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Abstract. The random load carrying capacity of steel plane frames with bracing stiffness is studied. The load carrying ca-

pacity is evaluated using the geometrically non-linear FEM analysis. The incremental stiffness matrix of a slightly curved 

element utilized in the non-linear incremental analysis is listed. Initial imperfections are considered as random variables. 

Statistical analysis and Sobol sensitivity analysis are performed using the Latin Hypercube Sampling method. The effect 

of initial random imperfections on the load carrying capacity is studied, whilst assuming constant slenderness of the col-

umns. The evaluation parameters are the pair of non-random values of elastic bracing stiffness, and system length of the 

columns. The paper illustrates that the load carrying capacity is very sensitive to initial crookedness of the columns in the 

event that the non-sway (symmetric) and sway (anti-symmetric) buckling modes coincide. In this case, the design load 

carrying capacity obtained from statistical analysis according to the EN 1990 (2002) standard is relatively very small (of 

low safety). Results show that the reliability of design of a steel frame according to EUROCODE 3 (1993) is significantly 

misaligned. The significance of the first and the second buckling forces as indicators of sensitivity of the load carrying ca-

pacity to the imperfections is discussed. 

Keywords: frame, steel, stability, strength, imperfections, failure, nonlinear, limit states, reliability, design. 

 

1. Introduction 

Columns and beams are the most fundamental members 

that require consideration in stability design of steel 

structures. There is a long history of investigation into 

steel column buckling problems, and hence an extensive 

body of past research literature, both theoretical and ex-

perimental (Bjorhovde 2010). The design of slender col-

umns and frames is currently based on the critical load 

for elastic buckling, and on the reduction factor (derived 

from the critical load) for the relevant buckling curve. 

Such analysis, however, does not provide uniform safety 

factors for columns or frames of different types, e.g., see 

(Bazant, Xiang 1997).  

The influence of random initial imperfections on the 

random load carrying capacity of a symmetric portal 

frame, see Fig. 1, is analysed in the presented article. The 

consideration of geometrical non-linearity is inevitable. 

The value of stiffness K of cross elastic bracing deter-

mines whether it is a frame with sway columns (K is 

small) or non-sway columns (K is large). A further com-

putational parameter is the system length of column h. K 

and h are non-random parameters. K and h for which the 

non-dimensional slenderness of columns is constant were 

considered. 

The presented article is connected with the results of 

stochastic analysis of reliability of steel portal frames 

(Kala 2011a). The load carrying capacity is studied using 

methods of stochastic and sensitivity analyses (Saltelli 

et al. 2004). Pertinent to the ultimate limit state, the de-

sign buckling resistance of a compression column Nb,Rd 

(design load carrying capacity) of EUROCODE 3 (1993) 

is verified by means of statistical analysis according to 

standard EN 1990 (2002). EN 1990 (2002) describes the 

principles and requirements for safety, serviceability and 

durability of structures. It is based on the limit state con-

cept used in conjunction with the partial factor method. 

 

 
Fig. 1. Symmetric rectangular frame 

 
2. Critical loads and buckling mode of perfect frame 

Let us consider a perfect frame, Fig. 1, with constant 

value of non-dimensional slenderness of columns 

9.0=λ . Let us seek all pairs K and h for which 

9.0=λ holds. The result is illustrated in Fig. 2. 
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Fig. 2. Bracing stiffness K vs. system length h 

 

Since λ  is constant, hence the first critical load of 
the perfect frame is Fcr1 = 968.1 kN, and corresponding 
buckling length of the columns Lcr = 7.703 m. The second 
critical load Fcr2 decreases with increasing system length 
h and it holds that Fcr2 ≥  Fcr1, see Fig. 3.  

 

 
Fig. 3. Critical loads Fcr1, Fcr1 vs. h 

 
A certain critical bracing stiffness K = 350 kNm–1 

and height h = 10 m exist for which the critical loads for 
the sway (anti-symmetric) and non-sway (symmetric) 
buckling modes coincide Fcr1= Fcr2=968.14 kN, see 
Fig. 4. 

From the perspective of dimensioning, we may dis-
tinguish between frames with sway columns if Lcr < h and 

 

 
Fig. 4. Sway and non-sway buckling modes  

 

frames with non-sway columns if Lcr > h, see Fig. 2. Let 
us denote PE = (π 2/ h2)EI = Euler load (critical load of a 
pin-ended column) where E is Young’s modulus of the 
columns and I is the second moment of area of the col-
umns. For sway columns, it holds that PE ≤  Fcr1, and for 
non-sway columns 0 ≤PE. 

For 0.9,λ =  it should hold that h ≤ 10 m. If 

h > 10 m, then 9.0>λ  even if maximum stiffness of 
∞=K  is considered, (i.e. movement of the column tip is 

completely prevented). For h > 10 m and ∞=K , we 

obtain symmetric frame buckling, and the value of λ  
cannot be brought closer to the value of 0.9 through in-

crease of the stiffness K. It thus holds that for all 9.0=λ  

K 350;0∈ kNm–1, see Fig. 2. 

The dependences of K versus h for other λ  values 
were determined analogously, see Fig. 5. The point in the 
middle of the curve has h equal to the buckling length for 

corresponding λ , see Fig. 5. In Fig. 5 the part of the 
curve is worth noticing for which the value of K is ap-
proximately constant. In practice, it means that, for cer-
tain values of K, we can find more values of h such that 

λ  is approximately constant. 
 

 
Fig. 5. Bracing stiffness K vs. h 

 
3. Problem formulation  

EUROCODE 3 (1993) determines Nb,Rd with the aid of 
stability analysis with buckling length. The aim of the 
study is the verification of the design buckling resistance 
Nb,Rd statistically evaluated according to EN 1990 (2002). 

Let us assume that λ  is constant, Nb,Rd is therefore also 
constant. 

EN 1990 (2002) enables the evaluation of the design 
load carrying capacity using statistical analysis of the 
random load carrying capacity. The random variability of 
the load carrying capacity is due to the random variability 
of initial imperfections. The design load carrying capacity 
for βd = 3.8 is, in practice, obtained as 0.1 percentile (Ka-
la et al. 2009, 2010; Kala 2011a). Let us denote the 0.1 
percentile of the load carrying capacity as Nb,0.1. Let us 
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select constant λ  and consider a set of pairs K and h, see 
Fig. 5. For each pair K and h, statistical analysis of the 
load carrying capacity is worked out, and design value 
Nb,0.1 is evaluated. 

In the event that Nb,0.1 is higher than Nb,Rd, then 
analysis according to EUROCODE 3 (1993) is safe but 
not very economical, on the contrary, the analysis is eco-
nomical but not very safe. In accordance with EN 1990 
(2002), the design may be considered as optimally safe 
and economical if Nb,Rd = Nb,0.1. 

 
4. Initial random imperfections  

Statistical characteristics of out-of-plumb inclinations 
(sway imperfections) Θ1, Θ2 and initial crookedness of 
the columns (bow imperfections) e1, e2 were derived in 
Kala (2011a, b), see Fig. 6. 

 

  
Fig. 6. Sway and bow random imperfection  

 
Experimentally obtained cross-section geometry and 

material characteristics of steel products manufactured by 
a dominant Czech producer (Melcher et al. 2004; Kala 
et al. 2009) were used in the presented study. For non-
measured quantities (e.g., Young’s modulus), the study 
was based on data obtained from technical literature; e.g., 
statistical characteristics of Young’s modulus are given in 
Soares (1988). 

Input variables Xi of the left frame column include 
yield strength fy1, cross-sectional height h1, cross-
sectional width b1, web thickness tw1, flange thickness tf1, 
and Young’s modulus E1. Input variables of the right 
frame column are fy2, h2, b2, tw2, tf2, E2. Input variables of 
the cross beam are fy0, h0, b0, tw0, tf0, E0. 

The input random variables (input random imperfec-
tions) are clearly listed in Table 1. All input random vari-
ables are statistically independent. 

 
Table 1. Input random variables 

Member Symbol Mean St. deviation 

LC h1* 220.20 mm 0.9731 mm 

LC b1* 111.53 mm 1.0855 mm 

LC tw1* 6.22 mm 0.2304 mm 

LC tf1* 9.13 mm 0.4219 mm 

LC E1** 210 GPa 10.5 GPa 

LC fy1* 297.3 MPa 16.8 MPa 

LC e1* 0 0.76533 h 

CB h0* 270.24 mm 1.194 mm 

 

Continue of Table 1 

Member Symbol Mean St. deviation 

CB b0* 136.88 mm 1.3322 mm 

CB tw0* 6.96 mm 0.2577 mm 

CB tf0* 10.13 mm 0.4678 mm 

CB E0** 210 GPa 10.5 GPa 

CB fy0* 297.3 MPa 16.8 MPa 

RC h2* 220.20 mm 0.9731 mm 

RC b2* 111.53 mm 1.0855 mm 

RC tw2* 6.22 mm 0.2304 mm 

RC tf2* 9.13 mm 0.4219 mm 

RC E2** 210 GPa 10.5 GPa 

RC fy2* 297.3 MPa 16.8 MPa 

RC e2* 0 0.76533 h 

System Θ1** 0 (Kala 2011b) 

System Θ 2** 0 (Kala 2011b) 

* Histogram, ** Gauss pdf, 

   LC left column, CB cross beam, RC right column 

  
5. Geometrical non-linear analysis 

A comprehensive description of the major methodologies 
of non-linear finite element analysis for solid mechanics, 
as applied to continua and structures, is listed in (Be-
lytschko et al. 2001). Information for structural engineers 
covering the complete field of finite element analysis in 
solid mechanics is listed, e.g. (Bathe 1982; Němec et al. 
2010). Let us describe some aspects of the geometrical 
non-linear analysis that was applied. 

The frame geometry was meshed using beam ele-
ments with initial curvature in the form of a 3rd degree 
parabola, see Fig. 7. The solution is based on the assump-
tion that the material is perfectly elastic, and that shear 
deformations are negligible. 

 

 
Fig. 7. Beam element with small initial curvature 

 
If the structure is loaded with such a large load that 

deformations and rotations of elements are large but rela-
tive deformations are small, it is expedient to add the load 
effect in small incremental steps, so that linear relations 
may be used in each loading step. Let us describe the first 
two steps of the Euler incremental method. 

Let us consider the first loading step and a frame 
with initial imperfections. The frame deformation is eval-
uated according to the linear theory of FEM. Further 
FEM analysis is applied to the frame with deformed ge-
ometry, and internal forces and moments are obtained. 
Conditions of equilibrium are thus fulfilled on the de-
formed structure. 
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Fig. 8. Vectors 
Tf and 

T
u  

 
Let us consider the second loading step. Each beam 

element is loaded by internal forces and moments from 
the first loading step. Stiffness of the ith element is influ-
enced by force Hm and moments Ma0, Mb0, see Fig. 8. The 
displacement vector of end nodes of the beam element 
has the form (1), and nodal forces and bending moments 
are written in the vector (2) (see Fig. 8):  

 { }
bbbaaa

T vuvuu ϕϕ ,,,,,= ; (1) 

 { }
bbbaaa

T MTHMTHf ,,,,,= . (2) 

The dependence between vectors (1) and (2) is de-
scribed using the incremental stiffness matrix kf:  

 .fk u f=  (3) 

The incremental stiffness matrix kf is composed of 
the elastic stiffness matrix kf0 and the geometric stiffness 
matrix kG (see Eqs (4), (5) and (6)).  

 Gff kkk +=
0

. (4) 

The elastic stiffness matrix kf is rewritten for utiliza-
tion in the geometrical non-linear solution, so that it con-
tains the tensile stiffness EA/L and bending stiffness EI/L 
of the unloaded member of length L, area A, the second 
moment of area I, and Young modulus E, see Fig. 7. 
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where force Hm and moments Ma0, Mb0 are known from 
the previous loading step. As soon as frame deformation 
from the second loading step is evaluated, the linear solu-
tion of the FEM (kf = kf0) is then used to evaluate the 
internal forces and moments of the deformed frame. The 
procedure is analogous for further loading steps of the 
Euler method. In practice, step-by-step Euler Newton-
Raphson iterative procedures are used; see, e.g., Reddy 
(2004), Wriggers (2008).  

The geometrical non-linear solution was worked out 
and programmed by the author of the presented paper 
(Kala 2005). Each column was meshed using ten beam 
elements, and the cross-beam was meshed using three 
beam elements.  

Initial axial crookedness of the columns and cross 
beam of the analyzed frame gradually increase with in-
creasing load until ultimate limit state has been reached. 
The first criterion (i) for the load carrying capacity is the 
loading at which plasticization of the flange is initiated 
(Kala 2005). The second criterion (ii) for the load carry-
ing capacity is given by the load corresponding to a de-
crease of the determinant of the stiffness matrix to zero 
which occurs at high yield strength values of slender 
columns with small initial imperfections Θ1, Θ2, e1, e2 
(Kala 2005). Increase in load leads to decrease of the 
determinant of stiffness matrix until either criterion (i) or 
(ii) occurs. In other words, the ultimate one-parametric 
loading (elastic resistance) is defined as the lowest value 
of load carrying capacities (i) and (ii).  

 
6. Statistical analysis  

Realizations of input variables from Table 1 were com-
puted applying the Latin Hypercube Sampling (LHS) 
method, which is a method of type Monte Carlo (McKey 
et al. 1979). LHS method is used to simulate a real exper-
iment. The output is the random load carrying capacity. 
The load carrying capacity was determined with an accu-
racy of 0.1 percent in each simulation run. 

The statistical analysis was evaluated using 300 
thousand simulation runs. Nb,0.1 was evaluated from the 
basic probability definition in a manner described in (Ka-
la 2009). Fig. 9 illustrates an example of random  
 

 

Fig. 9. Load carrying capacity for 6.0=λ , h = 2.175 
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realizations of the load carrying capacity for 6.0=λ , 
h = 2.175 m and K = 0. Three hundred random realiza-
tions of the load carrying capacity have values lower than 
733.4 kN. Practically, Nb,0.1 = 33.4 kN is obtained as the 
300th lowest value in the organized ascending file (see 
Kala (2009)). 

Results of the statistical analysis from Fig. 9 are de-
picted in Fig. 10. The course of mean values, standard 
deviations and Nb,0.1 were approximated by cubic poly-
nomials from ten values of h. The procedure is analogous 

for other values of λ , see Figs 10 to 16. 
The design value of load carrying capacity evaluat-

ed according to EN 1990 (2002) as Nb,0.1 is lower (safer) 
than the mean value. It is apparent from Figs 10 to 16 that 
the course of Nb,0.1 is concave. This is mainly due to the 
concave course of mean values and convex course of 
standard deviations. The comparison of Nb,0.1 and Nb,Rd 
points out the misalignment of reliability of steel frames 
designed according to EUROCODE 3 (1993). The higher 
the value of Nb,0.1, the higher the reliability of design 
according to EUROCODE 3 (1993). 

 

 

Fig. 10. Load carrying capacity for 6.0=λ  

 

 

Fig. 11. Load carrying capacity for 7.0=λ  

 

Fig. 12. Load carrying capacity for 8.0=λ  

 
 
 

 

Fig. 13. Load carrying capacity for 9.0=λ  

 
 
 

 

Fig. 14. Load carrying capacity for 0.1=λ  
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Fig. 15. Load carrying capacity for 1.1=λ  

 

 

Fig. 16. Load carrying capacity for 2.1=λ  

 
The differences between the mean value and Nb,0.1 

are, to a certain degree, influenced by the plot of the 
standard deviation of the load carrying capacity. The 
standard deviation of the load carrying capacity (output) 
is dependent on the standard deviations of variables from 
Table 1 (inputs). One of the important tasks of the proba-
bilistic analysis of reliability is the identification of input 
random variables that have a dominant influence on the 
variance of output. 

The effect of sway and bow imperfections on the 

load carrying capacity is cardinal for 9.0≈λ  (Kala 

2011a). Let us consider 9.0≈λ  and respective pairs K 
and h (see Fig. 2), and let us study the sensitivity of the 
load carrying capacity to initial imperfections. 

 
7. Sensitivity analysis  

The sensitivity analysis is a study of how variation in the 
output of a model (numerical or otherwise) can be appor-
tioned, qualitatively or quantitatively, on different 
sources of variation, and of how the given model depends 
upon the information fed into it (Saltelli et al. 2004). 
Different understanding of sensitivity analysis is used in 
different modelling communities, see, e.g., Edalat et al. 
(2010), Keitel et al. (2011). The imperfection sensitivity 
in buckling problems has been the subject of numerous 
investigations (Szymczak 2003; Mang et al. 2009; 

Melcher et al. 2009; Kala 2009; Mang et al. 2011). The 
main motivation for these studies is the fact that initial 
imperfections often bring about a significant reduction of 
buckling resistance. 

One of the most perfect methods of sensitivity ana-
lysis is the Sobol sensitivity analysis (Sobol’ 1993; Salt-
elli et al. 2004). In our study, the sensitivity analysis of 
load carrying capacity (random output Y) to input imper-
fections (random inputs Xi) was evaluated according to 
Eqs (7) and (8): 

 
( )( )
( )YV

XYEV
S

i

i
= . (7) 

Si measures the first order (e.g., additive) effect (the 
so-called main effect) of Xi (input imperfections) on the 
model output Y (load carrying capacity). The sum of all Si 
is equal to 1 for additive models, and less that 1 for non-
additive models. 

The second order sensitivity index Sij is the 
interaction term (8) between factors Xi, Xj. It captures that 
part of the response of Y to Xi, Xj which cannot be written 
as a superposition of effects separately due to Xi and Xj: 

 
( )( )
( ) ji

ji

ij SS
YV

XXYEV
S −−=

,

. (8) 

An important distinction between Sobol and classi-
cal sensitivity is that the Sobol sensitivity analysis detects 
interactions of input variables through the second and 
higher order terms, whilst classical sensitivity methods 
give only derivatives with respect to single variables. The 
sensitivity indices of other higher orders can be calculat-
ed analogously. The case with statistically independent 
input random variables is studied. For a system with M 
factors, there may be interaction terms up to the order k, 
i.e. (Saltelli et al. 2004): 

 1... ...123 =++∑ ∑ ∑+∑ ∑+∑
> >>

M
i ij jk

ijk
i ij

ij
i

i SSSS . (9) 

The sensitivity indices were evaluated applying the 
LHS method. The conditional random arithmetical mean 

( )iE Y X  was evaluated for 500 simulation runs; the 

variance ( )( )iV E Y X  was calculated for 500 simulation 

runs, as well. The variance V(Y) of load carrying capacity 
is calculated under the assumption that all the input im-
perfections are considered to be random ones; one million 
runs were applied. The second order sensitivity indices 
(8) were calculated analogously. Interactions of all fur-
ther higher orders are grouped in a single term (see 
Figs 17 and 18). 

It is apparent from Fig. 19 that if h→10 m (Fcr2 
→ Fcr1) then the sensitivity of the load carrying capacity 
to initial imperfections e1 and e2 rises sharply. For 
h = 10 m Se1+Se2+Se1,e2 = 0.84, which shows that the in-
fluence of bow imperfections e1 and e2 on the load carry-
ing capacity is very high. The sum of second order inter-
action terms between bow and sway imperfections is 
Se1,θ1+Se2,θ1+Se1,θ2+Se2,θ2 = 0.03.  The example shows  that 
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Fig. 17. Sensitivity analysis for 9.0=λ , h = 3.45 
 

 

Fig. 18. Sensitivity analysis for 9.0=λ , h = 10 

 

 

Fig. 19. Sensitivity analysis for 9.0=λ  
 

the sensitivity of load carrying capacity to initial bow 
imperfections e1 and e2 increases sharply if Fcr2 → Fcr1. 
The Sobol sensitivity analysis supplements results (Ba-
zant, Xiang 1997), where a similar problem was analyzed 
for non-random imperfections. 

The courses of the main effects of fy1 and fy2 (see 
Fig. 19) and Nb,0.1 (see Fig. 13) are concave. The design 
of the frame according to EUROCODE 3 (1993) is most 

reliable when Nb,0.1 is maximal. This occurs when the 
load carrying capacity is very sensitive to the yield 
strength and thus relatively insensitive to imperfections 
e1, e2, Θ1, Θ 2. 

Let us note that the statistical analysis of the load 
carrying capacity requires precise statistical information 
on e1 and e2 obtained from ample samples, which howev-
er are not always available (e.g., Kala et al. 2010). Exper-
imental data is absent, particularly if sway imperfections 
are studied. Epistemic uncertainty of bow e1, e2 and pri-
marily sway Θ1, Θ2 imperfections is higher than other 
imperfections (e.g., Kala 2007; Kala 2011a). Therefore if 
the load carrying capacity is very sensitive to bow and/or 
sway imperfections, we can expect higher risks related to 
the uncertainty of ultimate limit state. 

 
8. Stability and reliability of structures 

The requirement to analyze the influence of geometric 
imperfections on limit states is encountered mainly in long 
compressed steel bars. But even short bars may fail from 
the point of stability. This occurs if the steel bars are com-
posed of thin-walled elements susceptible to local loss of 
stability. Current research is aimed mainly at FEM simula-
tions (e.g., Kotelko et al. 2008, 2011; Loughlan et al. 2011; 
Pasternak, Kubieniec 2010; Pavlovčič et al. 2010; Melcher 
et al. 2009). In all cases, the stability failure (in comparison 
with e.g. failure of a tensed bar) is very tricky because it is 
not signalled beforehand by increase in deformation, and it 
occurs suddenly and without warning. 

Stability problems may occur in load bearing struc-
tures as well as in geotechnical tasks during analysis of 
stability of hillsides and rock walls. Input data is obtained 
from experimental research (e.g., Amšiejus et al. 2009, 
2010). In the case of steel-concrete structures, stability 
occurs mainly in concrete columns reinforced by high 
strength steel bars (Kliukas et al. 2010) and composite 
columns (Guezouli et al. 2010; Kala et al. 2010). Charac-
teristics of concrete and steel-concrete structures include 
long-term effects such as creep and shrinkage, which may 
cause loss of strength (Au, Si 2011).  

In the building industry, stability is an important 
phenomenon regarding primarily reliability. Structural 
reliability is secured, to a basic degree, by standards for 
design. The general principles for reliability of different 
structures are provided by the international standard ISO 
2394. The normative principles and application rules are 
listed in standard EN 1990 (2002) in Europe, and in 
ASCE/SEI 7-05 (2005) in the USA. Current approaches 
in the verification of reliability emanate mainly from 
probabilistic methods (Kala 2007; Karmazínová et al. 
2009; Kudzys et al. 2010) and advanced optimization 
approaches (e.g., Atkočiūnas et al. 1997; Kala 2008; 
Gottvald 2010; Leng et al. 2011; Atkočiūnas, Venskus 
2011; Jankovski, Atkočiūnas 2011). Different risk as-
sessments of construction projects are discussed and 
compared (e.g., Zavadskas et al. 2010). Generally, the 
degree of reliability of slender bars loaded in compres-
sion could be more differentiated. However, the current 
trend is aimed mainly at transparency and simplicity of 
computational approaches of standards for design. 
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9. Conclusions 

The design buckling resistance Nb,Rd evaluated according 
to EUROCODE 3 (1993) was verified with the design 
value Nb,0.1 obtained from statistical analysis according to 
EN 1990 (2002). Different values of Nb,0.1 were evaluated 

for constant λ values. The differences between Nb,Rd and 
Nb,0.1 indicate that the reliability of design of steel frames 
according to EUROCODE 3 (1993) is significantly misa-
ligned. The lowest values of Nb,0.1 were obtained for 
Fcr1= Fcr2, when the non-sway (symmetric) and sway 
(anti-symmetric) buckling modes coincide, see Figs 10 to 
16. The second lowest Nb,0.1 values were obtained for zero 
bracing stiffness K = 0. The course of Nb,0.1 is concave 
and has a maximum which (in comparison with Nb,Rd) 
corresponds to the relatively most reliable design accord-

ing to EUROCODE 3 (1993). Parameter λ  was selected 
by seven constants, so that the most frequently occurring 
values in engineering practice were represented. 

The Sobol sensitivity analysis was used to study a 

frame with 9.0=λ . The sensitivity of the load carrying 
capacity to imperfections e1 and e2 increases if 
Fcr2→ Fcr1, see Fig. 19. Maximum sensitivity (as well as 
the lowest value of Nb,0.1) was obtained for Fcr1= Fcr2, see 
Fig. 18 (and Fig. 13). The study indicates a certain signif-
icance of the second critical load Fcr2 as another indicator 
of the sensitivity of frames to imperfections. The coinci-
dence of the critical loads of two different buckling 
modes increases the sensitivity on the imperfections e1, 
e2. Let us note that Fcr2 is not taken into consideration 
during common design of steel structures according to 
EUROCODE 3 (1993), based on the rationale that perfect 
structures can theoretically buckle only according to the 
first buckling mode.  

The probability that a frame with initial random im-
perfections is symmetrical is zero from the mathematical 
point of view. The deformed geometry of the frame upon 
attaining the load carrying capacity is a random variable 
which is dependent on the initial random imperfections. 
The final deformation of column axis for the ultimate 
limit state has a random shape and is not affine to the 
initial imperfections. The frame deformation for 
Fcr2→ Fcr1 upon reaching the limit state is formatively 
close to the non-sway mode (see right part of Fig. 4). On 
the contrary, for K = 0, the deformations are formatively 
close to the sway mode (see left part of Fig. 4). 

Imperfections that have high influence on the load 
carrying capacity deserve special attention, especially in 
cases when Nb,0.1 is low (low safety). With regard to the 
system reliability, it is important to identify imperfections 
that interact and which may thus generate extreme values. 
An example is the second order index Se1,e2 = 0.35, see 
Fig. 18. Within the interval 10;9∈h , functions K and 

Se1,e2 are increasing and convex, whilst functions Se1 and 
Se2 are increasing and approximately linear, see Figs 2 
and 19. The acceleration of increase Se1,e2 at the ends of 
the interval are interesting and should be further studied. 

During the analysis of reliability and economy of 
design of steel frames, it is necessary to identify those 

cases when the design values evaluated according to EN 
1990 (2002) are dangerously low, and to study the imper-
fections that cause them. Reliable design can be achieved 
either through change of reliability indicators of design 
standard EUROCODE 3 (1993), or increasing the quality 
of production. In the case of initial imperfections Θ1, Θ2, 
e1, e2 it is generally recommended to decrease their devia-
tion, which can be achieved through more consistent 
control in production. 
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PLIENINIŲ RĖMŲ SU DEFEKTAIS GEOMETRIŠKAI NETIESINĖ BAIGTINIŲ ELEMENTŲ PATIKIMUMO 
ANALIZĖ 

Z. Kala 

S a n t r a u k a  

Tiriama plieninio plokščio rėmo su standžiaisiais ryšiais laikomoji galia. Ji vertinama atliekant geometriškai netiesinę 
BEM analizę. Aptariama šiek tiek išlinkusio elemento laipsniškai didėjanti standumo matrica, atliekant netiesinį iteracinį 
skaičiavimą. Atsitiktiniu dydžiu laikomas pradinis defektas. Statistinė ir Sobolio (Sobol) jautrumo analizė atliekama pri-
taikant LHS metodą (Latin Hypercube Sampling Method). Nagrinėjamas pradinio atsitiktinio defekto poveikis laikomajai 
galiai darant prielaidą, kad pastovus dydis yra liauna kolona. Vertinimo kriterijus yra ne atsitiktinių didžių pora, t. y. tamp-
riai standūs ryšiai ir konstrukcijos kolonų aukštis. Straipsnyje aptariama kolonos pradinio kreivio įtaka laikomajai galiai, 
atsižvelgiant į klupumo formas, kai nelinksta (simetrinė apkrova) ir linksta (nesimetrinė apkrova). Laikomosios galios 
projektavimo apkrovos, šiuo atveju gautos iš statistinės analizės pagal EN 1990 (2002) standartą, yra palyginti nedidelės. 
Gauti rezultatai rodo, kad plieninio rėmo patikimumas pagal Eurocode 3 (1993) labai nesutampa. Nagrinėjama defektų 
įtaka laikomajai galiai atsižvelgiant į pirmą ir antrą klupimo jėgą. 

Reikšminiai žodžiai: rėmas, plienas, stiprumas (stipris), defektai, suirimas, netiesinis, ribiniai būviai, patikimumas, pro-
jektavimas. 
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