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ABSTRACT 

In the modelling and simulation of the microelectromechanical systems (MEMS) devices, for 

example the microswitch, the large deformation or the geometrical nonlinearity should be 

considered. Due to the issue of the mesh distortion, the finite element method (FEM) is not 

effective for this large deformation analysis. In this paper, a local meshfree formulation is 

developed for the geometrically nonlinear analysis of MEMS devices. The moving least 

square approximation (MLSA) is employed to construct the meshfree shape functions based 

on the arbitrary distributed field nodes and the spline weight function. The discrete system of 

equations for two-dimensional MEMS analysis is obtained using the weighted local weak-

form, and based on the total Lagrangian (TL) approach, which refers all variables to the initial 

configuration. The Newton-Raphson iteration technique is used to get final results. Several 

typical microswitches are simulated by the developed nonlinear local meshfree method. Some 

important parameters of these microswitches, e.g., the pull-in voltage, are studied. Comparing 

with the experimental results and results obtained by the linear analysis, the nonlinear 

meshfree analysis of microswitches is accurate and efficient. It has demonstrated that the 

present nonlinear local meshfree formulation is very effective for the geometrically nonlinear 

analysis of the MEMS devices, because it totally avoids the issue of mesh distortion in FEM.  

KEYWORDS: MEMS, Microswitch, Meshfree method, Local weak-form, Geometrical 

nonlinearity, Large deformation 
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1. INTRODUCTION 

Microelectromechanical systems (MEMS) have attracted a lot of attention due to its numerous 

applications in aerospace, automotive systems, manufacturing, and bioengineering[1]~[4].  

The MEMS devices typically involve mixed energy domains including the electrical field, 

mechanical field, optical field, thermal field, etc. In addition, the geometrically nonlinear 

properties should be often considered in the deformation analysis of the MEMS devices due 

to the large deformation. For the numerical simulations of MEMS devices, the traditional 

finite element method (FEM) [5][6] is usually the dominant numerical technique. However, in 

the FEM analysis, the mesh generation is computationally expensive and mesh refinement is 

difficult, especially for problems with complicated geometries and multi-physical domains. In 

addition, due to the issue of the mesh distortion, FEM is ineffective for the geometrical 

nonlinearity when the deformation is large.  Therefore, to overcome these issues, the meshfree 

(or meshless) method is a possible solution. 

In recent years, more and more researchers are devoting themselves to the research of the 

meshfree methods, due to the fact that there are still many spaces in the development of 

meshfree methods. Detailed reviews of meshfree methods can be found in the monographs 

[7][8]. There are many categories of meshfree methods[8], and group of meshfree methods 

have been developed including the strong-form meshfree methods[9][10], the smooth particle 

hydrodynamics (SPH) [11],  the element-free Galerkin (EFG) method [12][13], the 

reproducing kernel particle method (RKPM) [14][15], and the point interpolation method 

(PIM) [16]. In order to alleviate the global integration background cells, the meshfree 

methods based on the local weak-forms have also been developed, for example, the meshless 

local Petrov-Galerkin (MLPG) method [17]~[20], and the local radial point interpolation 

method (LRPIM) [21][22]. At the same time, the diverse meshfree methods have also been 

used for many applications in engineering and science [8].  

However, there are still some critical issues in the development of meshfree methods. 

Many efforts have been put in recent years to study these issues. Liu [7] has explored the 

confirming issue in the meshfree interpolations and a linearly conforming point interpolation 

technique [23][24] has been proposed to overcome this issue. The convergent property of 

meshfree methods has also been studied [25][26], and the upper bound solution of the 

meshfree method has been obtained theoretically. In addition, Liu [27] proposed a generalized 

smoothed Galerkin weak-form that is applicable to create a wide class of efficient meshfree 

numerical methods with special properties including the upper bound properties. The above 
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mentioned new advances are significant and resolve many issues, especially in theoretical 

aspects, in the development of meshfree methods.   

Considering its distinguished advantages, the meshfree methods have very good potential 

for the numerical modelling and simulation of MEMS devices. Aluru and his colleagues 

developed a finite cloud meshfree method and applied it for the simulations of MEMS devices 

[28]. They have also used the RKPM (based of the strong-form) for the static and dynamic 

analyses of MEMS [29]. Wang et al. developed a so-called meshless point weighted least-

squares method for MEMS analysis [30]. These meshfree methods are all based on the 

strong-forms. As many numerical techniques based on the strong-forms, these meshfree 

methods have also some inherent shortcomings including computational instability, 

inaccuracy, and difficulty in enforcement of boundary conditions (especially the derivative or 

Newman boundary conditions). The meshfree methods based on the local weak-forms, e.g., 

the meshfree local Petrov-Galerkin (MLPG) method [18], have many unique advantages, but 

they have not been used in the simulations of MEMS devices. In addition, the geometrically 

nonlinear analysis is a challenge for researchers in analysis of MEMS devices. Although FEM 

is a well-established mesh method, it often encounters difficulties for nonlinear analyses due 

to the issue of mesh distortion.  Because no mesh is used,  the meshfree methods show very 

good potential for the geometrically nonlinear analysis. The meshfree methods based on the 

global weak-forms have been successfully used in the geometrically nonlinear analysis. Chen 

et al. [31][32] concluded that the meshfree methods of EFG and RKPM (based on the global 

weak-forms) are very effective for the large deformation analyses. However, there is few 

study for the nonlinear analyses by the meshfree methods based on the local weak-forms [33], 

especially for the geometrical nonlinearity analysis of MEMS devices.  

In this paper, a nonlinear local meshfree formulation is developed for the geometrically 

nonlinear analysis of MEMS devices, especially the microswitches. The problem domain of a 

microswitch is represented by reasonably distributed field nodes. The moving least squares 

approximation (MLSA) is employed to construct the meshfree shape functions based on the 

local interpolation domain and the spline weight function. The discrete system of equations 

for nonlinear analysis of the microswitch is obtained using the weighted local weak-forms, 

and based on the total Lagrangian (TL) approach [34], which refers all variables to the initial 

configuration. Newton-Raphson iteration technique is used to get final results. Several typical 

microswitches are simulated by the newly developed nonlinear local meshfree method, and 

some important parameters for these microswitches, e.g., the critical pull-in voltages, are 

studied. Comparing with the experimental results and results in the linear analysis obtained by 
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other methods, it has proven  that the developed meshfree formulation is very effective for the 

geometrically nonlinear  analysis of the MEMS devices.   

2. NONLINEAR LOCAL MESHFREE FORMULATION  

2.1. Microswitches 

In the analysis of MEMS devices, the multi-domain problems are usually considered because 

these devices often involve electric, mechanical, optical, and thermal fields. In addition, the 

analyzed problems are often nonlinear, because of not only the nonlinear loading, but also the 

geometrical nonlinearity induced by the large deformation. The microswitch is one of the 

most typical MEMS devices. As an example, Figures 1 and 2 show a fixed-fixed microswitch 

and a cantilever microswitch, respectively. These microswitches are constructed by 

deformable switch arms and the undeformable bottom electrode. Under the applied voltage, 

the arm of the microswitch will deflect (as shown in Figures 1(b) and 2(b)), and the gap 

between the arm and the bottom electrode changes. The electrostatic force induced by the 

applied voltage can be expressed as [28] 

 2
0

2
1 0.65

2
T V h g

J
g h

ε−  = − + 
 

b F N  (1) 

where 0ε  is the permittivity of vacuum, V  is applied voltage, h is the arm width, and g is the 

gap between the arm and the bottom electrode, 0 yg g u= − , where 0g  is the initial distance 

between the undeformed arm and  the bottom electrode, F is the deformation gradient (which 

will be given in the following session), J is the determinant of F, and N is the surface normal 

of the initial configuration. It can be found from Eq. (1) that the above force is a nonlinear 

function of deflection. 

In the simulation of the microswitch, the electrostatic pull-in characteristic is a well-

known sharp instability in the behavior of an elastically supported structure subjected to 

parallel-plate electrostatic actuation. As the applied voltage increases, the deflection of the 

switch arm increases, and the gap between the arm and the bottom electrode decreases. It has 

been reported that when the applied voltage increases to one certain value, the arm becomes 

unstable and the centre of the arm (for fixed-fixed switch) or the free end of the arm (for the 

cantilever switch) will touch the bottom electrode (i.e., the gap is 0). This process is defined 

as the pull-in behavior and the “certain value” of the applied voltage is defined as the quasi-

static critical pull-in voltage[1] [28][30]. 



 5 

2.2. Nonlinear local weak-forms 

Consider a body, which occupies a region 0Ω  at the initial stage and occupies a region t Ω  at 

the step t. The deformation of a material particle 0∈ ΩX  at time t is described by ( , )tt ∈ Ωx X  

through the mapping functionsφ , and we have [35]  

 
( , ) ( , )t t= −u X x X X  (2) 

where u is the displacement of this material particle. A fundamental measure of deformation 

is described by the deformation gradient, F, relative to X given by  

 
( ( , )t∂ ∂ + ∂= = = +

∂ ∂ ∂
x X u X u

F δ
X X X

, and 0J = >F  (3) 

Using the variables related to the current configuration, at step t, the standard equilibrium 

equation and boundary conditions for a solid are given by 

 
0 inij, j i tbσ ρ+ = Ω  (4) 

 
ij j i t tn t on Γσ

=
 (5) 

 
i i t uu u on= Γ

 (6) 

where σ  is the Cauchy stress tensor, b is the body force per unit mass and ρ  is the mass 

density in the current configuration t Ω , n is the unit outward normal on the deformed surface, 

and iu  and it  are prescribed displacements and tractions on the boundaries t uΓ and t tΓ  of the 

current configuration t Ω . In the current configuration, a symmetric measure of stress, the 

Cauchy (true) stress, σ , is often employed, which is the work conjugate of the rate-of-

deformation,  expressed as the symmetric part of Kirchhoff stress, τ , and 

 
ij ij iI IJ jJJ F S F= =τ σ  (7) 

where S is the second Piola-Kirchhoff stress. 

 For a field node L, Eq. (4) is satisfied by using the Petrov-Galerkin formulation over a 

local quadrature domain tΩq bounded by tΓq, as shown in Figure 3, and leads to a weighted 

local weak-form equation for this node, i.e.,  

 
, t( )d 0

t q

L ij j iw bσ ρ
Ω

+ Ω =∫  (8) 



 6 

where Lw  is the weight or weight function centered usually at node L  The first part on the 

left-hand side of Eq. (8) can be integrated by parts to obtain  

 
,d d 0

t q t q

L ij j t L j ij L i tw n w v bσ σ ρ
Γ Ω

 Γ − − Ω = ∫ ∫  (9) 

Usually, the boundary tΓq for the local quadrature domain, tΩq, is composed by three 

parts [8], i.e., t q t qi t qu t qtΓ = Γ ∪ Γ ∪ Γ , where tΓqi is the internal boundary of the quadrature 

domain, which does not intersect with the global boundary tΓ; tΓqt is the part of the natural 

boundary that intersects with the quadrature domain, and tΓqu is the part of the essential 

boundary that intersects with the quadrature domain. Because it is easy to construct a weight 

function with a desired order of continuity using the spline weight function, the quartic spline 

weight functions are used for Lw . The spline weight function can be purposely selected so 

that the integral on tΓqi vanishes to simplify the local weak-form. If the weight function 

satisfies this property, the local weak-form of Eq. (9) can be re-written as 

 
, d d d d 0

t q t q t qu t qt

L j ij t L i t L ij j t L i tw w b w n w tσ ρ σ
Ω Ω Γ Γ

Ω − Ω − Γ − Γ =∫ ∫ ∫ ∫  (10) 

Due to the deformed configuration is unknown, the total Lagrangian (TL) formulation, which 

refers all stresses and deformations to the initial undeformed (reference) configuration at time 

t=0, is used. Eq. (10) can be re-written using the following matrix form 

 

0 0 0 0 0

dΩ d d d
q qi qu qt qΩ Γ + Γ Γ Ω

− Γ = Γ + Ω∫ ∫ ∫ ∫vFS wNFS wT ρwb  (11) 

To handle the geometric nonlinearity, the incremental formulation is usually used 

[34][35]. For the reference (undeformed) configuration during a finite deformation, we have 

the following incremental relationships 

 
0 0

t t t+∆ = + ∆u u u  (12) 

 
0 0

t t t+∆ = + ∆S S S  (13) 

 
0 0

0 0 0

( ) ( )t t t
t t t t

+∆
+∆ ∂ ∂= + = + = + ∆

∂ ∂
u u

F δ F F F
X X

 (14) 

where ∆u , ∆S  and ∆F are the increments of the displacement, second Piola-Kirchhoff stress 

and the deformation gradient, respectively.  Substituting Eqs. (12)~(14) into Eq. (11), we can 

obtain the following incremental local weak-form in the matrix form  
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0 0 0 0

0 0

0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0 0 0

dΩ dΩ d

d

d d d d

q q qi qu

qi qu

qt q qi qu q

t t t t t t
L L L

t t
L

t t t t t
L L L L

Ω Ω Γ + Γ

Γ + Γ

Γ Ω Γ + Γ Ω

∆ + ∆ − ∆ Γ

− ∆ Γ

= Γ + Ω + Γ − Ω

∫ ∫ ∫

∫

∫ ∫ ∫ ∫

v F D E v S F w N F D E

w N S F

w T w ρb w N FS v F S
⌢ ⌢

 

(15) 

where v is the matrix for the derivatives of the weight functions, F is the deformation gradient 

matrix, ∆E is the vector for the increments of Green strains, S and S
⌢

 are the matrix and the 

vector, respectively, of the second Piola-Kirchhoff stress, N is the matrix of the unit outward 

normal with respect to the reference configuration, and D is the material moduli with respect 

to the reference configuration.  

2.3. Discretization formulations 

For discretization, the problem domain is represented by a group of field nodes. The well 

developed moving least square approximation (MLSA)[36] is used in this paper. Consider a 

problem domain Ω, a approximated function uh(x) for a function u(x) at a sample point x is 

defined by 

 

∑
=

==
m

j
jj

h apu
1

T )()()()()( xaxpxxx  (16) 

where p(x) is a vector of  polynomial basis functions, m is the number of basis functions, and 

a(x) is a coefficient vector.  a(x) can be obtained by minimizing a weighted discrete L2 norm 

of: 

 

∑
=

−−=
n

i
iii uwJ

1

2T ])()()[( xaxpxx
⌢

 (17) 

where n is the number of nodes in the local support domain of x for which the weight function 

w
⌢

(x-xi)≠0, and ui is the nodal value of u at x=xi .  

The stationarity of J with respect to a(x) leads to the following linear relation between 

a(x) and ue: 

 
A(x)a(x)=B(x)ue (18) 

where A(x) is called the moment matrix. A and B are defined by 

 

∑
=

=
n

i
iiiw

1

T )()()()( xpxpxxA
⌢

,   w
⌢

i(x)= w
⌢

(x-xi) (19) 
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B(x)=[ w

⌢
1(x)p(x1), w

⌢
2(x)p(x2),…, w

⌢
n(x)p(xn)] (20) 

Solving a(x) from Eq. (18) and substituting it into Eq. (16), we can get the MLSA shape 

function φi(x) is defined by 

 
)()()( 1 xBxAxpΦ −= TT

 (21) 

The MLSA approximation is obtained by a special least squares method.  The function 

obtained by the MLSA is a smooth curve (or surface) and it does not pass through the nodal 

values.  Therefore, the MLSA shape functions do not, in general, have the Kronecker delta 

property [8]. The essential boundary conditions are usually enforced by the direct collocation 

method or the penalty method [19]. In this paper, the penalty technique is used to enforce the 

essential boundary conditions, because it is simple and efficient[8]. It should be also 

mentioned here that if the proper weight function is used in the MLSA approximation, the 

MLSA shape functions satisfy the continuity in the global domain[8].   

Using the meshfree shape functions obtained above, the displacement vector u can be 

approximated by  

 

1

n

i i
i=

=∑u Φ u  (22) 

where ΦΦΦΦ is the matrix of the MLSA shape functions. 

Substituting Eq. (22) into Eq. (15), we can obtain the discretized system of equations for 

the field node L 

 
L L∆ =K U P ,          L=1~N (N is the number of total field nodes)

 (23) 

where 

 

0 0

0 0 0 0

0 0 0

0 0 0 0 0

d d

d d

q q

qi qu qi qu

t t nl t l
L L L

t t t nl t t l
L L

Ω Ω

Γ + Γ Γ + Γ

= Ω + Ω

− Γ − Γ

∫ ∫

∫ ∫

K v F DB v SB

w N F DB w N SB  

(24) 

 

0 0 0 0 0

0 0 0 0 0 0d d d d
qt q qi qu q

t t t t t t
L L L L L

Γ Ω Γ + Γ Ω

= Γ + Ω + Γ − Ω∫ ∫ ∫ ∫0P w T w ρ b w N F S v F S
⌢ ⌢

 (25) 

where D is the material matrix, F is the deformation gradient matrix, S and S
⌢

 are, 

respectively, the matrix and the vector of the second Piola-Kirchhoff stress. Other matrices 

and vectors are given as [33] 



 9 

 
, ,

, ,

0

0
x y

L
y x

w w

w w

 
=  
 

v ,            
0

0L

w

w

 
=  
 

w
 

(26) 

 
0

0
x y

y x

N N

N N

 
=  
 

N ,     
x

y

T

T

  =  
  

T ,       
x

y

b

b

  =  
  

b
 

(27) 

 
1

1

1

1

0 0

0 0

0 0

0 0

n

n

l

n

n

X X

Y Y

Y Y

X X

φφ

φφ

φφ

φφ

∂∂ 
 ∂ ∂
 

∂∂ 
 ∂ ∂=  ∂∂ 
 ∂ ∂
 ∂∂
 
 ∂ ∂ 

B

⋯

⋯

⋯

⋯

 

(28) 

1 1
11 21 11 21

1 1
12 22 12 22

1 1 1 1
11 12 21 22 11 12 21 22

  

n n

nl n n

n n n n

F F F F
X X X X

F F F F
Y Y Y Y

F F F F F F F F
Y X Y X Y X Y X

φ φφ φ

φ φφ φ

φ φ φ φφ φ φ φ

∂ ∂∂ ∂ 
 ∂ ∂ ∂ ∂
 

∂ ∂∂ ∂ =
 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ + + + +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

B

⋯

⋯

⋯

 
(29) 

In Eq. (25), b in the second item is the nonlinear function of the displacement (see Eq. (1) ); 

the third and the fourth items are also function of displacements. Hence, Eq. (23) is nonlinear. 

The Newton-Raphson iteration technique [34] is often used to get results in the geometrically 

nonlinear analysis of microswitches. 

3. NUMERICAL EXEMPLE  

3.1. Validation by a large deformation analysis of a cantilever beam 

In order to validate the present nonlinear local meshfree formulation, a benchmark problem of 

a cantilever beam is studied firstly. For this beam, the compressible hyperelastic neo-Hookean 

material [34] is used with Lamé constants 4105.0 ×=µ and 3103.3 ×=λ . Except when 

mentioned, the units are taken as standard international units in the following examples.  

As shown in Figure 4, the length of the cantilever beam is 10, and the height of the beam 

is 2. The plane strain state is considered, and the beam is subjected to a distributed vertical 

loading along the right end. The nonlinear analysis is carried out using load incremental steps 
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N and the load-scaling factor is β=10.0. It means that at the kth loading step, the distributed 

loading is fk=10k/Unit.   

To study the accuracy and stability, we also solve this problem by FEM with a fine mesh 

(with 738 degrees of freedom), and the FEM result is taken as the reference solution[33]. 

Figure 5 plots the FEM reference results of loading steps N=8. The following norm is defined 

as an error indicator,  

 
( ) ( )

( )

Num Ref
t t

u Ref
t

u u
e

u

−
=

 

(30) 

where Num
tu )(  and Ref

tu )( are displacements obtained by the numerical method and the FEM 

reference solution, respectively.  For easy comparisons, the vertical displacement, uy, at point 

A (shown in Figure 4) is used.  

Table 1 lists vertical displacements at Point A obtained by the presented nonlinear local 

meshfree method and the traditional FEM (using the same 33 nodes). The computational 

errors, which are given in Eq. (30), are also listed in this table.   

Table 1 Vertical displacements uy at Point A 

Loading steps N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 

Reference 
solution 

- uy 0.816 1.617 2.376 3.078 3.714 4.283 4.768 5.235 

- uy 0.791 1.574 2.301 3.03 3.663 4.253 4.785 5.251 
Meshfree 

eu(%) 3.06 2.66 3.16 1.56 1.37 0.70 0.36 0.31 

- uy 0.733 1.452 2.148 2.796 3.393 3.935 4.424 4.863 
FEM 

eu(%) 10.17 10.20 9.61 9.16 8.64 8.13 7.21 7.11 

 

From this table, we can conclude that the present nonlinear local meshfree analysis leads 

to more accurate results than FEM when the same numbers of nodes are used. This is because 

the meshfree method has better accuracy than FEM[7], and it can also avoid the issue of mesh 

distortion in FEM. 

Figure 6 plots the meshfree results for 20 loading steps using the regular nodes given in 

Figure 4. Compared with the reference FEM results shown in Figure 5 (for the first 8 loading 

steps), it can be found that the meshfree method leads very good results. It should be 
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mentioned here that when N=20 the deflection at the free end of the beam is already about 4 

times of the initial height of the beam. The large deformation does not affect the 

computational accuracy of the nonlinear meshfree analysis. It proves that the developed 

nonlinear local meshfree method is very effective for the large deformation analysis.    

To test the stability of the developed method for irregularly nodal distributions, the 

computational model (as shown in Figure 7) using 128 irregular nodes is also studied. The 

deflection results are plotted in Figure 8 for eight loading steps. Compared with the reference 

FEM results given in Figure 5, it can be found that the present nonlinear local meshfree 

formulation also leads to very good results even using the irregularly nodal distribution. The 

stability for irregular nodes is one of attractive advantages of the local meshfree method. 

 

 

3.2. Large deformation analysis for fixed-fixed microswitch 

In this study, a fixed-fixed microswitch, as shown in Figure 1, is simulated. The switch arm 

has the parameters [1] [37] of: length=80 µm, width=10 µm, and thickness 0.5 µm. The initial 

gap 0g  between the beam and the bottom electrode is 0.7 µm. The Young’s modulus E is 169 

GPa, the Poisson’s ratio is 0.3. Because the deflection of the switch arm is relatively large, the 

present nonlinear meshfree method is used to analyze this large deformation problem of this 

microswitch. It should be mentioned here that this problem is more complex than above beam 

problem studied in Session 3.1, because the loading (Eq. (1)) on the device is also nonlinear 

and it will be changed with the deflection. Hence, two Newton-Raphson iteration loops are 

required to get the solution: one for the nonlinear loading and the other for the geometrical 

nonlinearity.  

As shown in Figure 9, the switch arm is represented by 259 irregularly distributed nodes. 

Figure 10 plots the deflections along the switch arm under different applied voltages. From 

Figure 11, we can obtain that the critical pull-in voltage for this microswitch is 15.14 volt. 

Compared with the critical pull-in value 15.17 volt obtained through the experiment and 15.1 

volt obtained by FEM [1], the present nonlinear local meshfree method obtains good result. 

This device has also been analyzed by Wang et al. [30] using the linear theory. They obtained 

the critical pull-in voltage is 15.07 volt. Therefore, the nonlinear meshfree method gives more 

accurate result than the linear modelling.  

To detailedly investigate the differences between linear and nonlinear analyses, the 

critical pull-in voltages for different initial gaps are obtained by the linear and the nonlinear 
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meshfree analysis, respectively. Figure 12 plots the critical pull-in voltages obtained by both 

linear and nonlinear analysis. From this figure, we can find, for a small gap, the linear and 

nonlinear analyses give almost identical results, because for these cases the deflections are 

still in the range of small deformation. However, when the initial gap increases, the critical 

pull-in voltages obtained by linear and nonlinear analyses become significantly different due 

to the large deformation. The results obtained by the nonlinear analysis are usually larger than 

those obtained by the linear analysis. For the large deformation cases, the nonlinear local 

meshfree analysis will give more accurate results than the linear analysis.  

3.3. Large deformation analysis for cantilever microswitch 

Another microswitch—the cantilever microswitch as shown in Figure 2, which can be 

simplified as a cantilever beam, is also studied. The parameters for this cantilever microswitch 

are exactly same as those used in the fixed-fixed microswitch in the previous session. As the 

applied voltage increases, the deflection of the microswitch increases. Furthermore, the 

deflection at the free end, defined as peak deflection, increases largely. When the applied 

voltage reaches a certain value, the free end of the beam touches the bottom electrode.  

Figures 13 and 14 plot the deflections along the switch arm under different applied 

voltages. Similarly, the critical pull-in voltage for this cantilever microswitch is 2.35 volt that 

is very close to the result of 2.33 volt obtained by the linear theory [30]. It should mentioned 

here that because the initial gap in this study is much smaller than the length and height, the 

linear and nonlinear analyses for this cantilever switch lead to very close results. When the 

initial gap becomes large, the nonlinear influence will become significant. Similarly, the 

results obtained by the nonlinear analysis are usually larger than those obtained by the linear 

analysis, but the difference between them for a cantilever microswitch is not significant as 

that for a fixed-fixed microswitch.  

3.4. The microtweezer 

A tungsten microtweezer [30], as shown in Figure 15, can be also considered as a 

microswitch. The parameters for this microtweezer arms are: 200µm long, 2.7µm wide and 

2.5µm thick. The initial opening of the two arms, d0, is 3µm. It was designed and simulated by 

MacDonald et al. [38] and Shi et al. [6]. In this nonlinear simulation, the microtweezer arms 

can be simplified as cantilever beams shown in Figure 15, and the effect of the coating layers 

is neglected. In the practical applications, there usually is an initial angle between the arms 

and the central line of the microtweezer, shown in Figure 15. For generalization, a 
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microtweezer with an initial angle α = 0.5◦ is simulated by the present nonlinear local 

meshfree method.  

The work process of this microtweezer is: when the applied voltage is imposed on the 

arms, the arms begin to deflect and move to the central line. With the increase of the applied 

voltage, the deflections of the arms increase. When the voltage reaches one certain value, the 

tips of two arms contact with each other as shown in Figure 15. This value of the applied 

voltage is defined as the critical pull-in voltage or closing voltage.  

Because of the symmetry of the microtweezer, only one arm is studied. The closing 

voltage obtained by the nonlinear local meshfree method is 155 volt, which agrees very well 

with the experimental result of 150 volt [38], and the other numerical result of 156–157 volt 

[6].  

 

 

4. CONCLUSIONS 

In this paper, a nonlinear local meshfree formulation is developed for the geometrically 

nonlinear analysis of the MEMS devices, especially the microswitch. The discrete system of 

equations is obtained using the weighted local weak-forms, and based on the total Lagrangian 

(TL) approach. Several typical microswitches are studied to illustrate the effectivity of the 

present method. Compared with the experimental results and the result obtained by other 

numerical methods, the present nonlinear local meshfree method leads to good results. From 

the studies in the paper, we draw the following conclusions:  

a) The nonlinear local meshfree method is more effective than FEM for the geometrically 

nonlinear analysis, because it can fully overcome the issue of the mesh distortion in FEM.   

b) In the modelling and simulation of the microelectromechanical systems (MEMS) devices, 

both geometrical and loading nonlinearity should be considered. For microswitches, the 

nonlinear influences will become significant when the initial gap and the deformation 

increase. The critical pull-in voltages obtained by the nonlinear analysis are usually larger 

than those obtained by the linear analysis. For the large deformation analysis, the nonlinear 

local meshfree method gives more accurate results than the linear analysis. 

c) The nonlinear local meshfree method usually leads to good results for the numerical 

simulation of MEMS devices, and, hence, it has very good potential to become a powerful 

tool for modelling, simulation and design of the MEMS devices.  
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However, further research is required to make the present nonlinear local meshfree 

method as a practical simulation and design tool for MEMS devices, for example, the analysis 

of three-dimensional devices and the development of the commercial software package.  In 

addition, the local week-form is usually not symmetric, which leads to poor computational 

efficiency. The symmetric Galerkin weak-form will be use in the future studies to overcome 

this issue.   
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Figure 1  A fixed-fixed  microswitch. a) Undeformed configuration; b) deformation under 
applied voltage 
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Figure 2  A cantilever microswitch. a) Undeformed configuration; b) deformation under 

applied voltage 
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Figure 3 A problem domain and boundaries modeled using the local meshfree method 
 
 
 
 
 

 
 
 
Figure 4 A cantilever beam and the nodal distribution used in the simulation 
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Figure 5 The FEM reference solution for loading steps N=8 
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Figure 6 The deflection results for loading steps N=20 using regular nodes 
 
 
 
 
 
 

 
 
 
Figure 7  128 irregularly distributed nodes 
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Figure 8  The deflection results for loading steps N=8 using irregular nodes 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 9  259 irregularly distributed nodes for the microswitch 
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Figure 10  Deflections of the fixed-fixed switch arm under different applied voltages (V=4.0, 

8.0, 12.0, and 15.0 volt, respectively). 

 
 

 
 
 
Figure 11  The gap under different applied voltages for the fixed-fixed microswitch 
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Figure 12  Relationship of the critical pull-in voltage and the initial gap  for the fixed-fixed 
microswitch 

 

 



 25 

 

 
Figure 13  Deflections of the cantilever switch arm under different applied voltages (V=0, 1, 

1.5, 2, 2.3, and 2.35 volt, respectively). 

 

 
 

Figure 14  The gap under different applied voltages for the cantilever microswitch 
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Figure 15 A microtweezer  
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