QUT

Queensland University of Technology
Brisbane Australia

This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Gu, YuanTong

(2008)

Geometrically nonlinear analysis of microswitches using the local mesh-
free method.

International Journal of Computational Methods, 5(4), pp. 513-532.

This file was downloaded from: https://eprints.qut.edu.au/224385/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1142/S0219876208001601



https://eprints.qut.edu.au/view/person/Gu,_YuanTong.html
https://eprints.qut.edu.au/224385/
https://doi.org/10.1142/S0219876208001601

QUT Digital Repository:

http://eprints.qut.edu.au/ QUT

Gu, YuanTong (2008) The geometrically nonlinear analysis of microswitches using the
local meshfree method. International Journal of Computational Methods, 5(4). pp. 513-
532.

© Copyright 2008 World Scientific Publishing
Electronic version of an article published as [Journal, Volume, Issue, Year, Pages]
[10.1142/S0219876208001601] © [copyright World Scientific Publishing
Company] [http://www.worldscinet.com/ijcm/ijcm.shtml]




The geometrically nonlinear analysis of microswitches using the local
meshfree method

Y. T.Gu
School of Engineering Systems
Queensland University of Technology
GPO Box 2434, Brisbane, QLD 4001 Australia
E-mail: yuantong.gu@qut.edu.au

ABSTRACT

In the modelling and simulation of the microeleatexhanical systems (MEMS) devices, for
example the microswitch, the large deformation e geometrical nonlinearity should be
considered. Due to the issue of the mesh distqrtlon finite element method (FEM) is not
effective for this large deformation analysis. st paper, a local meshfree formulation is
developed for the geometrically nonlinear analysisMEMS devices. The moving least
square approximation (MLSA) is employed to condtthe meshfree shape functions based
on the arbitrary distributed field nodes and thingpweight function. The discrete system of
equations for two-dimensional MEMS analysis is of#d using the weighted local weak-
form, and based on the total Lagrangian (TL) apgmpwhich refers all variables to the initial
configuration. The Newton-Raphson iteration techridgs used to get final results. Several
typical microswitches are simulated by the devedopenlinear local meshfree method. Some
important parameters of these microswitches, thg.pull-in voltage, are studied. Comparing
with the experimental results and results obtaibgdthe linear analysis, the nonlinear
meshfree analysis of microswitches is accurate effidient. It has demonstrated that the
present nonlinear local meshfree formulation is/\affective for the geometrically nonlinear

analysis of the MEMS devices, because it totallyids the issue of mesh distortion in FEM.

KEYWORDS: MEMS, Microswitch, Meshfree method, Local weakapr Geometrical

nonlinearity, Large deformation



1. INTRODUCTION

Microelectromechanical systems (MEMS) have attchetéot of attention due to its numerous
applications in aerospace, automotive systems, faetwing, and bioengineering[1]~[4].
The MEMS devices typically involve mixed energy dons including the electrical field,
mechanical field, optical field, thermal field, et addition, the geometrically nonlinear
properties should be often considered in the dedtion analysis of the MEMS devices due
to the large deformation. For the numerical simafet of MEMS devices, the traditional
finite element method (FEM) [5][6] is usually therdinant numerical technique. However, in
the FEM analysis, the mesh generation is compun@llyp expensive and mesh refinement is
difficult, especially for problems with complicatg@ometries and multi-physical domains. In
addition, due to the issue of the mesh distortieBM is ineffective for the geometrical
nonlinearity when the deformation is large. Therefto overcome these issues, the meshfree
(or meshless) method is a possible solution.

In recent years, more and more researchers ardinigtemselves to the research of the
meshfree methods, due to the fact that there drevginy spaces in the development of
meshfree methods. Detailed reviews of meshfree adstican be found in the monographs
[7][8]. There are many categories of meshfree nut[8}, and group of meshfree methods
have been developed including the strong-form nieshhethods[9][10], the smooth particle
hydrodynamics (SPH) [11], the element-free GaterkEFG) method [12][13], the
reproducing kernel particle method (RKPM) [14][1%}hd the point interpolation method
(PIM) [16]. In order to alleviate the global integjon background cells, the meshfree
methods based on the local weak-forms have also dbeeeloped, for example, the meshless
local Petrov-Galerkin (MLPG) method [17]~[20], amlde local radial point interpolation
method (LRPIM) [21][22]. At the same time, the dise meshfree methods have also been
used for many applications in engineering and sei¢8].

However, there are still some critical issues ia trevelopment of meshfree methods.
Many efforts have been put in recent years to sthége issues. Liu [7] has explored the
confirming issue in the meshfree interpolations arlthearly conforming point interpolation
technique [23][24] has been proposed to overconwifisue. The convergent property of
meshfree methods has also been studied [25][2G], tha upper bound solution of the
meshfree method has been obtained theoreticalpddiition, Liu [27] proposed a generalized
smoothed Galerkin weak-form that is applicable neate a wide class of efficient meshfree

numerical methods with special properties includimg upper bound properties. The above



mentioned new advances are significant and resolaey issues, especially in theoretical
aspects, in the development of meshfree methods.

Considering its distinguished advantages, the mesmhethods have very good potential
for the numerical modelling and simulation of MEMIgvices. Aluru and his colleagues
developed a finite cloud meshfree method and aghir the simulations of MEMS devices
[28]. They have also used the RKPM (based of thengtform) for the static and dynamic
analyses of MEMS [29]. Wang et al. developed aated meshless point weighted least-
squares method for MEMS analysis [3dJhese meshfree methods are all based on the
strong-forms. As many numerical techniques basedhenstrong-forms, these meshfree
methods have also some inherent shortcomings imgucdtomputational instability,
inaccuracy, and difficulty in enforcement of boundeonditions (especially the derivative or
Newman boundary conditions). The meshfree metheded on the local weak-forms, e.g.,
the meshfree local Petrov-Galerkin (MLPG) metho8][have many unique advantages, but
they have not been used in the simulations of MEMS$ces. In addition, the geometrically
nonlinear analysis is a challenge for researcmeanalysis of MEMS devices. Although FEM
is a well-established mesh method, it often enagrdifficulties for nonlinear analyses due
to the issue of mesh distortion. Because no nesised, the meshfree methods show very
good potential for the geometrically nonlinear gsm. The meshfree methods based on the
global weak-forms have been successfully usedaergdometrically nonlinear analysis. Chen
et al. [31][32] concluded that the meshfree methafdSFG and RKPM (based on the global
weak-forms) are very effective for the large defation analyses. However, there is few
study for the nonlinear analyses by the meshfreads based on the local weak-forms [33],
especially for the geometrical nonlinearity anadysi MEMS devices.

In this paper, a nonlinear local meshfree formalatis developed for the geometrically
nonlinear analysis of MEMS devices, especiallyrtheroswitches. The problem domain of a
microswitch is represented by reasonably distridbdield nodes. The moving least squares
approximation (MLSA) is employed to construct thesinfree shape functions based on the
local interpolation domain and the spline weightdiion. The discrete system of equations
for nonlinear analysis of the microswitch is ob&lnusing the weighted local weak-forms,
and based on the total Lagrangian (TL) approach [8Hich refers all variables to the initial
configuration. Newton-Raphson iteration techniguiesed to get final results. Several typical
microswitches are simulated by the newly developexlinear local meshfree method, and
some important parameters for these microswitchag, the critical pull-in voltages, are

studied. Comparing with the experimental results l@sults in the linear analysis obtained by



other methods, it has proven that the developeshfree formulation is very effective for the
geometrically nonlinear analysis of the MEMS desgic

2. NONLINEAR LOCAL MESHFREE FORMULATION

2.1. Microswitches

In the analysis of MEMS devices, the multi-domaiolppems are usually considered because
these devices often involve electric, mechanicptical, and thermal fields. In addition, the
analyzed problems are often nonlinear, becausetadmly the nonlinear loading, but also the
geometrical nonlinearity induced by the large defation. The microswitch is one of the
most typical MEMS devices. As an example, Figuresd 2 show a fixed-fixed microswitch
and a cantilever microswitch, respectively. These&roswitches are constructed by
deformable switch arms and the undeformable bottaotrode. Under the applied voltage,
the arm of the microswitch will deflect (as shown Rigures 1(b) and 2(b)), and the gap
between the arm and the bottom electrode chandes.electrostatic force induced by the

applied voltage can be expressed as [28]
2
b=-JF'N M(u o.esgj 1)
29° h

where g, is the permittivity of vacuumy is applied voltage is the arm width, and is the
gap between the arm and the bottom electrapge g, —u, , where g, is the initial distance

between the undeformed arm and the bottom elexgtfos the deformation gradient (which
will be given in the following session),is the determinant df, andN is the surface normal
of the initial configuration. It can be found froky. (1) that the above force is a nonlinear
function of deflection.

In the simulation of the microswitch, the electedst pull-in characteristic is a well-
known sharp instability in the behavior of an etadly supported structure subjected to
parallel-plate electrostatic actuation. As the egmploltage increases, the deflection of the
switch arm increases, and the gap between the radntha bottom electrode decreases. It has
been reported that when the applied voltage inesets one certain value, the arm becomes
unstable and the centre of the arm (for fixed-fisedtch) or the free end of the arm (for the
cantilever switch) will touch the bottom electro@e., the gap is 0). This process is defined
as the pull-in behavior and the “certain value'tlod applied voltage is defined as the quasi-
static critical pull-in voltage[1] [28][30].



2.2. Nonlinear local weak-forms

Consider a body, which occupies a regj@h at the initial stage and occupies a regjtn at
the sted. The deformation of a material partickel]) Q at timet is described by X t, D, Q
through the mapping functiops and we have [35]

u(X,t) =x(X,t)- X 2)

whereu is the displacement of this material particle.uhdamental measure of deformation

is described by the deformation gradidntrelative toX given by

F:%:M:g_;+a,and3:|p|>o (3)

Using the variables related to the current configjon, at step, the standard equilibrium

equation and boundary conditions for a solid avermgby

gy, + P =0 in Q (4)
on, t on I (5)
u=u on I, (6)

where o is the Cauchy stress tensbris the body force per unit mass amdis the mass
density in the current configuratiq@ , n is the unit outward normal on the deformed surface
andU, andt are prescribed displacements and tractions obdbadariesl",and,I", of the
current configuration Q. In the current configuration, a symmetric measofrestress, the

Cauchy (true) stressg, is often employed, which is the work conjugatetloé rate-of-

deformation, expressed as the symmetric part ahKioff stressy , and

r; =Jd0; =R SFy (7)
whereSis the second Piola-Kirchhoff stress.

For a field nodd., Eq. (4) is satisfied by using the Petrov-Galerkirmulation over a
local quadrature domai, bounded byl 4, as shown in Figure 3, and leads to a weighted
local weak-form equation for this node, i.e.,

[ wi(gy ; +pb)d,Q=0 (8)

1Qq



where W, is the weight or weight function centered usualiynodeL The first part on the

left-hand side of Eq. (8) can be integrated bygp#rtobtain
[ wandr - j[ L0~V P [dQ =0 ©)
qu

Usually, the boundary 4 for the local quadrature domaiif)q, is composed by three

parts [8], i.e., I, =, O, 0O,l,, whered q is the internal boundary of the quadrature

domain, which does not intersect with the globaliimaryl"; (" is the part of the natural
boundary that intersects with the quadrature domamu ., is the part of the essential
boundary that intersects with the quadrature dont#@cause it is easy to construct a weight

function with a desired order of continuity usitg tspline weight function, the quartic spline
weight functions are used fow, . The spline weight function can be purposely getkso

that the integral onlg vanishes to simplify the local weak-form. If theeight function
satisfies this property, the local weak-form of E).can be re-written as

J' w;0,d, Q- J' w,_ pbd, Q- J' w o;n, 4.l - J' witdr=20 (10)

1Qq o i

Due to the deformed configuration is unknown, thtaltLagrangian (TL) formulation, which
refers all stresses and deformations to the initi@eformed (reference) configuration at time
t=0, is used. Eqg. (10) can be re-written using tlieding matrix form

[ vFsdo- [ wNFSdr= [ wTd + [ pwbQ (11)
OQq Orqi+0rqu Orqt OQq

To handle the geometric nonlinearity, the increrakrbrmulation is usually used
[34][35]. For the reference (undeformed) configimatduring a finite deformation, we have

the following incremental relationships

t+At

JU = u+Au (12)
HEG = IS4 AS (13)
I+At
X X

where Au, AS and AF are the increments of the displacement, secon@Riomthhoff stress
and the deformation gradient, respectively. Stlisig Egs. (12)~(14) into Eg. (11), we can

obtain the following incremental local weak-formtire matrix form



[ v SFIDAEQ+ [ v, isaFda- [ w, INiF\DAEAM -

OQq OQq Orqi+0rqu
= [ wiNSAFdr
Orq|+0rqu
= I w, sTdr + _[ w, pbdQ + j w, INIFSd - I v, Fisd

Orqt OQq Orqi+0rqu OQq
wherev is the matrix for the derivatives of the weighhétions,F is the deformation gradient
matrix, AE is the vector for the increments of Green strahand S are the matrix and the
vector, respectively, of the second Piola-Kirchh&tfiessN is the matrix ofthe unit outward

normal with respect to the reference configuration, 8nis the material moduli with respect
to the reference configuration.

2.3. Discretization for mulations

For discretization, the problem domain is represgridy a group of field nodes. The well
developed moving least square approximation (MLS8))[is used in this paper. Consider a
problem domair, a approximated function”(x) for a functionu(x) at a sample point is
definedby

W) = 3" p; (2, =T (9a(x) (16)

wherep(x) is a vector of polynomial basis functionsjs the number of basis functions, and
a(x) is a coefficient vectora(x) can be obtained hyinimizing a weightedliscretel. , norm
of:

3= 3= x)[pT (X)) -y ) an

wheren is the number of nodes in the local support doro&infor which the weight function
W (x-x;)#0, andy; is the nodal value af atx=x; .

The stationarity ofl with respect ta(x) leads to the following linear relation between

a(x) andue:

A(X)a(x)=B(X)ue (18)
whereA(x) is called the moment matriA andB are defined by

AG) = 3 (PP (), W)= W(xex) 19)



BX)=[Wa(X)p(X1), Wa(X)P(X2),..., Wn(X)P(Xn)] (20)
Solvinga(x) from Eq. (18) and substituting it into Eq. (18)e can get the MLSA shape
function g(x) is defined by

@7 =p’ (A (XB(X) (21)

The MLSA approximation is obtained by a speciabtesquares method. The function
obtained by the MLSA is a smooth curve (or surfaa®] it does not pass through the nodal
values. Therefore, the MLSA shape functions dq imogeneral, have the Kronecker delta
property [8]. The essential boundary conditionsiweeally enforced by the direct collocation
method or the penalty method [19]. In this papee, penalty technique is used to enforce the
essential boundary conditions, because it is singid efficient[8]. It should be also
mentioned here that if the proper weight functierused in the MLSA approximation, the
MLSA shape functions satisfy the continuity in tfiebal domain[8].

Using the meshfree shape functions obtained alibeedisplacement vectar can be

approximated by
u=> ou, (22)

where® is the matrix of the MLSA shape functions.
Substituting Eg. (22) into Eg. (15), we can obtiea discretized system of equations for
the field nodeL

K.,AU=P, L=1~N (N is the number of total field nodes) (23)
where
K, = [ v ¢FiDB"dQ+ [ v, (SB'dQ (24)
qu qu

= | wiN{F{DBMr- [ w, (NiSB'd

Orqi+0rqu Orqi+0rqu
Po= [ w Tdr+ [ wpbd+ [ w NFSd - [ v, (FSd (25)
ol gt 0Qq ol it ol qu 0Qq
where D is the material matrixf is the deformation gradient matri§ and S are,

respectively, the matrix and the vector of the sdcBiola-Kirchhoff stress. Other matrices

and vectors are given as [33]



w 0 w
v, = X Y , w,_ = w O (26)
W, W, 0w

[N 0 N - [T _ b (27)
SRS N

28
g . o )
B! = oY oY
g o . &
Y Y
29 299
L oX oX
I o 0@ o o |
11 X 21& F11 X 216)(
" 0 0 0 0
B | R, a_\q(e Fﬂ@_g Flza—g Fzza—ﬁ (29)
0 0 0 0 0 0 0 0
_F116_$+F12£ 216_(YQ+F22£ Flla_ﬁ-l-FlZa_)qf F216_$+F2£_

In Eqg. (25),b in the second item is the nonlinear function & thsplacement (see Eq. (1) );
the third and the fourth items are also functiomlisplacements. Hence, Eq. (23) is nonlinear.
The Newton-Raphson iteration technique [34] isrofised to get results in the geometrically

nonlinear analysis of microswitches.
3. NUMERICAL EXEMPLE

3.1. Validation by a large deformation analysis of a cantilever beam

In order to validate the present nonlinear locasinfieee formulation, a benchmark problem of
a cantilever beam is studied firstly. For this bedm compressible hyperelastic neo-Hookean
material [34] is used with Lamé constants= 05x10*and 1= 33x10°. Except when
mentioned, the units are taken as standard inten@tunits in the following examples.

As shown in Figure 4, the length of the cantileveam is 10, and the height of the beam
Is 2. The plane strain state is considered, and#aen is subjected to a distributed vertical

loading along the right end. The nonlinear analisisarried out using load incremental steps



N and the load-scaling factor /&10.0. It means that at theh loading step, the distributed
loading isfy=10k/Unit.

To study the accuracy and stability, we also stive problem by FEM with a fine mesh
(with 738 degrees of freedom), and the FEM resltaken as the reference solution[33].
Figure 5 plots the FEM reference results of loaditeppsN=8. The following norm is defined

as an error indicator,

Num __, Ref
_‘“a) Uy ‘

30
o - (30)

Ref

‘u(t)

Num

where u;™ and u(Ff)Ef are displacements obtained by the numerical metratl the FEM

reference solution, respectively. For easy conspas, the vertical displacemeuy, at point
A (shown in Figure 4) is used.

Table 1 lists vertical displacements at Point Aagied by the presented nonlinear local
meshfree method and the traditional FEM (using same 33 nodes). The computational

errors, which are given in Eg. (30), are also tistethis table.

Table 1 Vertical displacements, at Point A

Loading steps N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8

Reference ' 0816 1.617 2.376 3.078 3.714 4.283 4.768 5.235
solution
"YW 0791 1.574 2.301 3.03 3.663 4.253 4.785 5.251
Meshfree
&) 306 266 316 156 1.37 070 036 031
-u, 0733 1.4522.148 2.796 3.393 3.935 4.424 4.863
FEM

eu(%) 10.17 10.20 961 9.16 864 813 721 7.11

From this table, we can conclude that the presenlimear local meshfree analysis leads
to more accurate results than FEM when the samdersof nodes are used. This is because
the meshfree method has better accuracy than FEBId]it can also avoid the issue of mesh
distortion in FEM.

Figure 6 plots the meshfree results for 20 loaditegps using the regular nodes given in
Figure 4. Compared with the reference FEM resiitsv® in Figure 5 (for the first 8 loading

steps), it can be found that the meshfree methadslevery good results. It should be

10



mentioned here that whéw=20 the deflection at the free end of the beaniready about 4
times of the initial height of the beam. The lardeformation does not affect the
computational accuracy of the nonlinear meshfrealyars. It proves that the developed
nonlinear local meshfree method is very effectivetie large deformation analysis.

To test the stability of the developed method fwegularly nodal distributions, the
computational model (as shown in Figure 7) using kBegular nodes is also studied. The
deflection results are plotted in Figure 8 for ¢ilglading steps. Compared with the reference
FEM results given in Figure 5, it can be found thHa present nonlinear local meshfree
formulation also leads to very good results evanguthe irregularly nodal distribution. The
stability for irregular nodes is one of attractadvantages of the local meshfree method.

3.2. Largedeformation analysisfor fixed-fixed microswitch

In this study, a fixed-fixed microswitch, as shownFigure 1, is simulated. The switch arm
has the parameters [1] [37] of: length388, width=10um, and thickness 04om. The initial

gap g, between the beam and the bottom electrode igr.7The Young's modulug is 169

GPa, the Poisson’s ratio is 0.3. Because the difieof the switch arm is relatively large, the
present nonlinear meshfree method is used to amalyz large deformation problem of this
microswitch. It should be mentioned here that pgh@blem is more complex than above beam
problem studied in Session 3.1, because the log@gg(1l)) on the device is also nonlinear
and it will be changed with the deflection. Henttep Newton-Raphson iteration loops are
required to get the solution: one for the nonlineading and the other for the geometrical
nonlinearity.

As shown in Figure 9, the switch arm is represebie@59 irregularly distributed nodes.
Figure 10 plots the deflections along the switam ander different applied voltages. From
Figure 11, we can obtain that the critical pullvioltage for this microswitch is 15.14 volt.
Compared with the critical pull-in value 15.17 volitained through the experiment and 15.1
volt obtained by FEM [1], the present nonlineardlomeshfree method obtains good result.
This device has also been analyzed by Wang €8@J.using the linear theory. They obtained
the critical pull-in voltage is 15.07 volt. Theredo the nonlinear meshfree method gives more
accurate result than the linear modelling.

To detailedly investigate the differences betweimedr and nonlinear analyses, the
critical pull-in voltages for different initial g@pare obtained by the linear and the nonlinear

11



meshfree analysis, respectively. Figure 12 plogscifitical pull-in voltages obtained by both
linear and nonlinear analysis. From this figure, @ find, for a small gap, the linear and
nonlinear analyses give almost identical resulegalise for these cases the deflections are
still in the range of small deformation. Howevehem the initial gap increases, the critical
pull-in voltages obtained by linear and nonlineaalgses become significantly different due
to the large deformation. The results obtainedhyrtonlinear analysis are usually larger than
those obtained by the linear analysis. For theelatgformation cases, the nonlinear local

meshfree analysis will give more accurate reshlis the linear analysis.

3.3. Largedeformation analysisfor cantilever microswitch

Another microswitch—the cantilever microswitch asown in Figure 2, which can be
simplified as a cantilever beam, is also studidte parameters for this cantilever microswitch
are exactly same as those used in the fixed-fixetdoswitch in the previous session. As the
applied voltage increases, the deflection of theroswitch increases. Furthermore, the
deflection at the free end, defined as peak deflecincreases largely. When the applied
voltage reaches a certain value, the free endedb&fam touches the bottom electrode.
Figures 13 and 14 plot the deflections along thé@éctwarm under different applied
voltages. Similarly, the critical pull-in voltagerfthis cantilever microswitch is 2.35 volt that
is very close to the result of 2.33 volt obtaingdtloe linear theory [30]. It should mentioned
here that because the initial gap in this studyuigh smaller than the length and height, the
linear and nonlinear analyses for this cantileweitch lead to very close results. When the
initial gap becomes large, the nonlinear influema# become significant. Similarly, the
results obtained by the nonlinear analysis arellyslaager than those obtained by the linear
analysis, but the difference between them for aileser microswitch is not significant as

that for a fixed-fixed microswitch.

3.4. The microtweezer

A tungsten microtweezer [30], as shown in Figure t&n be also considered as a
microswitch. The parameters for this microtweezensaare: 200m long, 2.7um wide and

2.5um thick. The initial opening of the two arnth, is 3um. It was designed and simulated by
MacDonald et al. [38] and Shi et al. [6]. In thignfinear simulation, the microtweezer arms
can be simplified as cantilever beams shown intféidib, and the effect of the coating layers
is neglected. In the practical applications, thesaally is an initial angle between the arms

and the central line of the microtweezer, shownFigure 15. For generalization, a

12



microtweezer with an initial angle = 0.5 is simulated by the present nonlinear local
meshfree method.

The work process of this microtweezer is: whenadpplied voltage is imposed on the
arms, the arms begin to deflect and move to th&adme. With the increase of the applied
voltage, the deflections of the arms increase. Whernvoltage reaches one certain value, the
tips of two arms contact with each other as showigure 15. This value of the applied
voltage is defined as the critical pull-in voltagreclosing voltage.

Because of the symmetry of the microtweezer, omlg arm is studied. The closing
voltage obtained by the nonlinear local meshfre¢hotkis 155 volt, which agrees very well
with the experimental result of 150 volt [38], atind other numerical result of 156—157 volt

[6].

4. CONCLUSIONS

In this paper, a nonlinear local meshfree formatatis developed for the geometrically
nonlinear analysis of the MEMS devices, especiddéy microswitch. The discrete system of
equations is obtained using the weighted local weaks, and based on the total Lagrangian
(TL) approach. Several typical microswitches argditd to illustrate the effectivity of the
present method. Compared with the experimentallteesind the result obtained by other
numerical methods, the present nonlinear local iesimethod leads to good results. From
the studies in the paper, we draw the followingatesions:
a) The nonlinear local meshfree method is morecetfe than FEM for the geometrically
nonlinear analysis, because it can fully overconeeissue of the mesh distortion in FEM.
b) In the modelling and simulation of the micro¢temechanical systems (MEMS) devices,
both geometrical and loading nonlinearity shouldcbesidered. For microswitches, the
nonlinear influences will become significant whdre tinitial gap and the deformation
increase. The critical pull-in voltages obtainedthg nonlinear analysis are usually larger
than those obtained by the linear analysis. Fofaige deformation analysis, the nonlinear
local meshfree method gives more accurate reddtsthe linear analysis.
c) The nonlinear local meshfree method usually deta good results for the numerical
simulation of MEMS devices, and, hence, it has \@gd potential to become a powerful

tool for modelling, simulation and design of the ME& devices.
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However, further research is required to make tresgnt nonlinear local meshfree
method as a practical simulation and design taoMBMS devices, for example, the analysis
of three-dimensional devices and the developmenh®fcommercial software package. In
addition, the local week-form is usually not symnwetwhich leads to poor computational
efficiency. The symmetric Galerkin weak-form wik luse in the future studies to overcome
this issue.
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Figure 6 The deflection results for loading stdys20 using regular nodes
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Figure8 The deflection results for loading stéys8 using irregular nodes
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Figure 10 Deflections of the fixed-fixed switch arm unddifelent applied voltages/&4.0,

8.0, 12.0, and 15.0 volt, respectively).

Applied voltages (volt)

Figure 11 The gap under different applied voltages forftked-fixed microswitch
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