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Abstract

Mesh models are a promising approach for en-

coding the structure of 3D objects. Current

mesh reconstruction systems predict uniformly

distributed vertex locations of a predetermined

graph through a series of graph convolutions, lead-

ing to compromises with respect to performance

or resolution. In this paper, we argue that the

graph representation of geometric objects allows

for additional structure, which should be lever-

aged for enhanced reconstruction. Thus, we pro-

pose a system which properly benefits from the

advantages of the geometric structure of graph-

encoded objects by introducing (1) a graph con-

volutional update preserving vertex information;

(2) an adaptive splitting heuristic allowing detail

to emerge; and (3) a training objective operating

both on the local surfaces defined by vertices as

well as the global structure defined by the mesh.

Our proposed method is evaluated on the task of

3D object reconstruction from images with the

ShapeNet dataset, where we demonstrate state

of the art performance, both visually and numeri-

cally, while having far smaller space requirements

by generating adaptive meshes.

1. Introduction

Surfaces in our physical world exhibit highly non-uniform

curvature; compare a plane’s wing to a microscopic screw

that fastens its engine. Traditionally, deep 3D understanding

systems have relied upon representations such as voxels and

point clouds, which capture structure with either uniform

volumetric or surface detail (Choy et al., 2016; Wu et al.,

2016; Fan et al., 2017). By representing unimportant, or

uninteresting, regions with high detail, these systems scale
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(a) Voxels
(262144 units)

(b) Point cloud
(30000 points)

(c) Uniform mesh
(2416 vertices)

(d) Adaptive mesh
(120 vertices)

Figure 1. Comparison of 3D shape encoding techniques, including

their respective encoding sizes for the level of quality viewed.

poorly to higher resolutions and object complexity (see Fig-

ure 1a and 1b). While efforts have been made to rectify this

issue through intermediary representations (Tatarchenko

et al., 2017; Häne et al., 2017; Smith et al., 2018; Zhang

et al., 2018), these either continue to rely on sparse volu-

metric units, or maintain uniform detail through alternative

representations.

A triangle mesh is a graph-based shape representation that

encodes 3D structure through a set of vertices and corre-

sponding planar faces. Recently, advances in deep learn-

ing on graphs have enabled mesh-based 3D shape meth-

ods (Kato et al., 2017; Wang et al., 2018; Kanazawa et al.,

2018; Jack et al., 2018; Henderson & Ferrari, 2018; Groueix

et al., 2018b). However, these approaches produce mesh

predictions which uniformly space vertices and faces over

their surface, providing no significant improvement over the

previously highlighted representations (see Figure 1c) and

hence, not exploiting the mesh representation advantages.

In particular, by placing many vertices in regions of fine

detail while using large triangles to summarize nearly pla-

nar regions, one could define adaptive meshes (see Figure

1d), enabling flexible scaling by effectively localizing com-

plexity in object surfaces, and allowing for the 3D structure
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of complicated shapes to be encoded with smaller space

requirements and higher precision.

Moreover, these deep learning mesh-based approaches rely

on Graph Convolutional Networks (GCNs) (Kipf & Welling,

2016; Defferrard et al., 2016; Cucurull et al., 2018; Wang

et al., 2018). Although effective in many node/graph classi-

fication and regression tasks, we argue that GCNs may be

inadequate for understanding, reconstructing or generating

3D structure as they may induce over-smoothing while ag-

gregating neighboring information at vertex level (Li et al.,

2018). This aggregation bias could in turn lead to a harder

learning problem when vital information held at each ver-

tex cannot be derived from its neighbors, and as a direct

consequence must not be lost.

Last, an important question when reconstructing 3D objects

is how to define a loss between a prediction and its target. A

common approach is to employ the Chamfer Distance over

some parametrization of the two surfaces (Barrow et al.,

1977; Insafutdinov & Dosovitskiy, 2018; Wang et al., 2018;

Groueix et al., 2018a; Sun et al., 2018; Fan et al., 2017).

However, this loss penalizes the point positions exclusively,

and thus, its direct application to mesh vertex positions leads

poor accuracy, as no information of the faces they define

is provided and the placement of vertices over a surface

is, to a large degree, arbitrary. In addition, this local loss

function takes no consideration of the global structure of

the predicted object, preventing class-specific attributes to

emerge and creating global inconsistencies.

Therefore in this paper, we aim to address the above-

mentioned limitations by introducing an adaptive mesh re-

construction system, called Geometrically Exploited Object

Metrics (GEOMetrics), which properly capitalizes on the

advantages and geometric structure of graph-encoded ob-

jects. GEOMetrics reformulates graph convolutional layers

to prevent vertex smoothing. Moreover, it incorporates an

adaptive face splitting heuristic allowing non-uniform de-

tail to emerge. Finally, it introduces a training objective

operating both on the local surfaces defined by vertices, via

a differentiable sampling procedure, as well as the global

structure defined by the graph, through a perceptual loss

reminiscent of that of style transfer applications (Gatys et al.,

2016; Johnson et al., 2016). To the best of our knowledge,

our system is the first deep approach to describing shape as

an adaptive mesh, through advances in geometrically-aware

graph operations. We extensively evaluate our system on the

task of 3D object reconstruction from single RGB images

and show that the interplay of our introduced components

encourages mesh reconstructions, which properly localize

detail, while maintaining structural consistency. As a result,

we are able to obtain mesh predictions which outperform

previous methods and have far smaller space requirements.

The contributions of this paper can be summarized as:

• We introduce the Zero-Neighbor GCN (0N-GCN), an

extension of Kipf & Welling (2016), which allows the

information at each vertex to be maintained, and as a

result better suits the understanding and reconstruction

of 3D meshes.

• We present an adaptive face splitting procedure to en-

courage local complexity to emerge when reconstruct-

ing meshes, taking advantage of the mesh flexible scal-

ing (see Figure 1d).

• We propose a training objective, which operates locally

and globally over the surface to produce mesh recon-

structions, which are highly accurate and benefit from

the graceful scaling of mesh representations.

• We highlight through extensive evaluation the substan-

tial benefits provided by the previous contributions and

show, on the task of 3D object reconstruction from sin-

gle RGB images, that by properly exploiting the meshs’

properties and geometry, our GEOMetrics system is

able to notably outperform prior methods visually and

quantitatively, while requiring far less vertices/faces.

Note that the above-mentioned contributions are not specific

to the reconstruction system nor the chosen task and thus,

can be easily adapted to arbitrary mesh problems. Code for

our system is publicly available on a GitHub repository, to

ensure reproducible experimental comparison.1

2. Related Work

3D Mesh Reconstruction. Mesh models have only re-

cently been used in generation and reconstruction tasks due

to the challenging nature of their complex definition (Wang

et al., 2018). Recent mesh approaches rely on graph rep-

resentations of meshes, and use GCNs (Kipf & Welling,

2016) to effectively process them. Our work most closely

relates to Neural 3D Mesh Renderer (Kato et al., 2017) and

Pixel2Mesh (Wang et al., 2018), which use deformations

of a generic pre-defined input mesh, generally a sphere, to

form 3D structures. Similarly, Atlas-Net (Groueix et al.,

2018a) uses deformations over a set of primitive square

faces to form 3D shapes. Conceptually similar, there exists

numerous papers using class-specific input meshes which

are deformed with respect to the given input image (Pontes

et al., 2017; Kanazawa et al., 2018; Jack et al., 2018; Hender-

son & Ferrari, 2018; Groueix et al., 2018b; Kar et al., 2015).

While effective, these approaches require prior knowledge

on the target class or access to a model repository.

Graph Convolutional Networks. The great success of

convolutional neural networks in numerous image-based

tasks (He et al., 2016; 2017; Huang et al., 2017; Jégou et al.,

2017; Casanova et al., 2018) has led to increasing efforts to

extend deep networks to domains where graph-structured

1https://github.com/EdwardSmith1884/GEOMetrics
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data is ubiquitous. Early attempts to extend neural networks

to deal with arbitrarily structured graphs relied on recursive

neural networks (Frasconi et al., 1998; Gori et al., 2005;

Scarselli et al., 2009). Recently, spectral approaches have

emerged as an effective alternative which formulates the

convolution as an operation on the spectrum of the graph

(Henaff et al., 2015; Bruna et al., 2014; Bronstein et al.,

2017; Levie et al., 2017). Methods operating directly on the

graph domain have also been presented. Defferrard et al.

(2016) proposed to approximate the filters using the Cheby-

shev polynomials applied on the Laplacian operator. This

approximation was further simplified by Kipf & Welling

(2016). Finally, several works have been introduced ex-

ploring well-established deep learning ideas and improving

previously reported results (Duvenaud et al., 2015; Hamilton

et al., 2017; Monti et al., 2017; Veličković et al., 2018).

3D Object Representation. Deep learning approaches for

understanding 3D shapes have, for a long time, employed

voxels as a default 3D object representation (Choy et al.,

2016; Wu et al., 2016; Smith & Meger, 2017; Tulsiani et al.,

2017; Wu et al., 2017; 2018). While straightforward to use,

voxels induce a cubic computational cost, scaling poorly to

higher resolutions and complex objects. Numerous compu-

tationally efficient approaches have arisen, such as octree

methods (Riegler et al., 2017; Tatarchenko et al., 2017; Häne

et al., 2017), which represent voxel objects with adaptive

degrees of detail. Most similar to mesh models are point

clouds methods, which represent 3D objects through a set

of points in 3D space (Fan et al., 2017; Qi et al., 2017; Insa-

futdinov & Dosovitskiy, 2018; Novotny et al., 2017). Point

clouds represent only the surface information of 3D objects,

making them more efficient and scalable. However, as they

do not define surface information beyond each point’s lo-

cal neighborhood they must be uniformly sampled over a

surface, and so to encode high levels of detail, the sampling

density over the entire surface must increase.

3. Background

In this section, we review GCNs (Kipf & Welling, 2016),

a key component for mesh generation and reconstruction

systems, and outline how the Chamfer Distance has been

previously employed as a loss for mesh reconstruction.

3.1. Graph Convolutional Networks

Let G be a graph with N vertices defined by an adjacency

matrix A ∈ R
N×N and a vertex feature matrix H ∈ R

N×F ,

where F denotes the number of features. A GCN layer takes

as input both A and H, and produces a new vertex feature

matrix H
′ ∈ R

N×F ′

with F ′ features as follows:

H ′ = σ(AHW + b), (1)

where σ is an arbitrary activation function, and W ∈
R

F×F ′

and b ∈ R
F are the learnable weight matrix and

bias vector, respectively. By stacking multiple such layers,

information is exchanged throughout the graph such that,

after k layers, the information at a given vertex will, for the

first time, reach it’s kth depth neighbor. Alternatively, kth

depth information can be immediately reached using the

kth power of adjacency matrix in Eq. 1 (Defferrard et al.,

2016; Levie et al., 2017; Cucurull et al., 2018). Note that,

as discussed in Section 1, GCN layers equate any given ver-

tex to a summary of its neighbourhood, and their repeated

application may over-smooth important local information

(Li et al., 2018).

3.2. Chamfer Loss: Vertex-To-Point Loss

The Chamfer Distance between predicted and ground truth

objects has become a standard metric for 3D reconstruc-

tion (Wang et al., 2018; Insafutdinov & Dosovitskiy, 2018;

Groueix et al., 2018a; Sun et al., 2018; Fan et al., 2017).

This loss is defined as:

LChamfer =
∑

p∈S

min
q∈Ŝ

‖p− q‖22 +
∑

q∈Ŝ

min
p∈S

‖p− q‖22 (2)

and is computed between two sets of points, Ŝ and S, sam-

pled from the predicted surface and the ground truth surface.

As discussed in Section 1, this metric performs poorly when

directly applied to two sets of mesh vertices as it does not

take into account the faces which they define, and because

of the difficult learning problem associated with matching

highly arbitrary vertex placement on a surface. To avoid

these issues, Wang et al. (2018) define Ŝ as a large set of

predicted vertex positions, and S as a large, pre-computed

set of points sampled from the ground truth surface (see

Figure 3a). Defining the ground truth set as a dense uniform

sampling over the target surface avoids issues with inconsis-

tent vertex positions across similar objects. However, this

leads to predictions with a high number of vertices packed

tightly over the full surface. In this way, the mesh predic-

tions resemble a point cloud, and thus fail to take advantage

of the graceful scaling properties of their representation.

4. GEOMetrics Mesh Reconstruction

In this section, we describe our pipeline for reconstruct-

ing adaptive meshes from single images and outline our

proposed 0N-GCN as well as our suggested adaptive face

splitting.

4.1. Mesh Reconstruction from Images Pipeline

Figure 2 depicts our mesh reconstruction module, which

takes as input a mesh model, defined by a set of vertex posi-

tions and an adjacency matrix, together with an RGB image
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Figure 2. Mesh reconstruction module, with its three main components highlighted. Feature Extraction describes the process through

which image features are extracted for each vertex. Mesh Deformation outlines the deformation of the inputted mesh through 0N-GCN

layers. Adaptive Face Splitting illustrates how high curvature faces are split to increase local complexity.

depicting an object view and outputs a new mesh prediction.

The module is composed of three distinct phases: feature

extraction, mesh deformation and face splitting, which are

cascaded m = 3 times to obtain incrementally refined mesh

predictions. Note that the initial module takes as input a

predefined mesh model (e.g. a sphere), whereas each sub-

sequent module is fed the preceding module’s prediction.

In this manner, the initial mesh is iteratively deformed and

updated to match the input image.

Our feature extraction is based on the method proposed by

Wang et al. (2018), where the input image is passed through

a deep CNN and the features from 4 intermediary layers are

outputted. The feature vector for each vertex of the mesh

is then defined by projecting the vertices of the input mesh

onto the CNN outputs and extracting their corresponding

features. In addition, each vertex feature vector is provided

its 3D coordinates x, y, z and also, if available, the final

feature vector it possessed in the preceding reconstruction

module. Our mesh deformation consists of a graph convo-

lutional model, which takes as input a mesh and deforms

it by making a residual prediction for the position of each

vertex. The residual prediction is then added to the original

position to complete the deformation. The graph convolu-

tional model of this mesh deformation phase is made up of

a series of the proposed 0N-GCN layers (see Subsection 4.2

for details). Finally, our face splitting phase, described in

Subsection 4.3, encourages local complexity to emerge in

regions that require additional detail.

4.2. Zero-Neighbor Graph Convolutional Networks

As described in Subsection 3.1, a potential shortcoming of

the standard GCN formulation is that a vertex has no capac-

ity to maintain and directly draw conclusions upon its own

information, as this information is smoothed with outside

influence at each layer. This outside influence, while useful

in global graph understanding contexts, may be detrimental

when vital information held at each vertex cannot be de-

rived from its neighbors. This situation is exemplified by

meshes, where, if optimally defined, every vertex defines

some new surface structure (see Figure 1d). To rectify this

problem, we define a Zero-Neighbor update, in which a

fraction of a vertex’s feature vector are not updated with the

neighbors’ information. This is accomplished by, instead

of applying higher powers of the adjacency matrix to reach

further depths, taking the adjacency matrix to the power

0 (equivalent to the identity matrix) to exchange with no

further depths:

H
′ = HW, H

′′ = σ([AH
′
0:i‖A0

H
′
i:] + b), (3)

where [·||·] denotes concatenation between vectors and i

is a feature index. This 0N-GCN provides a soft middle

ground between full exchange of information and no vertex

communication, where the network can choose how heavily

a portion of the features of a given vertex will be influenced

by the rest of the graph.

4.3. Adaptive Face Splitting

In the final step of each reconstruction module, the mesh’s

set of vertices is redefined over its surface, by adding ver-

tices in regions of high detail. To do so, we introduce a

face splitting method, which adaptively increases the set

of vertices and the connections between them by analyzing

the local curvature of the surface at each mesh face. The

curvature at each face is computed by taking the average of

the angle between a face’s normal and its neighboring faces’

normals. For a given face f , made up of vertices v1, v2, v3,

its face normal Nf is calculated as:

Nf =
e1 × e2

‖e1 × e2‖
, (4)

where e1 = v1 − v2 and e2 = v3 − v2. The curvature Cf at

face f is then computed as:

Cf =
180

|Hf |π
∑

i∈Hf

arccos (Nf ·Ni), (5)
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(a) Vertex-to-point (b) Point-to-point (c) Point-to-surface

Figure 3. A comparison of different surface losses. Vertex-to-point

is the technique used by Wang et al. (2018). Point-to-point sam-

pling and point-to-surface sampling are the sampling procedures

introduced in our approach.

where Hf is the set of neighboring faces of f . All faces with

curvature over a given threshold, α, are then selected to be

updated. A selected face is updated by adding a new vertex

to its center and connecting it to its 3 original vertices, cre-

ating 3 new faces. As the new vertex positions are defined

by the positions of already existing vertices, the gradients

from each vertex are easily defined to flow back through all

previous modules. In this way, each reconstruction module

is able to identify areas of the current mesh which require

increased detail and prescribe them a higher vertex density.

This allows the mesh to fully take advantage of the scal-

ing properties of its representation, by concentrating the

generation process in areas of high detail.

5. GEOMetrics Losses

In this section, we describe the key contributions made to

the mesh prediction task when considering 3D geometry. In

particular, we introduce a training objective, considering the

local topology and the global structure to produce mesh pre-

dictions that properly benefit from the graph representation.

5.1. Differentiable Surface Sampling Losses

We introduce a differentiable sampling procedure which

enables us to penalize vertices by the surface they implicitly

define, rather then their explicit position. This approach

allows predicted meshes to match the target surface without

emulating the target vertex positions, which are entirely

arbitrary when randomly sampled from the ground truth,

while also optimally positioning their vertices and faces.

To do so, we define a discrete probability distribution based

on the relative area of each face and sample n times from

this distribution to determine the number of points to sample

per face. Then, we sample the previously chosen number of

points uniformly over each corresponding surface. More pre-

cisely, given a triangular face defined by vertices v1, v2, v3,

following Osada et al. (2002), a point r can be sampled

uniformly from the surface of the triangle as:

r = (1−
√
u)v1 +

√
u(1− w)v2 +

√
uwv3, (6)

Figure 4. Mesh-to-voxel Mapping. An encoder-decoder architec-

ture is trained to map ground truth meshes to their corresponding

voxelizations. The latent representations produced by the encoder

from predicted and ground truth meshes are then compared in our

global reconstruction loss.

where u,w ∼ U(0, 1). This formulation allows us to differ-

entiate through the random selection via the reparametriza-

tion trick (Kingma & Welling, 2013; Rezende et al., 2014),

as the sampling procedure is defined by a deterministic trans-

formation on the vertex coordinates and the independent

stochastic terms.

We apply this sampling procedure to both the predicted mesh

and the ground truth and define an alternative Chamfer loss,

which operates over these sampled points, rather than the

predicted vertices (see Figure 3b):

LPtP =
∑

p∈S

min
q∈Ŝ

‖p− q‖22 +
∑

q∈Ŝ

min
p∈S

‖p− q‖22, (7)

where Ŝ and S are the sampled points of the predicted mesh

and the ground truth, respectively. An algorithmic descrip-

tion of the entire process is provided in the supplementary

material. Note this loss differs from the vertex-to-point loss

in that it properly penalizes the surface of the predicted

mesh instead of the predicted vertex’s positions.

Building on these ideas, we define an improved loss term to

more accurately compare the surfaces of two meshes:

LPtS =
∑

p∈S

min
f̂∈M̂

dist(p, f̂) +
∑

q∈Ŝ

min
f∈M

dist(q, f), (8)

where M̂ and M are the predicted and ground truth meshes,

f̂ and f the faces, Ŝ and S the set of points sampled from

the surfaces of M̂ and M , and dist is a function computing

the distance between a point and a triangular face2. This

loss is shown in Figure 3c, and an algorithmic description

can be found in the supplementary material. Note that this

loss provides an exact measure of the distance between a

2Calculated using an optimized adaptation of the Distance
Between Point and Triangle in 3D algorithm (Eberly, 1999), details
provided in the supplementary material.
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Figure 5. Renderings from a single reconstructed chair, demon-

strating the variety of different local vertex densities which are

produced by our approach.

point and a mesh surface. This is in contrast to the Chamfer

loss in Eq. 2 and the point-to-point loss in Eq. 7, which are

faster to compute, but can drastically lose accuracy if too

few points are sampled on either surface. A quantitative

analysis of the improvement from these losses is provided

in the supplementary material through a toy problem.

5.2. Global Encoding of Graphs

In order to consider the global structure of an object during

the reconstruction process, we introduce a global mesh loss.

This loss relies on features extracted from a pre-trained

mesh-to-voxel model, which is designed as an encoder-

decoder network. The mesh-to-voxel encoder takes as input

a mesh graph and produces a latent embedding, from which

the 3D object is reconstructed, through the decoder, in a

voxelized format. In this manner, objects with structural

similarity in voxel space, will have similar latent representa-

tions, without requiring similar placement of vertices. The

proposed global mesh loss is then defined as

LLatent = ||E(M)− E(M̂)||22 (9)

where E corresponds to the encoder function of the mesh-

to-voxel network. This process is depicted in Figure 4. The

encoder network of the mesh-to-voxel model is built by

stacking 0N-GCN layers, followed by a max pooling opera-

tion applied to the set of vertices as in Ciregan et al. (2012)

to produce a single fixed length latent representation. The

decoder is a 3D deconvolutional network (Choy et al., 2016),

in following with the network defined in Smith & Meger

(2017), to perform image to voxel mappings. The complete

mesh-to-voxel network is pre-trained by minimizing the

mean squared error on the voxelized representations prior

to being used in the GEOMetrics system.

5.3. Optimization Details

Finally, we present the complete training objective for our

mesh reconstruction system. This function combines our dif-

ferentiable surface sampling losses, our global structure loss,

along with two regularization techniques defined by Wang

et al. (2018): an edge length minimizing regularizer LEdge

(a) Input Image (b) GEOMetrics (c) Pixel2Mesh

Figure 6. Visual comparison between GEOMetrics and

Pixel2Mesh (Wang et al., 2018) chair reconstructions.

and a Laplacian-maintaining regularizer L∆λ, pushing the

predicted mesh to be smooth and visually appealing.

The final loss function of our system is defined as:

L = γ1LLatent + γ2LPtS + γ3LEdge + γ4L∆λ, (10)

where γi are hyper-parameters weighting the importance of

each term. During the initial stages of training we approxi-

mate the LPtS term using the defined LPtP loss function for

faster computation. Note that the loss L is applied to the

output of each mesh reconstruction module.

6. Experiments

In this section, we demonstrate our algorithm’s ability to

reconstruct the surface information of 3D objects from sin-

gle RGB images by taking advantage of the benefits of the

mesh representation. We evaluate on this task across 13

classes of the ShapeNet (Chang et al., 2015) dataset. In ad-

dition, we present an ablation study to demonstrate how our

algorithm’s individual components contribute to its overall

performance.

6.1. Dataset

The dataset consists of mesh models, voxel models, and

RGB images computed from 13 large classes of CAD mod-

els found in the ShapeNet dataset (Chang et al., 2015). Mesh

models were computed from the CADs by removing all tex-

ture information and downscaling their size so that each

model possesses less then 2000 vertices, where possible.

From these mesh models, voxelized counter parts were pro-

duced at 323 resolution. From each CAD model, 24 RGB

images were produced, from random viewpoints, with the

camera projection matrix recorded for use in the feature
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Table 1. Results on ShapeNet 3D object reconstruction reported as per class surface sampling F1 scores and mean F1 score.

Category 3D-R2N2 PSG N3MR Vertices Pixel2Mesh Vertices Ours Vertices

(Choy et al., 2016) (Fan et al., 2017) (Kato et al., 2017) (Wang et al., 2018)

Plane 41.46 68.20 62.10 642 71.12 2466 89.00 645.03

Bench 34.09 49.29 35.84 642 57.57 2466 72.11 514.54

Cabinet 49.88 39.93 21.04 642 60.39 2466 59.52 556.68

Car 37.80 50.70 36.66 642 67.86 2466 74.64 509.33

Chair 40.22 41.60 30.25 642 54.38 2466 56.61 619.13

Monitor 34.38 40.53 28.77 642 51.39 2466 59.50 449.65

Lamp 32.35 41.40 27.97 642 48.15 2466 58.65 743.28

Speaker 45.30 32.61 19.46 642 48.84 2466 49.53 550.06

Firearm 28.34 69.96 52.22 642 73.20 2466 88.36 638.35

Couch 40.01 36.59 25.04 642 51.90 2466 59.54 561.79

Table 43.79 53.44 28.40 642 66.30 2466 66.33 732.82

Cellphone 42.31 55.95 27.96 642 70.24 2466 73.65 416.05

Watercraft 37.10 51.28 43.71 642 55.12 2466 68.32 526.04

Mean 39.01 48.58 33.80 642 59.72 2466 67.37 574.06

selection method. The data in each class was then split into

a training, validation and test set with a ratio of 70:10:20,

respectively. This matches the dataset used for empirical

evaluation by Wang et al. (2018) and Smith et al. (2018).

6.2. Implementation Details

Mesh-to-Voxel Mapping.3 For each class, we train a

mesh-to-voxel mapping from the mesh and voxel ground

truths, for use in our latent loss. These mappings are trained

with Adam optimizer (Kingma & Ba, 2014) (β1 = 0.9, β2 =

0.999), a learning rate of 10−4, and a mini-batch size of 16.

We train for 105 iterations and practice early stopping, with

the best model selected from evaluating on the validation

set every 100 iterations.

GEOMetrics.3 We train the full system on each class in

our dataset with Adam optimizer (Kingma & Ba, 2014), at

learning rate of 10−4 for 300k iterations, and then again

for 150k iterations at a learning rate of 10−5, with mini-

batch size of 5. We practice early stopping by evaluating on

the validation set every 50 iterations. The hyper-parameter

settings used, as described in Eq. (10), are γ1 = .001, γ2 =
1, γ3 = 0.3, and γ4 = 1. As mentioned above, LPtP

is employed as a faster approximation to the LPtS loss,

specifically for the first 300k iteration. This is because

LPtS is slow to compute and we found it sufficient to only

use it to finetune pre-trained models. All hyper-parameters

were initially tuned on the validation set of the chair class.

The generic pre-defined mesh fed to the first reconstruction

module is an ellipsoid. A face is split at the end of each

module only if the curvature at that face is greater than 70°.

3Architecture details provided in the supplementary material.

6.3. Single Image Reconstruction

We evaluate our method’s performance quantitatively by

comparing its ability to reconstruct mesh surfaces from sin-

gle RGB image to an array of high performing 3D object

reconstruction algorithms. To do this, we sample points

from both the surface of the predicted object and the ground-

truth object and compute the F1 score. In following with

(Wang et al., 2018), precision and recall are calculated us-

ing the percentage of sampled points which exists within

a threshold of 0.0001 any sampled point in the compared

surface. State of the art results of mesh approaches, N3MR

(Kato et al., 2017) and Pixel2Mesh (Wang et al., 2018), a

point cloud method, PSG (Fan et al., 2017) and a voxel base-

line, 3D-R2N2 (Choy et al., 2016), are reported from Wang

et al. (2018). We also compare mesh-based approaches

in terms of space requirements (number of vertices). The

results of this comparison are summarized in Table 1. As

shown, our GEOMetrics system boasts far higher perfor-

mance than previous approaches, with an average increase

in F1 score of 7.65 points across all classes, and improved

score in all classes but one, where we experience a negligi-

ble drop of 0.87 points. In addition, in all cases, our system

requires notably less vertices than the previous mesh-based

state of the art Pixel2Mesh, e.g. cellphone objects require

6× less vertices, whereas lamp objects require 3× less ver-

tices. With an average of 574.06 vertices used across all

classes, the vertex requirements drop as much as 4.3× on

average, highlighting the potential of the adaptive face split-

ting. Moreover, when compared to point cloud and voxel

baselines, we also exhibits state of the art results.

Qualitative reconstruction results for each of the 13 classes

are displayed in Figure 74. We boast highly accurate re-

constructions of the input object, effectively capturing both

global structure and local detail. In addition, we render an

4See supplementary material for additional visualizations.
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Figure 7. Qualitative results: renderings of meshes reconstructed from each ShapeNet object classes.

un-smoothed chair reconstruction in Figure 5 with its edges

heavily outlined, demonstrating the obtained diverse vertex

density across a single object and highlighting the way our

system represents simple surfaces with a small number of

faces, and shifts to higher density where required. Lastly,

Figure 6 depicts a visual comparison between GEOMetrics

and Pixel2Mesh reconstructions, where we can observe how

GEOMetrics is able to provide reconstructions with higher

detail (e.g. the sharpness of the chair legs).

6.4. Single Image Reconstruction Ablation Study

In this subsection, we study the influence of our system’s

components and demonstrate their individual importance

by comparing our full method’s results on the chair class

to ablated versions of the system. We assess the impact of

our 0N-GCN layers by replacing them with standard GCNs

(Kipf & Welling, 2016) in both the mesh reconstruction as

well as the mesh-to-voxel models. We validate the effective-

ness of the proposed adaptive face splitting by substituting it

by a procedure in which all faces are split at the end of each

reconstruction module, keeping uniform detail and main-

taining approximately the same the number of vertices as

the full approach. We then check the importance of each one

of the newly introduced losses by removing them at training

time. Note that, when the face sampling losses LPtP and LPtS

are removed, we replace them by the vertex-to-point loss

(LVtP) proposed by Wang et al. (2018). Finally, we compare

our method to the Pixel2Mesh, when roughly equivalent in

terms of number of vertices.

The results of this ablation study are reported in Table 2.

As shown in the table, the biggest effect comes from the

introduction of the adaptive face splitting, with a drop of

6.23 points when replacing it with a uniform splitting heuris-

tic. Moreover, assisting the model to give more importance

to vertex features through the 0N-GCN also appears to be

relevant. The losses proposed to train the whole system also

play an important role, as ignoring them leads to a decrease

in performance of 3.69 points and 1.02 points, respectively.

Moreover, training Pixel2Mesh baseline to use as few ver-

tices as GEOMetrics leads to notably worse performance.

These results empirically justify the contributions of our

GEOMetrics system.

Table 2. GEOMetrics ablation compared to full method (ours) and

Pixel2Mesh. Results reported as mean F1 score on the chair class.

Ours GCN Unif. Split. No Llatent LVtP Pixel2Mesh

56.61 54.57 50.33 55.59 52.92 38.13

7. Conclusion

In this paper, we presented GEOMetrics, a novel approach

for adaptive mesh reconstruction, which focuses on ex-

ploiting the geometry of the mesh representation. The

GEOMetrics system reformulates GCNs to explicitly pre-

serve local vertex information and incorporates an adaptive

face splitting procedure to enhance local complexity when

necessary. Furthermore, the system is trained by introduc-

ing a training objective which operates both locally and

globally at mesh level, and capitalizes on the geometric

structure of graph-encoded objects. We demonstrated the

potential of the approach through extensive evaluation on

the challenging task of 3D object reconstruction from single

images of the ShapeNet dataset. Finally, we reported visu-

ally appealing state of the art results, outperforming existing

mesh-based methods by a large margin, while requiring (on

average) as many as 4.3× less vertices. Future research di-

rections include addressing the restrictive constant topology

prescribed by the initial mesh object through reconstruction

and generation methods, which adapt the topology to match

the target mesh.
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