL. A thermodynamically consistent framework for theories of elastoplasticity coupled
with damage. International Journal of Solids and Structures 1994; 31(3):359–389.

7. Voyiadjis GZ, Park T. The kinematics of damage for �nite-strain elasto-plastic solids. International Journal of
Engineering Science 1999; 37:803–830.

8. Menzel A, Ekh M, Steinmann P, Runesson K. Anisotropic damage coupled to plasticity: Modelling based
on the e�ective con�guration concept. International Journal for Numerical Methods in Engineering 2002;
54(10):1409–1430.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:2233–2266



2266 A. MENZEL AND P. STEINMANN
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