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Abstract

The Iterative Closest Point (ICP) algorithm is a widely used

method for aligning three-dimensional point sets. The qual-

ity of alignment obtained by this algorithm depends heavily

on choosing good pairs of corresponding points in the two

datasets. If too many points are chosen from featureless re-

gions of the data, the algorithm converges slowly, finds the

wrong pose, or even diverges, especially in the presence of

noise or miscalibration in the input data. In this paper, we

describe a method for detecting uncertainty in pose, and we

propose a point selection strategy for ICP that minimizes

this uncertainty by choosing samples that constrain poten-

tially unstable transformations.

1. Introduction

When building three dimensional models using a range

scanner, multiple views are usually required due to the lim-

ited field of view of the scanner and the presence of occlu-

sions. Registration of these views is typically performed

pairwise, using a variant of the Iterative Closest Point algo-

rithm (ICP) [3, 2]. This algorithm starts with two meshes

and an initial estimate of the aligning rigid-body transform.

It then iteratively refines the transform by alternately choos-

ing corresponding points in the meshes and finding the best

translation and rotation that minimizes an error metric based

on the distance between them.

Since ICP is a non-linear local search algorithm, it suf-

fers from many problems commonly associated with local

searches, such as slow convergence (due to shallow error

landscapes) and the tendency to fall into local minima. The

point selection strategy and the choice of error metric to be

minimized play a large role in both the rate of convergence

and the accuracy of the resulting pose. A discussion of these

issues can be found in [11].

Poor alignment between a pair of meshes can come from

several sources. Noise in the input data can cause ICP to

converge to a local minimum. The frequency of local min-

ima in the error landscape depends on input geometry and

on the minimized distance metric. The point-to-plane error

metric of Chen and Medioni [3] makes the ICP algorithm

less susceptible to local minima than the point-to-point met-

ric of Besl [2]. Pottman and Hofer [9] show that if the two

meshes are close to each other, the point-to-plane distance is

the best approximation for the true distance between the two

surfaces. This metric also has an advantage that it allows

the two surfaces to “slide” against each other in the flat and

spherical regions, which do not contain enough informa-

tion to fully constrain the transform. However, if too many

point-pairs come from such featureless regions, the algo-

rithm can fail to converge because of lack of constraints. In

this case, the cause of poor convergence and poor final pose

is the shallow error landscape that results from too much

sliding. We will call geometry that does not have enough

constraints for good convergence “unstable.”

In most 3D scanning systems, pairwise registration is

usually followed by a global relaxation algorithm [10],

which spreads the accumulated alignment error over a set of

views. Since a single mesh usually has several partners in

this set, poor pose for one mesh can easily be propagated to

its partners. Even if two views are aligned correctly, a shal-

low error landscape around the minimum can cause them

to be pulled apart during global relaxation. Finally, if the

output surface model is to be reconstructed from the input

views by some sort of averaging [4], misaligned features

can become blurred. For all these reasons, we would like

the final pose to be both correct and well-constrained.

Several methods have been proposed for evaluating and

improving the stability of the final pose between two

meshes. Once a set of point-pairs has been selected, the

presence of sliding can be detected by analyzing the covari-

ance matrix used for error minimization [13, 12, 5]. The

chosen point set can then be altered to provide the best con-

straints for the final pose. Guehring [5] addresses the prob-

lem of maximizing stability of the transform by assigning

Proceedings of the Fourth International Conference on 3-D Digital Imaging and Modeling (3DIM 2003) 

0-7695-1991-1/03 $17.00 © 2003 IEEE 



weights to existing point-pairs based on their contribution

to the covariance matrix. However, since stability analysis

is performed after the point-pairs have already been cho-

sen, this reweighting may not constrain sliding since not

enough constraining points may have been chosen in the

first place. Simon [12] has developed several algorithms for

iteratively adding and removing point-pairs to provide the

best-conditioned covariance matrix. We will discuss his ap-

proach in Section 3.

We propose a technique for identifying whether a pair of

meshes will be unstable in the ICP algorithm by estimating

the covariance matrix from a sparse uniform sampling of the

input. We then develop a sampling strategy that tries to min-

imize this instability by drawing a new set of sample points

primarily from stable, i.e. “lock and key”, areas of the input

meshes. This technique extends the normal space sampling

proposed by Rusinkiewicz and Levoy [11]. Unlike [11], our

approach deals with both translational and rotational uncer-

tainties in registration.

2. Geometric Stability of ICP

In this section we describe a method based on 6x6 co-

variance matrixes for determining if a pair of meshes will

be unstable if aligned using a point-to-plane error metric.

This discussion is similar to the analysis of Menq [8] and

Simon [12].

2.1. Error Minimization

Each iteration of the ICP algorithm proceeds as follows.

Let � and � be two meshes or two point sets with associ-

ated normals. These normals can either be computed by av-

eraging the normals of adjacent faces (for a mesh), or can be

provided externally (if no connectivity information is avail-

able). A set of points is chosen on � , and for each point the

corresponding closest point is found on �. This forms a set

of � point-pairs �������, where each �� has normal ��. (In

many implementations, source and target meshes are then

exchanged and the point selection is repeated. Here we will

use only one mesh as the source to simplify the presenta-

tion.) We then try to find a rigid-body transformation, com-

posed of a rotation � and a translation �, that minimizes the

sum of squared distances of each �� to the plane tangent to

� at ��. The alignment error is given by:

� �

��
���

����� � �� ��� � ���
� (1)

If the rotation that minimizes � is small, Equation 1

can be solved by linearizing the rotation matrix �. This

is equivalent to treating the transformation of each point

�� as a displacement by a vector �� � �� � �℄, where

� � ���� ��� ��� is a (� � �) vector of rotations around the

�, �, and 	 axes, and � � �
�� 
�� 
�� is the translation vec-
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Figure 1: (a) Force vectors (dashed) exerted by points in � on

points in � . Resulting translation vector is in bold. (b) Torque

vectors (dashed) exerted by points in � on points in � . �’s nor-

mals are attached to points on � for clarity. Resulting rotation

vector is in bold.

tor. Substituting and expanding, we therefore wish to find a

6-vector ��� �� ℄ that minimizes:

� �

��
���

���� � ��� � �� � � � ��� � ��� � � � ���
� (2)

To understand the terms of Equation 2, we can imagine

that each pair ������� applies to � a translational “force” in

the direction of �� and a rotational “torque” around the axis

�� � �� (Figure 1).

The last two terms of Equation 2 show that the amount by

which the point-plane distance will change if a given point-

pair � is moved by a transformation vector ���� ��� ℄ is

given by:

��� � ���� ��� ℄

�
�� � ��
��

�
(3)

From Equation 3, we see that points whose correspond-

ing normal vectors �� are perpendicular to �, or whose

torque vectors ����� are perpendicular to � do not change

the error � (Figure 2 (a),(c)). In a more general setting, ���
is zero for point-pairs whose 6-vector of torques and forces

is orthogonal to the transformation vector.

We solve for the aligning transform by taking partial

derivatives of Equation 2 with respect to the transform pa-

rameters. This results in a linear system 
� � �, where

� is the 	� � vector of transformation parameters, � is the

residual vector, and 
 is a 	 � 	 covariance matrix of the

“torque” and “force” components contributed by each point

pair:


 � �� � � (4)

�
�� � �� ��� �� � ��

�� ��� ��

��
� ��� � ���

� ��
�

��� ���

��� � ���
� ���

�
�

The matrix 
 encodes how much the alignment error

will change when the mesh � is moved from its optimum

alignment to � (where the error is 0) by the transformation

���� ��� ℄:
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Figure 2: Two unstable surfaces sliding against each other. (a)-(b) Point-pairs whose corresponding normals� are orthogonal to translation

direction � maintain the same point-plane distance. Thus, this point pair exerts no constraint on translation �. (c)-(d) Point-pairs whose

torques (along � � �) are orthogonal to the rotation vector � also maintain the same point-plane distance. Thus, this point pair exerts no

constraint on rotation by vector �.

�� �
�
��� ���

�



�
��

��

�
(5)

The transformations for which this increase is com-

paratively small correspond to directions where the input

meshes can slide relative to each other.

2.2. Stability of the Solution

Certain types of geometry lead to a covariance matrix

that is not full rank, which means that the minimizing trans-

form is not unique. The simplest example is two planes.

Without loss of generality, suppose they are parallel to the

��-plane. Once the planes are aligned with each other, there

are still three degrees of freedom: translation in the ��-

plane of one plane relative to the other and rotation around

the 	 axis. Neither of these transformations changes the

point-plane alignment error (Figure 2 (b), (d)). This corre-

sponds to our intuitive notion that there is not enough infor-

mation in the input data to fully constrain all the motions.

Other combinations of unconstrained rotations and trans-

lations are possible. Figure 3 shows a familiar shape for

each possible combination of unconstrained rotations and

translations. Each of these shapes will exhibit sliding when

aligned to a copy of itself.

We can identify the unconstrained transformations by ex-

pressing 
 in terms of its eigenvalues and eigenvectors. If

any of the eigenvalues are small, the corresponding eigen-

vector defines a transformation that can move two meshes

from their optimum alignment with only a small increase in

error.

Sliding between a pair of meshes can occur even if the

input has enough features to constrain most motions. An ex-

ample is two planar regions with indentations or incisions.

Examples of such input in shown in Figure 4. If the size of

these “lock and key” features is small and only a subset of

the mesh points are used in the alignment algorithm, most

of the points used in the registration will come from areas

that are planar. If the data has no noise, the small number of

points from the “lock and key” areas should be sufficient to

resolve the ambiguity in the transform and bring the meshes

into alignment. In reality, noise in point positions and nor-

mals in the flat areas will overwhelm the contribution of the

points sampled from the features, and the algorithm will fail

to converge.

There are several ways to approach the problem of slid-

ing. We can try to reduce the noise by smoothing the

meshes. This can have an undesirable side effect of smooth-

ing away the features that provide the valid constraints. We

can try to use other constraints, such as color [1, 15]. We

can also add more points to be used for minimization of

Equation 2. Just adding more points will not improve con-

vergence, since they are as likely to come from the flat areas

as from the parts of the meshes that provide the constraints.

We would like, therefore, to be able to detect whether the in-

put data has any rotational or translational instability, iden-

tify if there are any features that can better constrain the

unstable transformations, and sample those features more

densely.

3. Improving ICP’s Stability Through Sample

Selection

In this section we describe a greedy algorithm for se-

lecting samples from the input meshes in a way that will

constrain transformations which have small associated er-

ror change under the uniform sampling model.

The two techniques that are the most similar to our ap-

proach are those of Simon [12] and Rusinkiewicz [11].

Simon developed several hill climbing algorithms for se-

lecting a set of points on one of the input meshes that has

the best potential for constraining all transformations when

another mesh is aligned with it. These algorithms are espe-

cially well-adapted for dealing with noisy data, but do not

address the problem when matching areas are only a subset

of the input meshes. They are also designed for cases when

only a very small number of points is required for align-

ment. As a result, they are too expensive to be used when

large number of points are to be selected for minimization.
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2 translations, 1 rotation 3 rotations 1 rotation, 1 translation 1 rotation 1 translation

Figure 3: Some examples of simples shapes that are unstable. For each shape, the corresponding covariance matrix will have some number

of small eigenvalues, and for those, the corresponding eigenvector specifies the direction of instability. Below each figure, the number and

types of the instabilities are noted. A helix, which has one unstable screw motion, is missing, but helical shapes are not likely to arise in

scanned data.

Rusinkiewicz [11] proposed a technique called normal-

space sampling that is aimed at constraining translational

sliding of the input meshes. When drawing samples from

a mesh, the algorithm tries to ensure that the normals of

the selected points uniformly populate the sphere of direc-

tions. The algorithm can be viewed as trying to equalize the

eigenvalues of eigenvectors of 
 that correspond to trans-

lations. We will use a similar approach to create a basis all

six eigenvectors of 
.

3.1. A Measure of Stability

In previous sections we showed that the point-to-plane

error metric is susceptible to sliding in the presence of too

few constraints. When the two input meshes are far away

from each other, this sliding can help us by preventing the

algorithm from getting stuck in a wrong local minimum.

However, we do not want the meshes to slide once they get

close to their correct alignment. The goal of our sampling

strategy, therefore, is to select samples that will constrain

the transformations when the alignment gets close to the

correct pose.

As discussed in Section 2.2, we can detect if the chosen

set of point-pairs has any unconstrained transformations by

examining the eigenvalues of the covariance matrix 
. Let

�� � � ��� be the eigenvectors of 
 with the corresponding

eigenvalues �� � � � � � ��. Each eigenvector corresponds

to a general screw motion that can be described as a rotation

around an axis and a translation along that axis. If any of the

�� are small compared to ��, the corresponding eigenvector

corresponds to a sliding direction. Our measure of stability,

therefore, will be the condition number of the matrix 
:


 � ��
��

. The goal of the sampling strategy is to keep 
 as

close to 1 as possible.

However, the part of the transformation vector ��� �� ℄
that corresponds to rotation depends on the term �� � ��.

This means rotations are dependent on distance of the point

�� from the origin (which is the center of rotation when �

is applied to each ��). As is common with PCA methods,

we will shift the center of mass of the points � to the origin.

However, the magnitude of rotations can still be incompati-

ble with the magnitude of translations, since a point �� can

be arbitrarily far from the center of mass. Therefore, af-

ter shifting the center of mass, we will scale the point set

so that the average distance of points �� from the origin is

1. This has the effect of equalizing the maximum amount

of displacement that can be contributed by a point due to

“torque” (i.e. rotation) to the amount of displacement due

to “force” (i.e. translation).

Finally, we only want to add those constraints that will

pull the meshes to the alignment that is the global optimum.

That is, we want to make the error landscape around the

global minimum steep, while keeping the landscape shal-

low around the local minima to allow the algorithm to es-

cape. The global minimum is achieved when the points in

� align exactly with their correct mates in �. In this case

the normals in Equation 2 are the same for points �� and

��. Therefore, to constrain the correct transformations, we

should analyze and constrain the covariance matrix that is

computed using both points and normals from the mesh � .

We will call this matrix 
� .

3.2. Optimizing the Measure

As discussed above, our measure of stability is the con-

dition number 
 of the matrix 
� . In order to optimize

our stability measure, we first need an estimate of what the

eigenvectors of the linear system would be if uniform sam-

pling were used. Given a single mesh, we can directly com-

pute its covariance matrix using Equation 4, where the ��
associated with the points �� come from the mesh � . How-

ever, in a registration problem only those points that lie in

the overlap between two meshes should contribute to the

matrix computation. Thus, we may obtain the estimate of

the covariance matrix as follows:

A1 Let �� be a set of points randomly selected from � .

The size of �� should be chosen so that once the points

outside of the overlap area are discarded, there are still

enough points to reliably determine the covariance ma-

trix for the overlap region. The number of points de-

pends on the size of the overlap region between the two

meshes, the resolution of the mesh, and the magnitude
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of noise in the input data. In our experience with the

Forma Urbis Romae dataset [7], for meshes that over-

lap by 
��, the number of points necessary for the

eigenvectors to stabilize is on the order of several hun-

dred.

A2 For each � � �� , we need to determine whether it

belongs to the overlap area. We find its closest point �

in � and check if it lies on the boundary of the mesh

�. If �� belongs to the boundary, then � is outside the

overlap area [14] and we discard it. Otherwise, it is

added to the set of overlap points �� .

A3 We form the covariance matrix 
� of the points in ��

and compute its eigenvectors �� � � ���. We compute


� according to Equation 4, but use both points and

normals from � .

We now use these computed eigenvectors to obtain a better

sampling of the mesh � in the overlap region.

B1 Let � be the initial set of candidate points. Ideally, �

will contain all points on � that belong to the overlap

area. We will discuss how to obtain the set � later.

Form a 6-vector �� � ��� � ��� ��
�
� ℄ for each point in

�. Notice that here ��� is the normal of the point �� as

opposed to the normal of its closest point mate.

B2 Form six sorted lists �� � � � ��. Each list �� contains

the vectors �� sorted in decreasing order based on the

magnitude of the dot product �� � ��. The magnitude

of this dot product determines how much a given point

constrains each eigenvector ��. Hence, points in each

list are sorted in order of decreasing contribution to

geometric stability.

B3 We now try to equally constrain all eigenvectors of
� .

We will maintain an estimate of how each eigenvec-

tor is constrained by the already chosen points. Let


� � � � 
� be the sums of ��� ����
� over the already cho-

sen points. ��� � ���
� is the amount of error incurred if

the point �� is moved from its optimum position by the

transformation ��. Therefore, we can think of these

totals as our current estimate of the eigenvalues. We

choose the next point from the sorted list that has the

smallest total. This corresponds to the most uncon-

strained eigenvector.

B4 Let � be the chosen point. We compute ��� � ���
� for

each eigenvector �� and update the running totals.

Notice that this sampling strategy does not take into ac-

count the mesh �. We can think of this strategy as con-

straining the all transformations when � is aligned to a copy

of itself in the overlap region. Assuming that we are align-

ing two ideal, overlapping scans of the same object, this

exactly corresponds to constraining the covariance matrix

when we reach the global minimum. Once the points are

sampled from � , we can compute their closest points in

�. We then proceed with the rest of the ICP algorithm as

usual, now using the normals from � for the minimization

of Equation 2.

4. Accelerations and Enhancements

The sampling algorithm as it is described above contains

two sources of inefficiency.

First, in Step B2, we have to perform 6 sorts of the set

of vectors formed in Step B1. To reduce the cost of these

sorts, we instead sort the points into a specified number of

bins. The points are left unsorted within each bin. Although

not optimal, this still produces a good sampling, and the

approximation error can be bounded by the size of the bins.

Thus, the second step can be done in time proportional to

���.

Second, in Step B1, we need to form the set � of points

in the overlap between � and �. A brute-force approach

would be to test each point in � for overlap with � as de-

scribed in Step A2. Even using an efficient nearest-neighbor

data structure such as a k-d tree, this can be expensive for

large meshes. It can also be wasteful if we only intend to use

a small set of points for computing the aligning transform.

A simple improvement that we implemented in our sys-

tem is to process all the points in � regardless of whether

they are in the overlap area. This allows us to delay the

overlap test until Step B3. At that time, we can perform this

test the same way as in Step A2 of the matrix estimation al-

gorithm. If �� does not belong to the overlap area, we do not

update the totals and choose the next point. This method is

more efficient than the brute force approach (if we use fast

sorting), since we perform only as many nearest-neighbor

tests as dictated by the sampling rate. We can use the clos-

est points computed as a result of the overlap test for mini-

mization of Equation 2. In practice, this makes the amount

of wasted work inversely proportional to the size of overlap

region. With this implementation, ICP using our sampling

strategy takes about 5 times longer per iteration than ICP

using uniform sampling when input meshes overlap by half

their area.

A faster solution is to use the set of points computed in

by the initial eigenvector estimation (Steps A1-A3) to gen-

erate more points in the overlap area. We can generate more

such points by crawling the mesh � starting as these seed

points. If we are given a point cloud with no connectivity,

we can crawl the k-d tree used for the closest point com-

putation instead. This allows us to quickly generate a large

set of points in the overlap area for the set � and avoids

wasting work performing nearest-neighbor tests for points

that are clearly outside the overlap area. The small number

of points outside the overlap area generated by this method

can be discarded when their mates in � are determined for

error minimization. This optimization makes our algorithm
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3 times slower per iteration than conventional ICP. We ex-

pect that with a more careful implementation we can make

our sampling strategy perform comparably to ICP with uni-

form sampling.

5. Results

We have applied our sampling algorithm to several types

of synthetic and real data.

The first test case is two planar patches with two grooves

forming an X (Figure 4). Each patch has independently

added Gaussian noise. This test case is similar to the one

used by Rusinkiewicz [11] for normal-space sampling. Fig-

ure 5 shows the convergence rates for aligning these patches

using uniform sampling, normal-space sampling, and our

covariance-based sampling. Both normal-space and co-

variance sampling are able to find the correct alignment,

while uniform sampling does not align the grooves cor-

rectly. Normal-space sampling takes more iterations to con-

verge since distributing the points equally throughout the

sphere of normals puts an equal number of points in the flat

areas of the patches as it does in the grooves. Covariance

sampling instead picks only those points that form a good

basis for the normals.

Figure 4: Two planar patches with 1 mm deep grooves. Each

patch has independently added zero-mean Gaussian noise with

variance 0.05 mm. Initial condition number is 66.1. Condition

number after selecting ��� of the points with our algorithm is

3.7.
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Figure 5: Convergence rates for “incised plane” meshes for uni-

form, normal-space and covariance sampling.

Figure 8 shows the points picked by the sampling algo-

rithm to constrain the eigenvectors of the covariance ma-

trix. To simplify the visualization, we use a smaller ver-

sion of the incised plane model and assume that the entire

mesh is within the area of overlap. The initial covariance

analysis reveals three unstable eigenvectors with approxi-

mately equal eigenvalues: two translations in the �� plane

and rotation around 	. Notice that most of the points are

picked from the areas in the grooves, since they are the ones

that constrain the unstable eigenvectors. A few points from

the corners are picked to additionally stabilize the rotations

around the diagonals.

Figure 6 shows two spherical patches with grooves and

noise. Here, covariance sampling in the only method that

finds the pose that correctly aligns the grooves (Figure 7).

Figure 6: Two spherical patches with 1 mm deep grooves. Each

patch has independently added zero-mean Gaussian noise with

0.05 mm variance. This dataset has three unstable rotations. Initial

condition number is 26.9. Condition number after selecting ���

of the points with our algorithm is 4.1.
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Figure 7: Convergence rates for “incised sphere” meshes for uni-

form, normal space and covariance sampling

We have also applied our algorithm to real scan data.

Figure 9(a) shows the sampling of two scans from the

Forma Urbis Romae dataset [7]. Similar to the “incised

plane” example, these meshes exhibit translational sliding

in the plane and rotational sliding around the vector perpen-

dicular to the plane of the meshes. Most of the samples are

placed into the incisions on the scans to constrain the scans

from sliding and rotating in their common plane. It took
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(a) (b) (c) (d)

Figure 8: Points picked by our sampling algorithm for a patch with two grooves. (a) Points constraining two unstable translational

eigenvectors. (b) Points constraining the unstable rotation. (c)-(d) Two remaining rotations are stable so they only require a few points.

The eigenvector corresponding to translation in � is well constrained by the already picked points and does not contribute to the sampling.

(a)

(b) (c)

Figure 9: Aligning two scans of Forma Urbis Romae fragment

033abc. (a) Points selected by our sampling strategy are in black.

Notice that in the outlined region there are relatively fewer con-

straints to prevent horizontal sliding than vertical sliding. (b)

Therefore uniform sampling cannot align the vertical grooves in

the outlined region as evidenced in this Z-buffer rendering of the

two meshes by the fact that the vertical grooves are obscured. (c)

Covariance sampling produces the correct alignment making all

the grooves visible.

ICP 25 iterations to converge to the correct alignment (Fig-

ure 9(c)) from a rough manual positioning of the scans us-

ing our sampling strategy. Each input mesh contains about

300,000 points, and the algorithm was subsampling �
� of

the points from each mesh to be used in alignment. With

these settings, each iteration of ICP using our stable sam-

pling took 5 seconds on a 400MHz Pentium II. One iteration

of ICP using uniform sampling took 1.5 seconds, however

when started from the same position, uniform sampling is

unable to correctly align the vertical grooves (Figure 9(b)).

We have performed some initial experiments with using

the output of geometrically stable ICP in the global relax-

ation algorithm of Pulli [10] using the Forma Urbis Ro-

mae dataset. The results seem to suggest that scans that

are aligned pairwise using our sampling strategy “hold to-

gether” better than those aligned using uniform sampling.

Figure 10 shows the residual error between the pair of scans

from the Forma Urbis dataset examined above after the en-

tire set of views has been processed by the global relaxation

algorithm. Scans aligned with uniform sampling (Figure 10

(a)) have been pulled apart by as much as a millimeter,

while those aligned by our algorithm (Figure 10 (b)) stayed

together. A system for global registration of meshes that

uses our sampling is presented in a companion paper [6].

We also investigated the influence of noise on the perfor-

mance of our sampling strategy. Since the algorithm prior-

itizes the points based on their influence of the covariance

matrix, it is possible that it can favor areas with significant

noise, since the points there can look like good features for

the algorithm to sample. Smoothing the input data can elim-

inate some of the false features and improve the sampling.

However, if the meshes are smoothed too much, the sam-

pling algorithm can still fail since the true features will be

smoothed away. Figure 11 shows success and failure cases

of smoothing the noisy data to improve the sampling.

(a) (b)

Figure 10: A visualization of residual error in the overlap portion

of the pair of scans in Figure 9 after they and their partners have

been processed by Pulli’s global registration [10]. Meshes in (a)

were aligned using uniform sampling. Meshes in (b) using our

geometrically stable algorithm. Error is in mm, black corresponds

to 0, white to 1. The maximum error in (a) is over 1 mm, while the

maximum error in (b) is 0.3 mm.
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(a) (b)

(c) (d)

Figure 11: Effect of noise on covariance sampling. (a) A noisy

patch with a cross in the center. The width of the grooves, indi-

cated by black arrows, is 10 mm, the depth is 1 mm, the mean

height of the noise is 0.2. Since the groove is shallow, the normals

of points in the groove are comparable to normals of the noisy flat

areas and the algorithm cannot distinguish between features and

noise. (b) Performing 6 iterations of simple smoothing by aver-

aging neighbors removes most of the noise but keeps the feature.

(c) A similar patch, but the width of the groove is only 1 mm. (d)

Since the size of the feature is comparable to the size of the noise,

smoothing removes the noise and most of the feature, which means

all areas of the patch now look identical, and covariance-based

sampling fails.

6. Conclusions

We have presented a point selection strategy that im-

proves geometric stability of the ICP algorithm. This tech-

nique is aimed at sampling those features of the input

meshes that provide the best convergence of the algorithm

to the correct pose. The sampling strategy is based on es-

timating the transformations that can cause unstable sliding

in the ICP algorithm and picking points that best constrain

this sliding.

Several directions are possible for future work. The cur-

rent technique treats all eigenvectors of the covariance ma-

trix the same and tries to constrain them equally. However,

the geometry of the input meshes outside the overlap area

can have an effect on how we want to constrain the trans-

formations within the overlap area. In particular, if a mesh

extends far beyound the overlap area, small misalignments

in rotation can become amplified. We would like to investi-

gate sampling methods that take this leverage into account,

and in general are able to assign different weights to differ-

ent eigenvectors.

While we only address the stability of pairwise align-

ment of meshes in this paper, a similar stability analysis

can be applies to a larger collection of meshes, e.g. to the

global relaxation step of the mesh alignment pipeline. Point

selection for maximizing stability of a large set of scans is

substantially more difficult than the pairwise step, since we

have to consider how sliding of a single scan pair will affect

the entire system. We also discuss this issue in more detail

in a companion paper [6].
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