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a b s t r a c t

Large amplitude free vibration analysis is carried out on axially functionally graded (AFG) tapered slender

beams under different boundary conditions. The problem is addressed in two parts. First the static

problem corresponding to a uniform transverse loading is solved through an iterative scheme using a

relaxation parameter and later on the subsequent dynamic problem is solved as a standard eigenvalue

problem on the basis of known static displacement field. The mathematical formulation of the static

problem is based on the principle of minimum total potential energy, whereas Hamilton's principle has

been applied for the dynamic analysis. To account for the geometric non-linearity arising due to large

deflection, nonlinear strain displacement relations are considered. The dynamic behaviour has been

presented in the form of backbone curves in a dimensionless frequencyeamplitude plane. The results are

successfully validated with the previously published results.

Copyright © 2015, Karabuk University. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Non-uniform beams with variable cross-section provide a suit-

able distribution of mass and strength for engineering structures.

These structural elements are commonly used in various engi-

neering applications, such as, gas turbines, wind turbines, heli-

copter rotor blades, ship propellers, robot arms, space and marine

structures etc. [12]. Their wide-spread usage in various advanced

branches of civil, mechanical and construction industries is due to

their ability to cater to different structural requirements. Hence,

prediction and determination of dynamic behaviour of these

components have been an area of great interest among researchers.

Functionally graded materials (FGMs) are new and advanced

class of inhomogeneous composites, which are obtained by com-

bination of two or more constituent materials, mixed continuously

and functionally according to a given volume fraction. As a result,

material properties become a function of spatial position and a

continuous variation from one surface to another can be achieved.

In this respect, FGMs are advantageous over contemporary lami-

nated composites as property variation is continuous and thus

eliminate stress concentration [30]. Whereas, laminated compos-

ites suffer from the disadvantage of discontinuity at the layer

interface and subsequent stress concentration. In the modern

context, FGMs find extensive application in aerospace, civil and

mechanical engineering fields [43], especially, where, unevenly

distributed thermal, chemical or mechanical loads are present.

The variation of material properties in functionally graded (FG)

beams may be oriented in transverse (thickness) direction or lon-

gitudinal/axial (length) direction or both. An exhaustive literature

review of the relevant domain reveals that majority of the studies

are concentrated on free vibration analysis of FG beams with ma-

terial property variation along the depth of the beam. In case of a

free vibration study of a structure themain objective is to determine

the natural frequencies corresponding to various modes of vibration

of the system. Several different techniques and methodologies have

been adopted for this purpose by different researchers [6,44]

derived the governing equations using Hamilton's principle while

employing different higher order shear deformation theories and

obtained the solution to these equations using Navier solution

method. Analysis of free vibration of FG beams was also carried out

by [23,41,42]; who used different techniques to solve the governing

equations obtained from application of Hamilton's principle.

Nguyen et al. [30] introduced a method involving first-order shear

deformation beam theory where the improved shear stiffness ma-

trix was derived from the in-plane stress and equilibrium equation.
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It is found that finite element techniques are quite popular in

analyzing the dynamics of FG beams. Chakraborty et al. [7] devel-

oped a new beam element also based on the first order shear

deformation theory to study the free vibration of FG beams. Hem-

matnezhad et al. [15] investigated the nonlinear behavior of FG

beams using finite element formulation. Von Karman type nonlinear

equations along with Timoshenko beam theory were used for the

analysis. Piovan and Sampaio [32] studied the free vibration of

axially moving thin-walled beam with annular cross-section using

finite element method. Ke et al. [21] studied the nonlinear free vi-

bration of FG beams using Galerkin's method. The nonlinear equa-

tions were based on Von Karman geometric nonlinearity and the

governing equations were solved using direct numerical integration

method and Runge-Kutta method.

The Ritz method along with an improved third order shear

deformation theory was used by Ref. [45]. Li [24] adopted a new

unified approach where a single fourth-order governing partial

differential equation was derived. The analysis by [33] was based

on classical and first order shear deformation theories where the

governing equations were obtained using Rayliegh-Ritz method.

Simsek [38] dealt with the classical, first and higher shear defor-

mation theories and derived the equations of motion employing

Lagrange's equations. Giunta et al. [11] worked with several

axiomatic refined theories and derived the governing differential

equations by variationally imposing the equilibrium through the

principle of virtual displacements. Murin et al. [29] derived fourth-

order differential equation for the FG beam and used linear beam

theory to establish equilibrium and kinetic beam equations. Sim-

sek and Kocaturk [39] used Lagrange's equations along with

EulereBernoulli beam theory to study the free vibration behavior

of FG beams under the action of concentrated moving loads. A

total Lagrangian formulation was used by [1] to investigate the

effects of geometric nonlinearity on the static and dynamic

response of FG beams. Lu and Chen [26] obtained semi-analytical

solutions for the free vibration of orthotropic FG beams using a

hybrid state-space differential quadrature method along with an

approximate laminate model. Kapuria et al. [20] presented a

theoretical model and its experimental validation for the free vi-

bration of a layered FG beam. Some research works are also

available on the effect of nonlinear elastic foundations on free

vibration behavior of FG beams [10,19,31,47]. The governing

equations were based on Euler-Bernoulli beam theory and solved

using Galerkin's method and He's variational iteration method.

A few researchers have concentrated on the free vibration of FG

beams where the material property variation is along the length of

the beam. Simsek et al. [40] derived the equation of motion by

using Lagrange's equations and Newmarkmethodwas employed to

find the dynamic responses of AFG beam. Shahba et al. [35e37] and

Shahba and Rajasekaran [34] studied the free vibration and stability

analysis of Euler-Bernoulli and Timoshenko beams through finite

element approach and various numerical analysis methods.

Alshorbagy et al. [4] employed numerical FEM and Euler-Bernoulli

beam theory to investigate the dynamic characteristics of FG

beams. Huang et al. [18] presented a newapproach for investigating

the vibration behaviors of non-uniform AFG Timoshenko beams by

changing the coupled governing equations to a single governing

equation by introducing an auxiliary function. Huang and Li [16,17]

studied the dynamic and buckling behavior of AFG tapered beams

by reducing the corresponding governing differential equation to

Fredholm integral equations. Aydogdu [5], Elishakoff et al. [9] and

Wu et al. [46] investigated the free vibrations of AFG tapered beams

using the semi inverse method. Mazzei and Scott [27] studied

stability and vibration of AFG tapered shafts loaded by axial

compressive forces. Li et al. [25] derived the characteristic equa-

tions in closed form for exponentially graded beams with various

boundary conditions. Kein [22] investigated the large displacement

response of tapered AFG cantilever beams by finite element

method. Hein and Feklistova [14] studied the vibrations of non-

uniform FG beams with various boundary conditions using the

EulereBernoulli theory and Haar wavelets. Akgoz and Civalek [3]

performed vibration response analysis of AFG tapered micro

beams with Euler-Bernoulli beam theory and modified couple

stress theory, by utilizing RayleigheRitz solution method. The au-

thors [2] also investigated buckling problem of linearly tapered

cantilever micro-columns of rectangular and circular cross-section

on the basis of modified strain gradient elasticity theory.

Literature review reveals that a substantial amount of research

work is focused on the field of free vibration study of depth-wise

functionally graded beams, while relatively fewer research

studies are available for AFG beams. Works on large amplitude free

vibration, specifically variation of loaded natural frequencies with

external transverse loading of AFG taper beams is limited. It should

be pointed out that a vast majority of research papers deal with a

particular type (Linear) of taper profile, while the emphasis re-

mains on developing new methods to determine the natural fre-

quencies of the system. Hence, the present study is taken up with

Nomenclature

A0 cross-sectional area of the beam at the root

b width of the beam

ci unknown coefficients for static analysis

di unknown coefficients for dynamic analysis

E0 elastic modulus of the beam material at the root

{f} load vector

I0 moment of inertia of the beam at the root

[K] stiffness matrix

[Ks] static stiffness matrix

L length of the beam

[M] mass matrix

nw, nu number of constituent functions for w and u

respectively

ng number of Gauss points

p magnitude of uniformly distributed load

t0 thickness of the beam at the root

T kinetic energy of the system

u displacement field in x-axis

U strain energy stored in the system

V potential energy of the external forces

w displacement field in z-axis

wmax maximum deflection of the beam

a taper parameter

d variational operator

ε
b
x , ε

s
x axial strains due to bending and stretching respectively

r0 density of the beam material at the root

t time coordinate

u1 first natural frequency

unl nonlinear frequency parameters

x normalized axial coordinate

p total potential energy of the system

ji set of orthogonal functions for u

fi set of orthogonal functions for w
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the objective of analyzing the large amplitude free vibration

problem of axially functionally graded (AFG) tapered beams with

different taper profiles. Variation of material properties (elastic

modulus and density) along the length of the beam is considered

according to different functions. Effect of variation of system ge-

ometry (taper parameter) on the dynamic behaviour is also studied.

The large amplitude free vibration behavior is presented as back-

bone curves in non-dimensional amplitude-frequency plane,

where, variation of natural frequency with the maximum ampli-

tude of deflection yields the backbone curve of the system. The

nature of change in the mode shape with increase in vibration

amplitude is also investigated.

2. Mathematical formulation

An axially functionally graded non-uniform beam of length L

with variable cross-sectional dimensions (b� t(x)) is shown in Fig.1

along with the coordinate system for the present analysis. The

modulus of elasticity E(x) and mass density r(x) of the beam shown

in figure vary with respect to the longitudinal direction along the x-

axis. It is to be noted that the computations are carried out in

normalized coordinate x, which is given by, x ¼ x/L. Although the

figure shows only varying thickness (t(x)) with constant width, the

formulation is capable of handling varying width as well. Effects of

shear deformation and rotary inertia have been neglected as the

cross-sectional dimensions are assumed to be considerably smaller

than the length of the beam.

The present semi-analytical formulation is displacement

based and employs appropriate energy approach to arrive at the

governing equations of the system. According to [8]; large

amplitude vibration analysis of a nonlinear system may be

considered equivalent to its free vibration analysis, under static

load producing same magnitude of large amplitude deflection.

The system is assumed to execute small-amplitude vibration

about the statically deflected equilibrium configuration as

opposed to large-amplitude vibration about its undeformed

equilibrium position. The magnitude of large amplitude vibration

is equal to the static large displacement inflicted on the system

under loading. Hence, the present large amplitude free vibration

analysis is performed in two steps. Determination of large

amplitude vibration frequencies (loaded natural frequencies)

involves solving the static displacement of the AFG beam through

an iterative scheme in the first part. Subsequently dynamic study

is taken up as a standard eigenvalue problem on the basis of

known static displacement field. As the dynamic problem is

solved on the basis of the solution of the static displacement

field, the effect of statically imposed large amplitude of vibration

is incorporated into the dynamic system [28]. Both the static and

dynamic problems are formulated on the basis of variational

form of energy principle. Nonlinear strain-displacement relations

are taken into account in order to incorporate geometric

nonlinearity.

2.1. Static analysis

As already stated, the present analysis is based on the

assumption of the beam being slender i.e. the thickness of the beam

is small compared to its length, such that the effect of shear

deformation and rotary inertia may be neglected. The governing set

of equations for the static analysis is derived through the principle

of minimum total potential energy, which states that,

dðpÞ ¼ 0; (1)

where,

p ¼ U þ V.

p ¼ Total potential energy of the system,

U ¼ Total strain energy stored in the system,

V ¼ Work function or potential of the external forces,

d ¼ Variational operator.

In the case of large displacement analysis of beams, both

bending and stretching effects are taken into consideration.

Therefore, total strain energy stored in the beam is given by:

U ¼ Ub þ Um (2a)

where,

Ub ¼ strain energy stored due to bending ¼
1

2

Z

vol

EðxÞ
�

ε
b
x

�2
dv

(2b)

Um ¼ strain energy stored due to stretching ¼
1

2

Z

vol

EðxÞ
�

ε
s
x

�2
dv

(2c)

ε
b
x and ε

s
x are axial strains due to bending and stretching

respectively. The expressions for axial strain due to bending at a

distance z from the neutral axis and axial strain due to stretching of

neutral axis are respectively given by: ε
b
x ¼�zd

2w
dx2

and

ε
s
x ¼

du
dx
þ 1

2

�

dw
dx

�2

.

Substituting these strain expressions into Equation (2), the total

strain energy stored in the beam turns out to be:

U ¼
1

2

Z

L

0

�

d2w

dx2

�2

EðxÞIðxÞdx

þ
1

2

Z

L

0

"

�

du

dx

�2

þ
1

4

�

dw

dx

�4

þ

�

dw

dx

�2�du

dx

�

#

EðxÞAðxÞdx

(3)

The work potential of the external load calculated correspond-

ing to an externally applied uniformly distributed load of intensity

p is given by:

V ¼

Z

L

0

pðxÞwdx (4)

Transverse loading patterns other than uniformly distributed

load (for example, point load, triangular or hat distribution etc.) can

also be accounted for in the present methodology, as long as they

are expressible mathematically by analytical or numerical
Fig. 1. Axially FG tapered beam with variation of material properties and geometrical

dimensions.
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functions. Substituting Equations (3) and (4) in Equation (1), the

following expression is obtained,

d

2

4

1

2

Z

L

0

�

d2w

dx2

�2

EðxÞIðxÞdxþ
1

2

Z

L

0

��

du

dx

�2

þ
1

4

�

dw

dx

�4

þ

�

dw

dx

�2�du

dx

�

)

EðxÞAðxÞdxþ

Z

L

0

pðxÞwdx

3

5 ¼ 0

(5)

Using normalised coordinate (x ¼ x/L), the above expression can

be rewritten as follows.

d

2

4

1

2

Z

1

0

1

L3

�

d2w

dx2

�2

EðxÞIðxÞdxþ
1

2

Z

1

0

�

1

L

�

du

dx

�2

þ
1

4L3

�

dw

dx

�4

þ
1

L2

�

dw

dx

�2�du

dx

�

)

EðxÞAðxÞdxþ

Z

1

0

pðxÞwLdx

3

5 ¼ 0

(6)

After applying the variational operator the above equation

becomes,

1

L3

Z

1

0

�

d2w

dx2

�

d

�

d2w

dx2

�

EðxÞIðxÞdxþ

2

4

1

L

Z

1

0

�

du

dx

�

d

�

du

dx

�

þ
1

2L3

Z

1

0

�

dw

dx

�3

d

�

dw

dx

�

þ
1

L2

Z

1

0

�

du

dx

��

dw

dx

�

d

�

dw

dx

�

þ
1

2L2

Z

1

0

�

dw

dx

�2

d

�

du

dx

�

3

5EðxÞAðxÞdxþ

Z

1

0

pðxÞdwLdx ¼ 0

(7)

Here, w and u are transverse and in-plane displacements of the

beam, respectively. In the present analysis these two displacements

(w and u) are the basic unknown variables. These approximate

displacement fields, w and u, are expressed by linear combinations

of unknown coefficients (ci) and orthogonal admissible functions (f

and j) as follows,

wðxÞ ¼
X

nw

i¼1

cifiðxÞ and uðxÞ ¼
X

nwþnu

i¼nwþ1

cijiðxÞ (8)

In above expressions, nw and nu are number of functions for w

and u, respectively. The functions fi ðxÞ are associated with dis-

placements due to bending, whereas jiðxÞ describe stretching of

the neutral plane of the beam. These admissible functions (f and j)

are continuous and differentiable within the domain and also

satisfy the boundary conditions of the system. It is also well known

that in applying the assumed series solution for the assumed field

proper choice of the functions is very important. Satisfactory result

can be obtained when the admissible functions come from a set of

orthogonal functions. The basis functions for these orthogonal sets

of functions are selected in such way that they satisfy the necessary

geometric boundary conditions of the beam. The 1-D base functions

for transverse displacement (w) are taken as the beam deflection

functions, derived from static deflection shape of the beam, cor-

responding to the boundary condition of the system. The starting

functions for stretching of the beam (u) come from the in-plane

boundary conditions, and zero displacement is assumed at the

boundaries, i.e., u ¼ 0 at x ¼ 0,1. Gram-Schmidt orthogonalization

procedure is used to generate appropriate sets of higher order co-

ordinate functions from the selected admissible start functions.

Objective of the present numerical implementation of Gram

Schmidt orthogonalization scheme is to determine a set of

orthogonal functions (admissible) in the interval 0 � x � 1, pro-

vided the first function, f1ðxÞ, of the set is known (chosen satisfying

boundary conditions).

f2ðxÞ ¼ ðx� B1Þ f1ðxÞ (9a)

fkðxÞ ¼ ðx� BkÞ fk � 1ðxÞ � Ckfk � 2ðxÞ;where;

Bk ¼

Z

1

0

xbðxÞ f2
k�1ðxÞ dx

,

Z

1

0

bðxÞ f2
k�1ðxÞ dx

Ck ¼

Z

1

0

xb ðxÞ fk�1ðxÞ fk�2ðxÞ dx

,

Z

1

0

b ðxÞ f2
k�2ðxÞ dx

(9b)

Table 1

Base functions for assumed displacement fields (w, u).

Flexural Boundary condition f1(x)

CC {x(1�x)}2

CF x2(x2�4x þ 6)

In-plane Boundary condition j1(x)

Immovable x(1�x)

Fig. 2. Graphical representation of higher order one dimensional (1-D) beam functions: (a) CC, and (b) CF.
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with bðxÞ being the weight function. The set of function fkðxÞ sat-

isfies the orthogonality condition given by,

Z

1

0

bðxÞ fkðxÞ flðxÞ ¼

�

0 if ksl
1 if k ¼ l

(9c)

For the present work, the weight function is chosen as unity. For

the convenience of the numerical scheme, all the functions are

defined numerically at some suitably selected Gauss points.

Substituting the expressions of appropriate displacement fields

from Equation (8) in Equation (7) gives the governing set of equa-

tions for static deflection of the beam. The governing set of equa-

tions in matrix form is given as,

½Ks�fcg ¼ ff g; (10)

where, [Ks] is the stiffness matrix corresponding to static analysis,

{f} is the force vector for transverse static external load and {c} is a

vector of unknown coefficients. The forms of stiffness matrix and

load vector are given as follows.

½Ks� ¼

	

K11 K12

K21 K22




and ff g ¼ ff11 f12 gT The elements of [Ks]

and {f} are:

½K11� ¼
1

L3

X

nw

j¼1

X

nw

i¼1

Z

1

0

d2fi

dx2
d2fj

dx2
EðxÞIðxÞdx

þ
1

2L3

X

nw

j¼1

X

nw

i¼1

Z

1

0

 

X

nw

i¼1

ci
dfi

dx

!2
dfi

dx

dfj

dx
EðxÞAðxÞdx

þ
1

L2

X

nw

j¼1

X

nw

i¼1

Z

1

0

 

X

nwþnu

i¼nwþ1

ci
dji�nw

dx

!2
dfi

dx

dfj

dx
EðxÞAðxÞdx;

Fig. 3. Schematic representation of taper profile and boundary conditions of AFG beams.

Table 3

Non-dimensional transverse frequencies (u ¼ m L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r A0=E0I0
p

) for linearly tapered

AFG beam (E(x) ¼ E0(1 þ x), r(x) ¼ r0(1 þ x þ x2)).

a Research work by Vibration frequencies

CC CF

u1 u2 u1 u2

0.0 Present 20.3949 56.3144 2.4254 18.6034

[34] 20.4721 56.5481 2.4255 18.6041

% error 0.3770 0.4132 0.0041 0.0037

0.2 Present 18.1479 50.2697 2.5053 17.3820

[34] 18.2169 50.4792 2.5051 17.3801

% error 0.3787 0.4150 0.0079 0.0109

0.4 Present 15.7673 43.8395 2.6162 16.0749

[34] 15.8281 44.0236 2.6155 16.0705

% error 0.3841 0.4182 0.0267 0.0273

0.6 Present 13.1765 36.8059 2.7846 14.6579

[34] 13.2291 36.9636 2.7835 14.6508

% error 0.3976 0.4266 0.0395 0.0484

0.8 Present 10.1766 28.6035 3.0882 13.1256

[34] 10.2217 28.7406 3.0871 13.1142

% error 0.4412 0.4770 0.0356 0.0869

Table 2

Values of taper parameter for different taper patterns.

Linear taper a ¼ 0.0 a ¼ 0.2 a ¼ 0.4 a ¼ 0.6

Parabolic taper a ¼ 0.0 a ¼ 0.2 a ¼ 0.4 a ¼ 0.6

Exponential taper a ¼ 0.0 a ¼ 0.223144 a ¼ 0.510826 a ¼ 0.916291

S. Kumar et al. / Engineering Science and Technology, an International Journal xxx (2015) 1e15 5

Please cite this article in press as: S. Kumar, et al., Geometrically nonlinear free vibration analysis of axially functionally graded taper beams,
Engineering Science and Technology, an International Journal (2015), http://dx.doi.org/10.1016/j.jestch.2015.04.003



½K12� ¼ 0;

½K21� ¼
1

2L2

X

nwþnu

j¼nwþ1

X

nw

i¼1

Z

1

0

 

X

nw

i¼1

ci
dfi

dx

!2
dfi

dx

djj�nw

dx
EðxÞAðxÞdx;

½K22� ¼
1

L

X

nwþnu

j¼nwþ1

X

nwþnu

i¼nwþ1

Z

1

0

dji�nw

dx

djj�nw

dx
EðxÞAðxÞdx;

ff11g ¼ L
X

nw

j¼1

Z

1

0

pðxÞfidx; ff12g ¼ 0;

The governing set of equations for the static analysis is clearly

nonlinear in nature, as the stiffness matrix itself is a function of

unknown coefficients (ci).

In the present work, an assumed solution, expressed in terms of

finite linear combination of undetermined parameters or co-

efficients with appropriately chosen functions, is substituted into

the suitably obtained energy functionals and the stationary value

with respect to the parameters is sought. Substitution of the

assumed solution into the governing equations leads to a set of

algebraic equations. Since the solution of a continuum problem in

general cannot be represented by a finite set of functions, an error

(called the residual) is induced when the assumed solution is

substituted in the governing equation. The objective is to minimize

the residual to find out a set of converged values for the unknown

coefficients.

The nonlinear set of governing equations is solved through an

iterative direct substitution method, employing an appropriate

relaxation technique. For every load step the values of unknown

coefficients (ci) are assumed to evaluate the stiffness matrix. Using

this assumed stiffness matrix new values of unknown coefficients

are calculated by the matrix inversion technique from the

expression; {c} ¼ [Ks]
�1{f}. Calculated values are then compared

with their values in previous iteration and if the difference is more

than the predefined error limit the process is repeated with new

values of unknown coefficients modified with a relaxation

parameter until the difference becomes less than the error limit.

When the convergence is achieved, ci are known and thus the

displacement field for the beam is computed. At the end of the

static solution step, a completely known stiffness matrix is
Fig. 4. Comparison of backbone curves for fundamental mode of a clampedeclamped

homogeneous uniform beam.

Table 5

Values of fundamental frequencies (u1) used for the normalisation of vibration frequencies (unl).

Fundamental frequency, u1

Material 1 Material 2 Material 3

E(x) ¼ E0, E(x) ¼ E0(1 þ x), E(x) ¼ E0e
x,

r(x) ¼ r0 r(x) ¼ r0(1 þ x þ x2) r(x) ¼ r0e
x

Taper Pattern Taper parameter CC CF CC CF CC CF

Linear Taper 0.0 22.2898 3.5155 20.3949 2.4254 22.4279 2.5650

0.2 20.0032 3.6084 18.1479 2.5053 19.9613 2.6530

0.4 17.5691 3.7378 15.7673 2.6162 17.3489 2.7752

0.6 14.9037 3.9356 13.1765 2.7846 14.5067 2.9606

Parabolic taper 0.0 22.2898 3.5155 20.3949 2.4254 22.4279 2.5650

0.2 20.3605 3.7076 18.4750 2.5715 20.3181 2.7207

0.4 18.2812 3.9521 16.4230 2.7594 18.0664 2.9207

0.6 15.9629 4.2803 14.1591 3.0151 15.5887 3.1924

Exponential taper 0.000000 22.2898 3.5155 20.3949 2.4254 22.4279 2.5650

0.223144 19.4723 3.3856 17.6874 2.3506 19.4575 2.4901

0.510826 16.3903 3.1905 14.7503 2.2336 16.2349 2.3719

0.916291 12.8908 2.8743 11.4556 2.0357 12.6189 2.1704

Table 4

Non-dimensional transverse frequencies (u ¼ m L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r A0=E0I0
p

) for linearly tapered

AFG beam (E(x) ¼ E0e
x, r(x) ¼ r0e

x).

a Research work by Vibration frequencies

CC CF

u1 u2 u1 u2

0.1 Present 21.2096 58.3740 2.6057 19.4105

[36] 21.2898 58.6306 2.6060 19.4129

% error 0.3767 0.4376 0.0115 0.0123

0.3 Present 18.6771 51.6326 2.7086 18.1005

[36] 18.7484 51.8608 2.7083 18.1001

% error 0.3802 0.4400 0.0110 0.0022

0.5 Present 15.9648 44.3712 2.8569 16.6915

[36] 16.0271 44.5698 2.8563 16.6882

% error 0.3887 0.4456 0.0210 0.0197

0.8 Present 11.2155 31.5306 3.2930 14.3706

[36] 11.2653 31.6911 3.2923 14.3621

% error 0.4420 0.5064 0.0212 0.0591
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obtained which corresponds to the deflected configuration of the

system.

2.2. Dynamic analysis

The governing equations for the dynamic analysis are obtained

by applying Hamilton's principle which is expressed as,

d

0

@

Z

t2

t1

ðT � UÞ dt

1

A ¼ 0 (11)

Here, U is the strain energy corresponding to the deflected shape

of the beam and T is the total kinetic energy of the system given by

the expression,

T ¼
1

2

Z

L

0

(

�

vw

vt

�2

þ

�

vu

vt

�2
)

rðxÞAðxÞ dx (12)

The unknown dynamic displacements w(x, t) and u(x, t) are

assumed to be separable in space and time, the spatial part of the

fields are approximated by finite linear combination of admissible

orthogonal functions identical to those utilized for static analysis,

Fig. 5. Backbone curves for AFG beam (E(x) ¼ E0(1 þ x), r(x) ¼ r0(1 þ x þ x2)): CC (a, b) Linear taper (c, d) Parabolic taper (e, f) Exponential taper.
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wðx; tÞ ¼
X

nw

i¼1

difiðxÞe
jut and uðx; tÞ ¼

X

nwþnu

i¼nwþ1

dijiðxÞe
jut (13)

where, u is the natural frequency of the system and di represents a

new set of unknown coefficients that represents the eigenvectors in

matrix form. Substituting Equations (3) and (12) along with the

dynamic displacement fields in Equation (11) gives the governing

set of equations for the beam in the following form,

�u
2½M�fdg þ ½K� fdg ¼ 0 (14)

where, [M] is mass matrix, which has the following form and

elements:

½M� ¼

	

M11 M12

M21 M22




Fig. 6. Backbone curves for AFG beam (E(x) ¼ E0e
x, r(x) ¼ r0e

x): CC (a, b) Linear taper (c, d) Parabolic taper (e, f) Exponential taper.
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½M11� ¼ L
X

nw

j¼1

X

nw

i¼1

Z

1

0

fifjrðxÞAðxÞdx; ½M12� ¼ 0; ½M21� ¼ 0;

½M22� ¼ L
X

nwþnu

j¼nwþ1

X

nwþnu

i¼nwþ1

Z

1

0

ji�nwjj�nwrðxÞAðxÞdx;

Here, [K] is the stiffness matrix of the system at the deflected

configuration. The form and elements of the matrix are identical to

that described in the static analysis section. The unknown

parameters obtained from the converged static solution are used to

compute the values for [K] at the start of dynamic problem. Equa-

tion (14) is a standard eigenvalue problem which is solved

numerically through a Matlab programme. The square roots of the

computed eigenvalues give the free vibration frequencies at the

statically deflected configuration of the beam and are called the

loaded natural frequencies. These frequencies, when plotted

against corresponding deflection amplitude provide the backbone

curves for the system. The eigenvectors corresponding to the ei-

genvalues are extracted from the same subroutine of Matlab pro-

gramme and post-processed to obtain the mode shapes of the

vibrating system.

Fig. 7. Backbone curves for AFG beam (E(x) ¼ E0(1 þ x), r(x) ¼ r0(1 þ x þ x2)): CF (a, b) Linear taper (c, d) Parabolic taper (e, f) Exponential taper.
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3. Results and discussions

Present study is conducted with an objective to investigate the

effect of large deflection on dynamic behaviour of axially func-

tionally graded (AFG) non-uniform beams and the variations in the

said dynamic behaviour corresponding to changes in the taper

profile, system geometry and material model. The present analysis

is carried out for AFG taper beams under the action of uniformly

distributed load for two flexural boundary conditions, namely,

ClampedeClamped (CC) and Clamped-Free (CF). The base functions

for the transverse displacements (w) are generated from flexural

boundary conditions and that of axial displacements (u) are

generated from membrane boundary conditions. Zero in-plane

displacements at the boundaries are assumed for the analysis.

These functions are tabulated in Table 1. Gram-Schmidt orthogo-

nalization principle is utilized to generate complete set of higher

order functions and the number of functions for each of the dis-

placements is taken as 6. Three such higher order 1-D functions

(Mode 2, 3 and 4) corresponding to CC, and CF end conditions are

shown in Fig. 2. Due to the general nature of the formulation any

other classical flexural boundary conditions can be handled

through this method. From combinations of the three classical end

conditions, i.e., clamped (C), Simply supported (S) and free (F) ends,

a total of 6 different boundary conditions, namely, CC, CS, SS, CF, SF

Fig. 8. Backbone curves for AFG beam (E(x) ¼ E0e
x, r(x) ¼ r0e

x): CF (a, b) Linear taper (c, d) Parabolic taper (e, f) Exponential taper.
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and FF, for a beam can be obtained. Due to the flexible nature of the

formulation and solution methodology all these boundary condi-

tions can be efficiently handled as long as proper measures are

employed to incorporate the rigid body modes, specifically for SF

and FF boundary conditions. Even non-classical boundaries, such as

elastically restrained ends, can also be taken care of. However, to

limit the volume of the present paper, only results pertaining to CC

and CF boundaries are furnished.

Simultaneously, three different taper patterns, namely, linear,

parabolic and exponential, have been selected. Schematic repre-

sentations of the taper profiles considered for the present analysis

are shown in Fig. 3 along with their boundary conditions. The beam

under consideration is assumed to have uniform width, while the

thickness varies according to the relations mentioned in Equation

(15).

Linear taper : tðxÞ ¼ t0ð1� axÞ (15a)

Parabolic taper : tðxÞ ¼ t0

�

1� ax2
�

(15b)

Exponential taper : tðxÞ ¼ t0 exp� ax1=2 (15c)

Here t0 is the thickness of the beam at the root and a is the taper

parameter. For each of the taper pattern four different values of

taper parameter (a) have been considered and are tabulated in

Table 2. The values of a have been so selected that the thickness at

the other end remains same for all the taper patterns to provide a

better understanding on the effects of taper pattern on the results.

Three different material models, where, the elastic modulus and

density vary along the axial direction, have been considered and

the expressions for these two parameters as function of the

normalized axial coordinate are given as follows:

Material 1: EðxÞ ¼ E0; rðxÞ ¼ r0 (16a)

Material 2: EðxÞ ¼ E0ð1þ xÞ; rðxÞ ¼ r0

�

1þ xþ x2
�

(16b)

Material 3: EðxÞ ¼ E0e
x; rðxÞ ¼ r0e

x (16c)

In these expressions, E0 is the modulus of elasticity and r0 is the

mass density at the left end of the beam i.e. at x¼ 0 (Fig.1). It should

be pointed out that Material 1 refers to a homogeneous material as

both elastic modulus and density are constants throughout the

beam.

The present analysis is based on a methodology where the so-

lution of the static displacement field of the AFG beam under

uniformly distributed transverse loading is obtained, followed by

subsequent evaluation of the eigenvalues of the corresponding

dynamic problem on the basis of converged static solution. The

solution methodology of the static problem involves an iterative

numerical scheme using successive relaxation due to presence of

nonlinearity in the stiffness matrix. The number of Gauss points

(ng) to be used for generation of results is taken as 24. The tolerance

Fig. 9. Comparison of backbone curves for different tapers, E(x) ¼ E0e
x, r(x) ¼ r0e

x (a, b) CC (c, d) CF.
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value of the error limit for the numerical iterative scheme is fixed at

0.50% and the relaxation parameter is taken as 0.50. The solution of

the dynamic problem is obtained using Matlab subroutines.

Following geometrical dimensions andmaterial properties are used

to generate the results: L ¼ 1.0 m, b ¼ 0.05 m, t0 ¼ 0.02 m,

E0 ¼ 210 GPa, r0 ¼ 7850 kg/m3.

Validation for the present formulation and solution technique is

achieved by comparison with established results already available

in literature. Non-dimensional free vibration frequency parameters

(u ¼ mL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rA0=E0I0
p

) for different modes of AFG tapered beams are

compared with results published by [34] (Table 3) and [36]

(Table 4). The tables indicate that the % error between results

obtained from present analysis and published results are quite

small and within acceptable limits. The small variations between

the two sets of data may be attributed to difference in formulation

and solution methodology.

To the best of authors' knowledge, benchmark results for

backbone curves or large amplitude free vibration of AFG taper

beams are not available in existing literature. Hence, results of the

present analysis are validated against a uniform homogeneous

beam. Comparative plots for normalized nonlinear frequencies vs

normalized maximum deflection corresponding to the funda-

mental mode are provided in Fig. 4. In this case, present results are

compared with results published by [13] for a homogeneous

Fig. 10. Mode shape plot for AFG beam (E(x) ¼ E0(1 þ x), r(x) ¼ r0(1 þ x þ x2)): with Linear taper: (a) CC (b) CF, Parabolic taper: (c) CC (d) CF and Exponential taper: (e) CC (f) CF.
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uniform beam with CC boundary condition. Present results are

generated for two different initial deflection profiles corresponding

to concentrated and uniformly distributed loading. It is found that

thematching of the two sets of results is very good at low load level,

but there is some minor deviation at higher loads. However, the

trend of the two sets of results is found to be similar. Satisfactory

agreement between the existing and generated results is observed

throughout all the comparisons to establish the validity of the

present formulation and solution methodology.

The fundamental natural frequencies for different conditions are

tabulated in Table 5. The effect of various material models, taper

patterns and parameters and boundary conditions on free vibration

of beams is evident from the differences in frequency parameters. It

is observed that the natural frequencies decrease with increase in

taper parameter except for the fundamental mode of linearly and

parabolic tapered AFG cantilever beams. This decrease in frequency

with the increase in taper parameter is due to the softening effect

introduced by the decrease in cross-sectional area and moment of

inertia. Similar observations are made by [34] for linearly tapered

beams. This softening effect is seen to be most severe in expo-

nentially tapered beams and least on parabolic tapered beams. It is

also observed that the natural frequency values for Material 2 are

less than those forMaterial 1 for similar conditions, despite the fact

thatMaterial 2 is stiffer thanMaterial 1. However, it should be noted

that increasing material properties results in heavier beams and

since the natural frequencies are affected by both stiffness and

Fig. 11. Mode shape plot for AFG beam (E(x) ¼ E0e
x, r(x) ¼ r0e

x) with Linear taper: (a) CC (b) CF, Parabolic taper: (c) CC (d) CF and Exponential taper: (e) CC (f) CF.
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mass, the variation of natural frequencies with material property

variation cannot be easily predicted [35].

Backbone curves of a system provide information about the

relation between natural frequency of vibration and amplitude of

vibration. It gives a measure of amplitude dependence of the fre-

quency, which happens only for nonlinear systems. Also, idea about

the type of nonlinearity (whether hardening/stiffening of softening

type) can be obtained from these curves. The large amplitude dy-

namic behaviour of the system is shown graphically as backbone

curves for the first four modes in non-dimensional frequency

amplitude plane, where the ordinate and abscissa represent

dimensionless amplitude (wmax/t0) and normalized frequency (unl/

u1), respectively. The dimensionless amplitude is the ratio of

maximum deflection (wmax) to the root thickness (t0) of the beam

whereas the dimensionless frequency is obtained by dividing the

nonlinear frequencies (unl) by the fundamental linear frequency

(u1) listed in Table 5. The maximum value of dimensionless

amplitude (wmax/t0) is taken as 2.0 for all the cases.

Figs. 5e8 presents the backbone curves for axially FG tapered

beams under uniformly distributed transverse loading for different

combinations of taper patterns, material property variations, as

well as boundary conditions. Each of the figures has three sets of

plots (corresponding to three separate taper profiles) containing

the first four backbone curves.

Also the figures contain backbone curves for four different

values of the taper parameter (a). Figs. 5 and 6 show the backbone

curves for clamped (CC) AFG beams having axial gradation ac-

cording to Material 2 and 3, respectively. Similarly, Figs. 7 and 8

depict the backbone curves for cantilever (CF) AFG beams having

axial gradation according to Material 2 and 3, respectively. For all

the cases, stiffness of the beam increases with increasing load due

to geometric nonlinearity present in the system. This increased

stiffness causes the increase in free vibration frequencies with in-

crease in the deflection of the beam, as can be observed from any of

the figures. So, hardening type nonlinear behaviour is exhibited by

the system for all combinations of taper profile, system geometry,

material model and boundary conditions.

For CC boundary conditions (Figs. 5 and 6) individual graphs

show an increase in slope of backbone curves with the increase in

taper parameter. This is indicative of the fact that nonlinearity of

the system increases with increase in taper parameter. The effect of

taper parameter is found to be more severe in case of exponentially

tapered beams. The backbone curves are comparatively closely

clustered in the non-dimensional plane for parabolic taper beams.

In case of CF boundary condition (Figs. 7 and 8) it is evident from

the figures that the taper parameter does not havemuch of an effect

on the vibration frequencies for the fundamental mode of linearly

and parabolic tapered AFG beams and the backbone curves overlap

each other.

The variations in the backbone curves with different taper

patterns corresponding toMaterial 3 (E(x)¼ E0e
x, r(x)¼ r0e

x) and CC

and CF boundary condition are shown in Fig. 9. For this particular

case, the taper parameter is kept fixed at 0.4. Nonlinearity involved

for exponentially tapered beams is seen be greater than the other

two cases. Difference between the backbone curves for linear and

parabolic taper profiles is found to be small.

Mode shape plots for the first three modes are furnished for

various taper profile and material property variations to highlight

the effect of vibration amplitude on the dynamic behaviour in

greater detail (Figs. 10 and 11). For each mode of vibration, two

mode shape plots corresponding to linear (wmax/t0 ¼ 0) and

nonlinear (wmax/t0 ¼ 2) frequencies are given. It should also be

noted that the amplitude of vibration for all the plots is normalized

by the corresponding maximum deflection. As expected the degree

of nonlinearity is affected by deflection and is apparent from the

change in particular mode shape. It was also observed that differ-

ence in linear and nonlinear mode shapes increase when the

boundary condition changes from CC to CF, due to the decreasing

rigidity at the boundary. However no considerable change in the

mode shapes could be identified by the different taper patterns and

material property variations.

4. Conclusions

In the present study, large amplitude free vibration problem of

axially functionally graded slender non-uniform beamwith various

taper profiles and material gradation is investigated. The beam is

under the action of uniformly distributed transverse load, while

two different flexural boundary conditions (CC and CF) are

considered. However the method can be applied to other boundary

conditions as well. The mathematical formulation is based on en-

ergy method and the free vibration problem is solved in two parts.

First the static problem is solved for unknown static displacement

fields and subsequently the dynamic problem is taken up based on

those known displacement fields. Static analysis is based on prin-

ciple of minimum total potential energy whereas Hamilton's

principle is applied for the dynamic analysis. The methodology is

general in nature and can be applied to any type of taper pattern

and axial material property gradation, as long as they are

expressible in terms of mathematical functions. The results ob-

tained from the present analysis are validated with the previously

published results and were found to be in good agreement. Back-

bone curves are presented in non-dimensional frequency-

eamplitude plane, whereas mode shape plots are furnished for a

few particular cases.
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