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�e formulation of a family of advanced one-dimensional �nite elements for the geometrically nonlinear static analysis of beam-
like structures is presented in this paper. �e kinematic �eld is axiomatically assumed along the thickness direction via a Uni�ed
Formulation (UF). �e approximation order of the displacement �eld along the thickness is a free parameter that leads to several
higher-order beam elements accounting for shear deformation and local cross-sectional warping.�enumber of nodes per element
is also a free parameter. �e tangent sti	ness matrix of the elements is obtained via the Principle of Virtual Displacements. A
total Lagrangian approach is used and Newton-Raphson method is employed in order to solve the nonlinear governing equations.
Locking phenomena are tackled by means of a Mixed Interpolation of Tensorial Components (MITC), which can also signi�cantly
enhance the convergence performance of the proposed elements. Numerical investigations for large displacements, large rotations,
and small strains analysis of beam-like structures for di	erent boundary conditions and slenderness ratios are carried out, showing
that UF-based higher-order beam theories can lead to a more e
cient prediction of the displacement and stress �elds, when
compared to two-dimensional �nite element solutions.

1. Introduction

Many structural elements, such as aircra� wings, rotor
blades, robot arms, or structures in civil construction, can
be idealised as beams. Furthermore, the hypothesis that the
unstrained and deformed con�gurations are coincident at
equilibrium is o�en not true and geometrical nonlinearities
cannot be neglected. Engineering �elds such as aeronautics,
space, and automotive need more and more accurate models
since an accurate prediction of the mechanics of beams
plays a paramount role in their optimal design. �erefore,
geometrically nonlinear modelling of beams represents an
important and up-to-date research topic.

A general overview on linear and nonlinear structural
mechanics can be found in Nayfeh and Pai [2]. Nonlin-
ear structural analysis via �nite elements was thoroughly
discussed in Cris�eld [3] and Bathe [4]. Hodges et al. [5]
provided a variational-asymptotical method that allowed

obtaining an asymptotically correct strain energy for the
approximation of sti	ness coe
cients for the prediction
of geometrically nonlinear behaviour of composite beams.
A paralinear isoparametric element for the geometrically
nonlinear analysis of elastic two-dimensional bodies was
presented by Wood and Zienkiewicz [6]. Newton-Raphson
method was used in order to solve the nonlinear equilibrium
equations. Surana [7] provided a geometrically nonlinear
formulation for two-dimensional curved beams. A total
Lagrangian approach was used and the beam element was
derived using linear, paralinear, and cubic-linear plane stress
elements. Dufva et al. [8] presented a two-dimensional shear-
deformable beam element for large deformation analyses.
Cubic interpolation was used for the rotation angles caused
by bending and linear interpolation polynomials were used
for the shear deformations. �e absolute nodal coordinate
formulation was used for the �nite element discretization
along the beam axis. Further works on large rotations and
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large displacements analysis of shear-deformable beams by
using an absolute nodal coordinate formulation accounting
for a nonrigid cross-sectional kinematics were carried out by
Dufva et al. [9] and Omar and Sharana [10]. A geometric and
material nonlinear analysis was carried out by Chan [11] for
beam-columns and frames. An optimum nonlinear solution
technique within the Newton-Raphson scheme was obtained
by minimizing the residual displacements. �e evaluation of
geometrically exact beam theories andmodels based on a sec-
ond order approximation of �nite rotations for the buckling
and postbuckling analysis of beam structures was carried out
by Ibrahimbegovic et al. [12]. Yu et al. [13] developed a gen-
eralised Vlasov theory for composite beams by means of the
variational-asymptotic method.�e geometrically nonlinear,
three-dimensional elasticity problem was split into a linear,
two-dimensional cross-sectional analysis and a nonlinear
one-dimensional beam analysis. A novel two-dimensional
�nite element solution for the nonlinear buckling and wrin-
kling of sandwich plates has been developed by Yu et al. [14].
Kircho	 ’s theory was adopted for the kinematics of the skins,
whereas a higher-order displacement �eld was considered
for the core mechanics. �e nonlinear governing equations
were derived by the Principle of Virtual Displacements and
solved via the Asymptotic Numerical Method (ANM). Based
on this work, Huang et al. [15] proposed a more e	ective two-
dimensional model by using the technique of slowly variable
Fourier coe
cients. Garcia-Vallejo et al. [16] introduced a
new absolute nodal coordinate �nite element together with
a reduced integration procedure in order to mitigate the
locking phenomena in dynamic structural problems.

A static analysis of beam-like structures via a hierarchical
one-dimensional approach is addressed in this paper. �e
kinematics along the thickness is axiomatically assumed via a
Uni�ed Formulation (UF). UF had been previously proposed
for plate and shell structures; see Carrera [17]; and it has been
applied to the study of beams byCarrera et al. [18] andCarrera
and Giunta [19]. �anks to this approach, the derivation
of a family of higher-order beam theories is made formally
general regardless of the through-the-thickness approximat-
ing functions and the approximation order. UF has been
extended to large de�ections and postbuckling analysis of
beam structures in recent works by Pagani and Carrera
[20, 21], where the capability of such approach to investigate
global and local deformations in solid and thin-walled beam
structures was demonstrated by using Lagrange polynomials
as approximating functions for the cross-section kinematics
within a layer-wise approach. An elastoplastic analysis via
UF-based one-dimensional �nite elements has been carried
out by Carrera et al. [22], showing that such formulation can
lead to a 3D-like accuracy in terms of displacements and
stresses for compact and thin-walled structures subjected to
localized loadings. Applications of the UF approach for the
investigation of multiphysics problems, vibration analyses,
and static structural analyses of composite structures can be
found in Carrera et al. [23], Biscani et al. [24], Koutsawa et al.
[25], and Giunta et al. [26–29]. In this study, a large displace-
ments, large rotations, and small strains analysis of beam-
like structures are carried out using UF-based �nite elements
and Taylor expansion of the displacement �eld along the
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Figure 1: Beam geometry and reference system.

thickness using an equivalent single-layer formulation. �e
approximation order is a free parameter and, therefore,
several kinematic models can be straightforwardly obtained,
accounting for nonclassical e	ects, such as transverse shear
and local cross-sectional warping. �e number of nodes per
element is also not a priori �xed. Linear, quadratic, and cubic
elements are formulated. �e tangent sti	ness matrix of the
element is derived from the weak form of the governing
equations obtained via the Principle of Virtual Displacements
(PVD). A total Lagrangian (TL) formulation is used and
the global problem is solved by classical Newton-Raphson
prediction/correction method. As far as the stress prediction
is concerned, once the second Piola-Kircho	 stresses have
been obtained by the TL formulation, they are transformed
into the trueCauchy stresses to have a direct comparisonwith
results coming fromupdated Lagrangian formulations imple-
mented in the commercial so�ware ANSYS. As opposed to
the Lagrange layer-wise approximation [20, 21], in both linear
and nonlinear analyses, the use of Taylor polynomials allows
an enrichment of the cross-sectional kinematics by simply
increasing the order N and with no need for additional cross-
sectional nodes. �is feature makes Taylor-based re�ned
models particularly suitable for the analysis of multilayered
structures in the framework of an equivalent single-layer
approach that will be presented in a future work. As further
novelties with respect to [20, 21], the correction of shear
and membrane locking phenomena in the nonlinear regime
via the MITC method has been introduced, allowing an
improved convergence performance of the proposed �nite
elements in slender structures. Finally, a detailed descrip-
tion of the stress analysis under large displacements, not
o�en encountered in the literature, has been also provided,
together with the discussion of some limitations of the
proposed formulation with respect to �nite elements with
large strains capabilities.

2. Preliminaries

A beam is a structure whose axial extension (�) is predom-
inant with respect to any other dimension orthogonal to it.
�e cross-section (Ω = ℎ × �) is de�ned by intersecting
the beam with planes orthogonal to its axis. Figure 1 presents
the beam geometry and the reference system, being ℎ and�, respectively, the beam’s thickness and width. A �xed
Cartesian reference system is adopted. �e � coordinate is
coincident with the axis of the beam and it is bounded such
that 0 ≤ � ≤ �, whereas the �- and 	-axis are two orthogonal
directions laying on Ω. �e displacement �eld in a two-
dimensional approach is

u
� (�, 	) = {� (�, 	) � (�, 	)} (1)
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where � and � are the displacement components along
the �- and 	-axis, respectively. Superscript ‘�’ represents
the transposition operator. For the sake of convenience, the
displacements gradient vector � is introduced:

� = {�,� �,� �,� �,�} (2)

Subscripts ‘�’ and ‘	’, when preceded by comma, represent
derivation versus the corresponding spatial coordinate.

Geometrical nonlinearity is accounted for in a Green-
Lagrange sense. Large displacements and rotations are, there-
fore, considered. �e strain vector E is

��� = �,� + 12 (�2,� + �2,�)
��� = �,� + 12 (�2,� + �2,�)
��� = �,� + �,� + �,��,� + �,��,�

(3)

Equation (3) can be written in the following matrix form:

E = [H + 12A (�)] � (4)

where

E
� = {��� ��� ���} (5)

H = [[
[

1 0 0 0
0 0 0 1
0 1 1 0

]]
]

(6)

A (�) = [[
[

�,� 0 �,� 0
0 �,� 0 �,�
�,� �,� �,� �,�

]]
]

(7)

A virtual variation of the strain vector cam be written as (see
Cris�eld [3])

�E = � {[H + 12A (�)] �} = [H + A (�)] �� (8)

where � stands for the virtual variation operator.
�e vectorial form of second Piola-Kirchho	 ’s stress

tensor S is

S
� = {��� ��� ���} (9)

�e material is supposed to withstand small strains. Hooke’s
law is, therefore, considered:

S = QE (10)

In the case of an anisotropic material, the reduced material
sti	ness matrix Q reads

Q = [[
[

�11 �13 �15
�13 �33 �35
�15 �35 �55

]]
]

(11)

Coe
cients ��� are not reported here for the sake of brevity.
�ey can be found in Reddy [30]. �e Cauchy stress tensor �
can be derived from the deformation tensor F and the Piola-
Kircho	 stress tensor through the following relation:

� = 1�F[
��� ���
��� ���]F

� (12)

where

F = [1 + �,� �,�
�,� 1 + �,�] (13)

and J = det(F) is the determinant of F. �e weak form of the
governing equations is obtained by means of the Principle of
Virtual Displacement:

�L = �L��� − �L	�� = 0 (14)

whereL is the total work andL��� the internal one:

�L��� = ∫

0
�E�S #$ (15)

$0 is the volume of the reference undeformed con�guration.
L	�� is the work done by the external forces. An in�nitesimal
variation of the total work reads

# (�L) = ∫

0
[�E�#S + # (�E�) S] #$ (16)

A�er few manipulations (see Cris�eld [3]), (16) can be
rewritten in the following form:

# (�L) = ∫

0
[�E�Q#E + ���Ŝ#�] #$ (17)

where Ŝ ∈ R
4×4 is

Ŝ =
[[[[[
[

��� ��� 0 0
��� ��� 0 0
0 0 ��� ���
0 0 ��� ���

]]]]]
]

(18)

�e variation of the virtual work is �nally written in terms of
the actual and virtual variation of the gradient vector:

# (�L)
= ∫

0
��� {[H� + A

� (�)]Q [H + A (�)] + Ŝ} #�#$ (19)

3. Hierarchical Beam Elements

3.1. Kinematic and Finite Element Approximations. Within
the assumed Uni�ed Formulation and the �nite element
framework, the displacement components are approximated
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along the beam thickness via the base functions /�(	) and
along the axis by the shape functions 3�(�):
� (�, 	) = /� (	)3� (�) 4���
� (�, 	) = /� (	)3� (�) 4��

with 5 = 1, 2, . . . , 3�, 7 = 1, 2, . . . ,3	�
(20)

where 4��� : 8 = �,� are the nodal unknowns. Einstein’s

compact notation is used in (20): a repeated index implicitly
implies summation over its variation range.3� is the number
of terms accounted in the through-the-thickness expansion
and it is arbitrary. Index 7 varies over the element number of
nodes 3	� and it is also a free parameter of the formulation.
Linear, quadratic, and cubic elements along the beam axis
are considered. �ese elements are addressed by “B2”, “B3”,
and “B4”, respectively. �e �nite element shape functions
approximate the displacements along the beam axis in a90 sense up to an order 3� − 1. For the sake of brevity,
these functions are not reported here, but they can be found
in Bathe [4]. Taylor polynomials are used as the class of
expansion functions /�(	). �e generic explicit form of the
displacement �eld expanded via3-order Taylor polynomials
is given by

�� = ��1 + ��2	 + ��3	2 + ⋅ ⋅ ⋅ + ��(�+1)	�
�� = ��1 + ��2	 + ��3	2 + ⋅ ⋅ ⋅ + ��(�+1)	�

(21)

3 is the order of the approximating polynomials along the
thickness and it is a free parameter of the formulation. By
this approach, several displacement-based theories and �nite
elements accounting for nonclassical e	ects are straightfor-
wardly derived. By replacing (20) within (2), the kinematic
and �nite element approximation of the displacements gra-
dient vector reads

� = {/�3�,�4��� /�,�3�4��� /�3�,�4�� /�,�3�4��}
= G��q��

(22)

whereG�� ∈ R
4×2 and q�� ∈ R

2×1 are

G�� =
[[[[[
[

/�3�,� 0
/�,�3� 0
0 /�3�,�0 /�,�3�

]]]]]
]

(23)

and

q
�
�� = {4��� 4��} (24)

3.2. Tangent Stiffness Matrix. Once (22) is replaced within
(19), the variation of the total virtual work reads

# (�L	)
= �q��� ∫


�0
G
�
�� {[H� + A

� (�)]Q [H + A (�)] + Ŝ}
⋅ G��#$#q�� = �q��� (K	����� + K

	�1
���� + K

	�2
����) #q��

(25)

where the superscript ‘e’ refers to the considered element,$	0 = �	 ⋅ �	 ⋅ ℎ	 is the element volume at the reference

unstrained con�guration, and K	����� K
	�1
���� K

	�2
���� ∈ R

2×2 are
the “fundamental nuclei” of the linear, initial-displacement,
and geometric contributions to the tangent sti	ness matrix:

K
	�
���� = ∫


�0
G
�
��H
�
QHG��#$

K
	�1
���� = ∫


�0
G
�
�� [H�QA + A

�
Q (H + A)]G��#$

K
	�2
���� = ∫


�0
G
�
��ŜG��#$

(26)

�e nuclei are very general regardless of the approximation
order 3 over the thickness, the class of approximating
functions /�, and the number of nodes per element3	� along
the beam axis; see Carrera et al. [18]. �eir explicit form can
be found in the Appendix. Once the approximation order and
the number of nodes per element are �xed, the element tan-
gent sti	ness matrix is obtained straightforwardly via sum-
mation of the previous nucleus corresponding to each term of
the expansion. Finally, the nonlinear system is solved via the
classical Newton-Raphson prediction/correction method.

3.3. Shear and Membrane Locking: MITC Beam Elements.
In the geometrically nonlinear analysis of straight beams,
the displacement components are coupled by the quadratic
terms in the geometric relations; see (3). �erefore, mem-
brane as well as shear locking phenomena will degrade the
element performance and need to be mitigated, especially
when slender structures and low-order shape functions are
considered (see Reddy [31] and Malkus and Hughes [32] for
more details). In this study, locking phenomena are overcome
via the MITC method (see Bathe et al. [33–35]), consisting in
the following interpolation of all the strain components along
the beam element axis:

��� = 3�����
��� = 3���z�
��� = 3�����

(27)

where ? denotes an implicit summation and varies from
1 to 3	� − 1. ����, ����, and ���� are the strain components
coming from the geometrical relations in (3) evaluated at the?-th tying point @�� and 3� are the assumed interpolating
functions. �eir expressions as functions of the natural beam
element coordinate @ ∈ [−1, 1] can be found in Carrera et
al. [36] and they are reported below. For linear elements, the
interpolation is reduced to a point evaluation, since

31 = 1
@�1 = 0 (28)
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For quadratic elements, the assumed interpolating functions
and tying points are

31 = −12√3(@ − 1√3)
32 = 12√3(@ + 1√3)
@�1 = − 1√3
@�2 = 1√3

(29)

And for cubic elements

31 = 56@(@ − √35)

32 = −53 (@ − √35)(@ + √35)

33 = 56@(@ + √35)

@�1 = −√35
@�2 = 0
@�3 = √35

(30)

4. Numerical Results

�e beam support is [0, �] × [−ℎ/2, ℎ/2] × [−�/2, �/2]. �e
cross-section is square with ℎ = � = 1 m. Slender
(�/ℎ = 100) and short beams (�/ℎ = 10) are investigated.
Cantilever, doubly clamped, and simply supported (hinged-
hinged) beams made of aluminium (� = 75 GPa and ] =0.33) are considered. A concentrated load L� is applied at(�/� = 1, 	/ℎ = 0) for the cantilever case and at (�/� =1/2, 	/ℎ = 0) for doubly clamped and simply supported
boundary conditions. A dimensionless load factor M =L��2/�N is used, N being the moment of inertia of the beam
cross-section. Both displacement and stress values are given
with respect to the initial �xed coordinate system.

Results for a plane stress, large displacements, large
rotations, and small strains analysis provided by the proposed
family of one-dimensional �nite elements are compared with
two-dimensional �nite elements based on a total Lagrangian
formulation and small strains hypothesis, referred to as
“FEM 2D TL” (see Hu et al. [37]). Reference solutions from
the available literature as well as classical one-dimensional
corotational ANSYS �nite elements “Beam3”, with both
Euler-Bernoulli (EBT) and Timoshenko (TBT) kinematics,
are considered for comparison and validation purposes.
Results given by two-dimensional large strains ANSYS �nite
elements “Plane183” based on an updated Lagrangian formu-
lation are also provided as a further assessment. About the

computational costs, in order to be able to predict an accurate
stress �eld in both short and slender beams, the most re�ned
model used in the following numerical investigations for the
proposed one-dimensional formulation is given by a mesh of121 nodes and beam theory3 = 5, corresponding to 1.5 ⋅ 103
degrees of freedom (DOFs), whereas a mesh of 240 × 24
elements was used for 2D FEM solutions, corresponding to3.6 ⋅ 104 DOFs. It should be noticed that the computational
advantage coming from theUF approach is evenmore signi�-
cant in nonlinear analyses when compared to linear analyses,
since an iterative solution procedure is required and, there-
fore, a computational gain is obtained at every solution step.

4.1. Locking Assessment. In order to correct the shear and
membrane locking phenomena a	ecting nonlinear one-
dimensional elements, MITC method was adopted. Figure 2
shows the e	ectiveness of the MITC B2 elements in predict-

ing the normalised displacement �̂� = ��/�Cubic� for increas-

ing slenderness ratios �/ℎ, where �Cubic� is the converged
solution obtained with 40 B4 elements. It can be noticed that
the locking correction strategy is e	ective regardless the beam
theory order 3 and the considered boundary conditions.
Due to the presence of membrane locking, simply supported
beams are the most critical case among those investigated,
as far as element performance is concerned. Figure 3 shows
that MITC correction in slender beams can signi�cantly
reduce the number of nodes needed for convergence. �e

converged reference solution �Cubic� is here obtained with
140 B4 elements. �e improvement is even more signi�cant
when lower-order shape functions are used, such as in linear
and quadratic beam elements. It should be also noticed
that, unlike a classical displacement-based �nite element, an
element adoptingMITC correction strategy no longer assures
a monotonic convergence “from below”, as shown in Laulusa
et al. [38]. Following the previous convergence analyses, 121
nodes and MITC B4 elements are used for the plot results,
whereas 121 nodes and MITC B2, B3, and B4 elements are
compared in the table results at a �xed load parameter.

4.2. Cantilever Beam. A slender cantilever beam (�/ℎ = 100)
is �rst considered in order to validate the model towards clas-
sical reference beam solutions. Dimensionless displacements�̃� = ��/�, Cauchy stresses 5̃�� = 5��(2N/L��ℎ), and thickness	̃ = 	/ℎ are considered. Figures 4 and 5 show the evolution
of the displacement components with the load parameter.
�e displacement �̃� is evaluated at (�, ℎ/2), whereas �̃�
at (�, −ℎ/2). For the case of slender beam, the reference
solution based on EBT kinematics can accurately predict the
nonlinear deformation and it matches the higher-order beam
theories as well as the two-dimensional FEM results. On the
other hand, if the slenderness ratio is reduced, the shear
deformation e	ects as well as local cross-sectional warping
become relevant and at least a beam theory with order 3
equal to 2 should be used for an accurate displacement
prediction, as shown in Figures 6 and 7. A more detailed
numerical comparison is given in Table 1, showing that beam
theories with 3 ≥ 2 can reduce the error given by TBT
from 5.5% to 0.7%, when compared to 2D FEM solutions. As
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MITC B2

B2

N = 2

N = 5

 100  500 10

l/h

 0.3

 1

 Ｏ
Ｔ

Figure 2: Locking correction via MITC method for linear elements and di	erent beam theories, doubly clamped beam, M = 2, �̂� evaluated
at (�/2, −ℎ/2).
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Figure 3: Convergence analysis of the normalised displacement �̂� versus the total number of nodes 3� via cubic �nite elements B4 and
MITC B4, simply supported beam (�/ℎ = 100 and M = 3), �̂� evaluated at (�/2, ℎ/2).

far as stress prediction is concerned, Figures 8–10 show the
through-the-thickness pro�le of the stress components for
the short beam case. Stress components are given in the initial
�xed reference system. A small di	erence can be noticed
between the large strains 2D FEM solution “Plane183” and
the small strains “FEM 2D TL”. Furthermore, the higher-
order beam theories match the 2D small strains solution, with
relative di	erences being lower than 0.6% for 3 ≥ 3 and B4

elements, as shown in Table 2. Unlike classical theories, the
proposed higher-order models can predict global as well as
localized displacements and stresses, even in the proximity of
boundary conditions and throughout the nonlinear regime,
as shown in Figures 26–30.

4.3. Doubly Clamped Beam. Clamped-clamped boundary
conditions are considered. �e evaluation point for �̃� is
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Figure 4: Load factor M versus dimensionless displacement �̃� for a slender cantilever beam.
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Figure 5: Load factor M versus dimensionless displacement �̃� for a slender cantilever beam.

(�/4, ℎ/2), whereas �̃� is evaluated at (�/2, −ℎ/2). Figures 11
and 12 show the load-displacement curves for a slender beam,
whereas the short beam case is shown in Figures 13 and
14. A signi�cant di	erence between large and small strains
hypothesis can be noticed in this latter case. Similarly to
the cantilever case, Table 3 shows that higher-order beam
theories can improve the accuracy with respect to the 2D

FEM small strains solution from 4.6% (TBT) to 0.3% (3 ≥ 3),
at worse. Figures 15–17 as well as Table 4 show that higher-
order beam theories are required in order to accurately
predict the stress pro�le in a thick beam, being the relative
error given by a 2-nd order beam theory about 27.8% in the
worst case and the one given by theories with 3 ≥ 3 lower
than 0.8%.
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Figure 6: Load factor M versus dimensionless displacement �̃� for a short cantilever beam.
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Figure 7: Load factor M versus dimensionless displacement �̃� for a short cantilever beam.

4.4. Simply Supported Beam. Simply supported beams are
considered. �̃� and �̃� are evaluated at (0, −ℎ/2) and (�/2, ℎ/2),
respectively. �e load-displacement curves are presented in
Figures 18 and 19, whereas Figures 20–22 show the through-
the-thickness pro�le of the stress components at the �xed
load parameter M = 6.03. �e same considerations of the
previous sections also apply to this case: the displacement
prediction can be improved from an error of 3.7% for a 2nd

order theory to 0.8% for a 5th order theory, as shown in
Table 5. Similarly for the stresses given in Table 6, 3 = 2
and B4 elements lead to a relative di	erence with respect to
“FEM 2DTL” of about 2.3% for 5̃��, 60.5% for 5̃��, and 35.2%
for 5̃��, whereas the errors given by a theory 3 = 5 and
B4 �nite elements reduce to about 0.3%. �e capability of
the proposed formulation for an accurate stress prediction
is preserved along the full deformation path, as shown in
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Figure 8: Dimensionless Cauchy stress 5̃�� along the thickness coordinate at � = �/4 and M = 5.20 for a short cantilever beam.
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Figure 9: Dimensionless Cauchy stress 5̃�� along the thickness coordinate at � = �/4 and M = 5.20 for a short cantilever beam.

Figures 23–25, where the stress pro�le given by the 3 = 5
model and the results obtained by the 2D FEM solution are
presented for di	erent load factors M.
5. Conclusions

A family of re�ned one-dimensional �nite elements derived
through a Uni�ed Formulation of the displacement �eld has

been proposed for the geometrically nonlinear analysis of
beam-like structures. Slender as well as short beams have
been investigated for di	erent boundary conditions. MITC
method has been adopted in order to tackle the shear and
membrane locking phenomena and improve the convergence
performance of the proposed elements. �e capability of UF-
based structural theories to accurately yet e
ciently predict
both the displacement and the stress �elds in the nonlinear
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Figure 10: Dimensionless Cauchy stress 5̃�� along the thickness coordinate at � = �/4 and M = 5.20 for a short cantilever beam.
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Figure 11: Load factor M versus dimensionless displacement �̃� for a slender doubly clamped beam.

regime via a one-dimensional model has been demonstrated
in this work. As far as computational costs are concerned, the
use of UF-based one-dimensional �nite elements can save at
least one order of magnitude in terms of DOFs, with respect
to two-dimensional elements. �e extension of the proposed
formulation based on Taylor polynomials for an equivalent
single-layer analysis of composite beam structures will be
presented in a future work.

Appendix

Fundamental Nuclei of the Tangent
Stiffness Matrix

�e components of the linear sti	ness matrix K	����� are

U	������� = �11��N�,��,� + �55�,��,�N�� + �15�,��N��,� + �15��,�N�,��
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Figure 12: Load factor M versus dimensionless displacement �̃� for a slender doubly clamped beam.
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Figure 13: Load factor M versus dimensionless displacement �̃� for a short doubly clamped beam.

K	������� = �13��,�N�,�� + �15��N�,��,� + �35�,��,�N�� + �55�,��N��,�
U	������� = �13�,��N��,� + �15��N�,��,� + �35�,��,�N�� + �55��,�N�,��
U	������� = �33�,��,�N�� + �55��N�,��,� + �35��,�N�,�� + �35�,��N��,�

(A.1)

�e generic term ��ℎ�(,�)�(,�) is a cross-section moment:

��ℎ�(,�)�(,�) = ∫
Ω�=ℎ�×��

��ℎ/�(,�)/�(,�)#Ω (A.2)

and it is a weighted sum (in the continuum) of each elemental
cross-section area where the weight functions account for the
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Figure 14: Load factor M versus dimensionless displacement �̃� for a short doubly clamped beam.
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Figure 15: Dimensionless Cauchy stress 5̃�� along the thickness coordinate at � = �/4 and M = 11.04 for a short doubly clamped beam.

spatial distribution of the geometry and thematerial. N�(,�) �(,�) is
the integral along the element axis of the product of the shape
functions and/or their derivatives:

N�(,�)�(,�) = ∫
��
3�(,�)3�(,�)#� (A.3)

�ese integrals are numerically evaluated through Gaussian

quadrature. K	�1���� is the initial-displacement, or initial-slope,

contribution to the tangent sti	ness matrix. Its components
are

U	�1������ = 4��� (2�11���N�,��,��,� + �13��,��,�N�,��� + �13�,���,�N��,��
+ 2�15���,�N�,��,�� + 2�15��,��N�,���,� + 2�15�,���N��,��,�
+ 2�35�,��,��,�N��� + 2�55�,��,��N���,� ) + �55�,���,�N��,��
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Figure 16: Dimensionless Cauchy stress 5̃�� along the thickness coordinate at � = �/4 and M = 11.04 for a short doubly clamped beam.
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Figure 17: Dimensionless Cauchy stress 5̃�� along the thickness coordinate at � = �/4 and M = 11.04 for a short doubly clamped beam.

+ �55��,��,�N�,���) + 4���4��� (�11����N�,��,��,��,�
+ �13��,���,�N�,���,�� + �13�,���,��N��,���,� + �15����,�N�,��,��,��
+ �15��,���N�,���,��,� + �15���,��N�,��,���,� + �15�,����N��,��,��,�
+ �35��,��,��,�N�,���� + �35�,���,��,�N��,��� + �35�,��,��,��N����,�
+ �35�,��,���,�N���,�� + �33�,��,��,��,�N���� + �55���,��,�N�,��,���

+ �55��,��,��N�,����,� + �55�,����,�N��,��,�� + �55�,��,���N���,��,�)
(A.4)

U	�1������ = 4��� (�13��,��N�,���,� + �15���N�,��,��,� + �35��,��,�N�,���
+ �55���,�N�,��,�� + �33�,��,��,�N��� + �35�,���,�N��,�� + �35�,��,��N���,�
+ �55�,���N��,��,�) + 4�� (�11���N�,��,��,� + �13��,��,�N�,���
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Figure 18: Load factor M versus dimensionless displacement �̃� for a short simply supported beam.
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Figure 19: Load factor M versus dimensionless displacement �̃� for a short simply supported beam.

+ �15���,�N�,��,�� + �15��,��N�,���,� + �15�,���N��,��,� + �35�,��,��,�N���
+ �55�,���,�N��,�� + �55�,��,��N���,�) + 4���4�� (�11����N�,��,��,��,�
+ �13��,���,�N�,���,�� + �15����,�N�,��,��,�� + �15��,���N�,���,��,�
+ �15���,��N�,��,���,� + �35��,��,��,�N�,���� + �55���,��,�N�,��,���

+ �55��,��,��N�,����,� + �13�,���,��N��,���,� + �33�,��,��,��,�N����
+ �35�,���,��,�N��,��� + �35�,��,��,��N����,� + �15�,����N��,��,��,�
+ �35�,��,���,�N���,�� + �55�,����,�N��,��,�� + �55�,��,���N���,��,�)

(A.5)
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Figure 20: Dimensionless Cauchy stress 5̃�� along the thickness coordinate at � = �/4 and M = 6.03 for a short simply supported beam.
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Figure 21: Dimensionless Cauchy stress 5̃�� along the thickness coordinate at � = �/4 and M = 6.03 for a short simply supported beam.

U	�1������ = 4��� (�15���N�,��,��,� + �35��,��,�N�,��� + �55���,�N�,��,��
+ �55��,��N�,���,� + �13�,���N��,��,� + �33�,��,��,�N��� + �35�,���,�N��,��
+ �35�,��,��N���,�) + 4�� (�11���N�,��,��,� + �15��,��N�,���,�
+ �15���,�N�,��,�� + �55��,��,�N�,��� + �13�,���,�N��,�� + �35�,��,��,�N���

+ �15�,���N��,��,� + �55�,��,��N���,�) + 4��4��� (�11����N�,��,��,��,�
+ �13��,���,�N�,���,�� + �15����,�N�,��,��,�� + �15��,���N�,���,��,�
+ �15���,��N�,��,���,� + �35��,��,��,�N�,���� + �55���,��,�N�,��,���
+ �55��,��,��N�,����,� + �13�,���,��N��,���,� + �33�,��,��,��,�N����
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Figure 22: Dimensionless Cauchy stress 5̃�� along the thickness coordinate at � = �/4 and M = 6.03 for a short simply supported beam.

Table 1: Displacements for a short cantilever beam, M = 10.
10 × −�̃� 10 × �̃�

Plane183 6.1163 8.7165
Beam3 TBT 6.4377 8.2409
Beam3 EBT 6.3579 8.1661
EBT [1] 6.2652 8.1061
N B2 B3 B4 B2 B3 B4

5 6.1579 6.1585 6.1585 8.6817 8.6820 8.6820
4 6.1575 6.1580 6.1581 8.6809 8.6812 8.6812
3 6.1596 6.1601 6.1601 8.6760 8.6764 8.6764
2 6.1521 6.1527 6.1527 8.6671 8.6674 8.6674

 = 12.06
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Figure 23: �rough-the-thickness pro�le of 5̃�� for di	erent load
factors.

+ �35�,���,��,�N��,��� + �35�,��,��,��N����,� + �15�,����N��,��,��,�
+ �35�,��,���,�N���,�� + �55�,����,�N��,��,�� + �55�,��,���N���,��,�)

(A.6)

U	�1������ = 4�� (�13��,��N�,���,� + �13�,���N��,��,� + 2�15���N�,��,��,�
+ 2�35��,��,�N�,��� + 2�35�,���,�N�,��� + 2�35�,��,��N���,�
+ 2�55���,�N�,��,�� + �55��,��N�,���,� ) + �55�,���N��,��,�
+ 2�33�,��,��,�N���) + 4��4�� (�11����N�,��,��,��,�
+ �33�,��,��,��,�N���� + �55���,��,�N�,��,��� + �55��,��,��N�,����,�
+ �55�,����,�N��,��,�� + �55�,��,���N���,��,� + �13��,���,�N�,���,��
+ �13�,���,��N��,���,� + J15����,� N�,��,��,�� + �15��,���N�,���,��,�



Mathematical Problems in Engineering 17

−0.5

−0.25

 0

 0.25

 0.5

−10 −8 −6 −4 −2  0  2  4  6  8  10  12

 = 12.06
 = 6.03 
 = 3.54 

FEM 2D TL
N=5

 Ｔ

10
3
× zz

Figure 24: �rough-the-thickness pro�le of 5̃�� for di	erent load factors.
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Figure 25: �rough-the-thickness pro�le of 5̃�� for di	erent load factors.

Table 2: Cauchy stresses evaluated at � = �/4 and 	 = −ℎ/2 for a short cantilever beam, M = 5.20.
10 × 5̃�� 10 × 5̃�� 10 × 5̃��

Plane183 2.4166 1.3372 1.7978
FEM 2D TL 2.7403 1.5302 2.0480
N B2 B3 B4 B2 B3 B4 B2 B3 B4

5 2.5622 2.7426 2.7414 1.6556 1.5336 1.5291 2.0730 2.0496 2.0474
4 2.5632 2.7435 2.7424 1.6552 1.5332 1.5287 2.0730 2.0494 2.0472
3 2.5554 2.7355 2.7344 1.6468 1.5248 1.5203 2.0779 2.0546 2.0522
2 2.4216 2.5995 2.5984 1.7133 1.5896 1.5851 2.1354 2.1114 2.1090
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Figure 26: Axial displacement �̃�, cantilever beam, M = 3.79, and �/� = 10.
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Figure 27: Transverse displacement �̃�, cantilever beam, M = 3.79, and �/� = 10.

Table 3: Displacements for a short doubly-clamped beam, M = 15.89.
103 × −�̃� 102 × �̃�

Plane183 9.4375 7.1822
FEM 2D TL 8.8841 6.7892
Beam3 TBT 9.2102 7.1003
Beam3 EBT 9.5180 6.4598
N B2 B3 B4 B2 B3 B4

5 8.8863 8.8848 8.8848 6.7911 6.7918 6.7918
4 8.8857 8.8841 8.8841 6.7879 6.7887 6.7887
3 8.8829 8.8814 8.8814 6.7725 6.7733 6.7733
2 8.8476 8.8461 8.8460 6.7109 6.7117 6.7117



Mathematical Problems in Engineering 19

-0.8 -0.6 -0.4 -0.2 0.80.60.40.20

(a) FEM 2D TL

-0.8 -0.6 -0.4 -0.2 0.80.60.40.20

(b) N=5

Figure 28: Piola-Kircho	 stress �̃��, cantilever beam, M = 3.79, and �/� = 10.
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Figure 29: Piola-Kircho	 stress �̃��, cantilever beam, M = 3.79, and �/� = 10.

+ �15���,��N�,��,���,� + �15�,����N��,��,��,� + �35��,��,��,�N�,����
+ �35�,���,��,�N��,��� + �35�,��,��,��N����,� + �35�,��,���,�N���,��)

(A.7)

K	�2���� is the initial stress, or geometric, contribution to the

tangent sti	ness matrix. Its components are

U	�2������ = U	�2������ = 4��� (�11���N�,��,��,� + �15���,�N�,��,��
+ �15��,��N�,���,� + �55��,��,�N�,��� + �15�,���N��,��,� + �55�,���,�N��,��
+ �13�,��,��N���,� + �35�,��,��,�N���) 4�� (�13���,�N�,��,��
+ �15���N�,��,��,� + �35��,��,�N�,��� + �55��,��N�,���,� + �35�,���,�N��,��

+ �55�,���N��,��,� + �33�,��,��,�N��� + �35�,��,��N���,�) 12 (4���4���
+ 4��4��) (�11����N�,��,��,��,� + �13���,��,�N�,��,���
+ �15���,��N�,��,���,� + �15����,�N�,��,��,�� + �15��,���N�,���,��,�
+ �35��,��,��,�N�,���� + �55��,��,��N�,����,� + �55��,���,�N�,���,��
+ �15�,����N��,��,��,� + �35�,���,��,�N��,��� + �55�,���,��N��,���,�
+ �55�,����,�N��,��,�� + �13�,��,���N���,��,� + �33�,��,��,��,�N����
+ �35�,��,��,��N����,� + �35�,��,���,�N���,��)

(A.8)
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Figure 30: Piola-Kircho	 stress �̃��, cantilever beam, M = 3.79, and �/� = 10.

Table 4: Cauchy stresses evaluated at � = �/4 and 	 = 0 for a short doubly-clamped beam, M = 11.04.
103 × 5̃�� 103 × 5̃�� 102 × 5̃��

Plane183 8.6194 3.2658 1.1290
FEM 2D TL 9.8958 3.1957 1.1281
N B2 B3 B4 B2 B3 B4 B2 B3 B4

5 9.9050 9.8829 9.8987 3.1738 3.2083 3.1858 1.1210 1.1315 1.1250
4 9.9077 9.8858 9.9014 3.1859 3.2205 3.1979 1.1208 1.1312 1.1248
3 9.9050 9.8830 9.8987 3.1858 3.2200 3.1976 1.1210 1.1314 1.1249
2 10.4620 10.4390 10.4550 2.3066 2.3405 2.3182 0.8477 0.8581 0.8516

Table 5: Displacements for a short simply supported beam, M = 8.36.
102 × �̃� 10 × �̃�

Plane183 3.9585 1.3032
FEM 2D TL 3.8909 1.2805
N B2 B3 B4 B2 B3 B4

5 3.9239 3.9239 3.9192 1.2843 1.2843 1.2839
4 3.9011 3.9000 3.8960 1.2820 1.2819 1.2814
3 3.8267 3.8251 3.8232 1.2739 1.2738 1.2735
2 3.7501 3.7482 3.7474 1.2583 1.2580 1.2579

Table 6: Cauchy stresses evaluated at � = �/4 and 	 = −ℎ/2 for a short simply supported beam, M = 6.03.
102 × −5̃�� 103 × −5̃�� 102 × −5̃��

Plane183 8.6470 5.2555 2.1314
FEM 2D TL 8.2064 4.8990 2.0056
N B2 B3 B4 B2 B3 B4 B2 B3 B4

5 8.2878 8.2030 8.2002 6.9946 4.8699 4.9120 2.2776 2.0010 2.0067
4 8.2696 8.1840 8.1811 6.9402 4.8190 4.8614 2.2707 1.9942 2.0002
3 8.2018 8.1142 8.1125 6.7966 4.6917 4.7352 2.2464 1.9717 1.9779
2 8.4861 8.3928 8.3917 4.0106 1.8893 1.9344 1.5683 1.2941 1.3006
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U	�2������ = U	�2������ = 0 (A.9)

�e integrals ��ℎ�(,�)�(,�) �(,�) , N�(,�)�(,�)�(,�) , ��ℎ�(,�)�(,�)�(,�)�(,�) , andN�(,�)�(,�)�(,�)�(,�) in (A.6) and (A.9) are given by

��ℎ�(,�)�(,�)�(,�) = ∫
Ω�=ℎ�×��

��ℎ/�(,�)/�(,�)/�(,�)#Ω (A.10)

N�(,�)�(,�)�(,�) = ∫
��
3�(,�)3�(,�)3�(,�)#� (A.11)

��ℎ�(,�)�(,�)�(,�)�(,�) = ∫
Ω�=ℎ�×��

��ℎ/�(,�)/�(,�)/�(,�)/�(,�)#Ω (A.12)

N�(,�)�(,�)�(,�)�(,�) = ∫
��
3�(,�)3�(,�)3�(,�)3�(,�)#� (A.13)

If a MITC beam element is considered, the N-integrals in
(A.3), (A.11), and (A.13) are replaced, respectively, by the
following integrals:

N�(,�)�(,�) = ∫
��
3�3��(,�)3�3��(,�)#� (A.14)

N�(,�)�(,�)�(,�) = ∫
��
3�3��(,�)3�3��(,�)3��(,�)#� (A.15)

N�(,�)�(,�)�(,�)�(,�) = ∫�� 3�3
�
�(,�)3��(,�)3�3��(,�)3��(,�)#� (A.16)
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