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ABSTRACT

Suppoée G 1is a Lie group ahd M is a manifold (G and M 'are
not necessarily finite dimensional). Let D(M) denote the'group‘of
diffeomorphismsAon M and V(M) denote the Lie algebra of Vectbr fields
on M., If X: is»aaéomplete»vectonrfield; thén: Exp tX ‘will denote the
one-parameter group of X . A local action ¢ of G on M gives rise
to a Lie algebra homomorph_ism.'q)+ from L(G) into V(M) . 1In particular
if G is a subgroup-of"D(M) .apd ¢ ¢ G x M —> M is fhe nafﬁralvglobal
action (g,p) —> g(p). then G 1is called a Lie transformation group-of M.
If M 1dis a Hausdorff manifold and G is a Lie transformation group of M
we show tﬁat' ¢+ is an isomorphism of L(G) onto ¢+(L(G)) and

L = ¢+(L(G)) satisfies the following conditions :
(A) L consists of complete vector fields. o

(B) L has a Banach Lie algebra structure satisfying the following

two conditions :

"(B1) the evaluation map ev : (X,p) —> X(p) is a vector

bundle morphism from the trivial bundle L x M into TQ),

(B2) there exists an open ball Br(O) of radius r at O

such that Exp : L —> D(M) is injective on Br(O).

COnvefsely, if L . is a subalgebra of V(M) (M Hausdorff) satisfying
_conditions'(A) and (B) we show there exists a unique connected Lie.transfor-
+ ,

mation group with natural action ¢ : G x M —> M such that ¢ is a

Banach Lie aigebra isomorphism of L(G) onto L.
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Chapter 1

Preliminaries

All_manifolds considered are real Banach. manifolds of ciass CK
where K = or K=uw . The word morphism will mean a CK .map,betwegn
CK manifolds. _In this chapter, we collect the necessary facts on
foliationé of manifolds and on infinite dimensional Lie groups. Almost

all .of this material will come from Bourbaki [1, §9] or Bourbaki

12, Chapter 31, ..

' §1 Foliations and Integrable Subbundles :

Let" M and S be manifolds and p : M —> S a submersion. We
then have, for each. s € S, a manifold structure induced on the level set
p_l(s) by' M . Denote by Mp  the manifold which is the disjoint union

1

over S of p_ (s). Each p-l(s) is an opén submanifold of Mp and

topologically Mb 'is the topological sum eof the'topological spaces p- (s).
Definition (1.1) Let M be a manifold. A foliation of M 1is a mahifold
Y having the same point set as M. and satisfying the condition that for
all x ¢ M, there exists an open submanifold U of M containing x, a
manifold S, . and a submersion p : U —> S such that the manifold Up

is an open submanifold of Y..

The inclusion map of Y into M is easily seen to be a bijective



immersion.

We call the pair M, ¥Y) a foliated'mgnifold. A set U ‘is-

called a (connected)wleaf if it is -a (connected) open set in Y . The

maximal connected leaves are therefore the connected components of Y.

'Definitioh,(l.Z) If (M, Y) and (M', Y') .are foliated manifolds, a
morphism from (M, Y) dinto (M', Y') is a map which is a morphism of M

into M' and at the same time a morphism of Y into Y' .

Using .the inélusion”map of Y idinto M, for each x &€ M we can
identify the tangent space “TX(Y) ‘with a subspace of TX(M). With this

identification we have the following propositions.

Proposifion (1.3) The spaces Tx(Y) are the fibers of a subbundle TM, Y)

gf T(M). Furthermore if Y is defined by a submersion P : M_——§ S ,

then T(M, Y) = ker T(p) .

Prbpositioq (1.4) Let (M, Y) and (M', Y') be two foliated manifolds and

f: M —> M' be a morphism. A necessary and sufficient condition that f

is a morphism from (M, Y). into’ (Mf, Y') is that T(f) takes T(M, Y)

into T(M', Y").

Let. ¥ be a subbundle of T(M). We now examine the conditions on
F which imply the existence'of a manifold Y such that T(M, Y) =F. If

this is the case then F. is called an integrable subbundle of T(M) and

the foliation it defines is unique.



Theorem of Ffobenius (1.5) F is integrable if there exists alfamily

e,

of sections of F such that
i'iel . - : —_—

(1)»zfor all x € M _the set '{gi(x) : i eI} is a total subset

of the fiber FX of F above x .

(2) for all pairs (i, j) of elements of 1 aﬁd §I1 ‘xe M,

- [Ei’ gj](x) E‘F‘X .

§2 Total Differential Equations

We now cohstruct a particular subbundle and examine what it means
for it to be integrable. -This-will be -the-setting for discussing-generalized

‘differential equations..

‘Suppose M is the product of two manifolds A .and B. Let.

P1
| factors. There are two subbundles, pl*T(A) .and .pZ*T(B), of

¢t M—> A and Py M —> B be the projections on the first and second

T(M) = T(A) ¥ T(B) associated with Pl and bZ . The fiber‘ Pl*T(A)(a b)

b
Tb(B). We identify this fiber with Ta(A). Similarly the fiber

of - pl*T(A) over (a,b) is Ta(A) X {Ob} where 0, is the zero vector in

pz*T(B)(a,b) of pz*T(B)_ over (a,b) is'l{Oé} X Tb(B) which is

identified with Tb(B) .

let f be a véctor bundle morphism from pl*T(A) into pé*T(B);
Then for each (a,b) ¢ M, £ is a continuous linear map

f(a,b) : Ta(A) —_b_Tb(B) - (after identifying Ta(A) with pl*T(A)(a,b)



and T, (B) with pé*T(B) ).

(a"b)

Proposition (2.1) The graphs of the f(a b) are the fibers of a subbundle
P ——— - - 'Y

gf T(M) which we denote- by- Ff .

“‘Definition (2.2) Let A be an open set in, A . A morphism ¢ : A' —> B

is called an integral of £ iﬁxfor all: a e A% one has Ta(¢) = f(a,¢(a))"

The following two propositions describe the local uniqueness of

integrals.

‘Proposition (2.3) If ¢l and ,¢2 are two integrals of f taking the

same value at a point a e A, then they coincide ih & néighbourhiood of a.

Proposition (2.4) Let Z be a manifold, A' an open set in A, and

a ¢ A' . Suppose ¢l and ¢2 are morphisms of Z x A' into B such

that ¢1 and ¢2 coincide.dn Z x'{a} and for all. z ¢ Z, the morphisms .

a —> ¢l(z,a7 and a ——>'¢2(z,a) are integrals.of f . Then ¢1 and ¢2

coincide on a neighbourhood of 2z x {a} .

Suppose now that . Ff is.inteérable and therefore defines a

' foliation Y of M with T, Y) = Ff ; .Let $ ¢ A' — B be‘an integral
for f and define y : A' —> M by . y(a) = (a, ¢$(a)). .We,héve'

TY(T(A")) C Ff since A¢ was an integral and Propositién (1.4) gives

that wtvis also a morphism from A' dinto Y . Let v, € TaA' . Now

T ¥(v) =.(Va; T 9(v,)) = (va,_f(a,¢<a))(va))_ whicﬁ imp;ies T,¢ is an



: ' , ‘ f .
isomorphism (of Banach spaces) of ;?aA'- onto F (a;¢(a)) - This means ¢

is a local diffeomorphism into Y at a and as a was arbitrary we have

proven the following result.

Proposition (2.5) If Ff ﬂiSaintegraBleaand< ¢ ¢+ A' —> M is an integral

for £ then {(a, ¢(a)) + a e A'} is- a- leaf (open set) of the foliation

defined by F' .

We complete this section-with the existence theorem for integrals.

Proposition (2.6) Suppose that anvis integrable. Let (zo, ao) g Z X A

and p be a morphism from Z into- B . Then- there exists’ an- open

neighbourhood 2Z' x A' of . (zo, ao) in Z x A and a morphism

¢ Z' x A''—> B such that for every z ¢ Z' the morphism a —> ¢(z,a)

of A' ‘into B 'is an integral for f and. p(z) = ¢(z,ao) .

We yill mainly use this with Z =B ‘and p = identity.

§3 Lie Groups and Lie Algebras

A-LES.EEQEQ G 1is a group, ﬁhich is also a Banach manifold
(not necessarily finitefdimensional) such: that the operafions of multiplica-
tion. G x G —">TG and takipg inverses"G —> G are morphisms. G will be
called finite,(infinite)~diménsional if its manifold structure.is_modelled

on a finite (infinite) dimensional Banach space.



A'Banach Lie Algebra L is a Lie algebra with a Banach space
~ structure such that the bracket [, ].: L xL— L is continuous. We
call L .finite (infinite) dimensional if the underlying vector space is

finite (infinite) dimensional.

Almost all of the standard finite dimensional Lie groub theory.
.carries over to .infinite dimensions. If G 1is a Lie group then there is
a ‘Banach Lie .algebra L(G) corresponding to G -and an eXponeﬁtial~map
frbm L(G) into G, which is a local diffeomorphism at 0 . (We break
with-the usual convention of having L(G) equal to the set.of left
ihvariant vector fields on- G and instead it will be the set of right
invafiant vector fields, Defining L(G) to be the right invariant vector
““fieids'will'méke“the'definition of an infinitesimal adétion in Chapter 2
 easier. This is a slight change since if we identify L(G) with Te(G);
the téngent space at the identity, then the only difference between the
right'invariént Lie algebra structure and left invariant Lie algebra struc-

ture is that -the bracket differs by a sign.)

The major difference between the finite and infinite dimensional
theories is that. there exist infinite dimensionalvBanach Lie algebrasA L
forvwhich there does not exist any Lie gfoﬁp G such that L = L(G).‘ If
a Lie group G doés exist such that L = L(G) then the Banach Lie algebra
L ’is<called enlargeable. For an example of a non—enlérgeable Banach Lie
algebra see.Est and Korthagen [4]. Although L may not be enlargeable, a
‘ Banach Lie algebra closely related to L ié always enlargeable. This Lie

'..algebré.is the path space of L which we now examine.



Let BL. denote the category of Banach Lie algebras with conti-
nuoﬁs homomorphi;ms as morphiéms. Then we have the path functor
A :BL —s BL which takes L to AL - {f | £:[0,1] — L continuous
" with £(0) = 0 } with the following'Lie algebra structure. If f, g € AL

then the norm of f is max ||£¢t)|| and the bracket is defined
te[0,1]

pointwise, [£, glCt) = [£(t), g(t)]. If ¢ : L —> L' is a-mofphism of

Banach Lie algebras then A¢ : AL —> AL' is given by A¢(f) = ¢of .

- Theorem (3.1) Let ‘I be a Lie algebra and AL be . as gbove. _Then :

(1) the -endpoint evaluation map f —> f(1) from AL into L

is continuous.

(2) AL is énlargeable.

Proof ;; The proof of (1) is obvious from the definition of AL . The

reader is referred to Swierczkowski [8]’fof a proof of (2).

For later reference, we noW-list some facts on subgroups and
subalgebras of Lie groups and Banach Lie algebras. The proofs are in

Bourbaki [2, Chapter 3].

Definition (3.2) A subset H of G is a Lie subgroup of G if it is a

subgroup and a submanifold of G .

Proposition (3.3) EEE H be a subgroup of a Lie group G . A necessary

and sufficient condition for H to be a Lie subgroup is that there exists

a point h ¢ H and an open neighbourhood U of h in G such that




V_H f\ U is a submanifold of G .

Let ‘L- be a ﬁanachALie algebra. A'Banéch’Lie subalgébra of L
-is a cioSed veCt;r;subspace'of L which is closed under the bracket
vopefation, i.e. a subalgebra. If H’ is a Lie subgroup of a Lie grdup
G then using the inclusion we identify L(H) with a Banach Lie subalgebra
of L(G) whiéh splits in L(G). (A closed_subépace F ‘of a Banach space

E 1is said to split if tﬁerg exists a closgd subspace F1 such that

1
an ideal in L(G), i.e. [L(G), L(H)] C L(H).

F+F, =E and Ff\Fi =0 ). If in addition H is normal then L(H) is

:Propositioq (3.4) Let G be a Lie.group and H be a normal Lie subgroup

of G . Then there exists.a structure of a Lie group on G/H such that

the projection map is a submersion and L(G/H) = L(G)/L(H) .

Proof : Bourbaki [2, prop. 11, p.105 and p.141] .



Chapter 2

‘Local and Infinitesimal Group Actions

We determine the correspondence between local group actions and
‘infinitesimal group actions in this c¢hapter. Odr treatmert of this

-subject follows that of Palais [7].

Before proceeding we establish some notation conventions. ‘G will
denote a connected Lie group and L(G) ’wi11 be its Banach Lie algebra of
right invariants vector fields. Right multiplication by an element 'é e G
will be denoted by R(g) . The.identity“élement in G will be denoted by
e . M will denote a manifold and V(M) will be the Lie aigeBra of vector

fields on M .

§4 TLocal Group Actions

Definition (4.1) A local (left) action of G on M is a morphism ¢‘ from
an open set D containing {e} XM in G x M into M satisfying the |
following conditions :

(1 é(e, p) =p forall peM.,

(2) 1f (h, P), (g, ¢(h, P)) and (gh, p) all belong to D

then ¢(gh, p) = ¢(g, ¢(h, p)) .

If D=GxM then ¢ is called a global action of G on M.
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Let DP = { g : (g, p)ed 1. The,morphism' g —> ¢(g, p) of

DP into M will be denoted by ¢F .

‘The definition of local action we have given is from Paléis_[7].
Bourbaki [2, p.118] gives what appears to be a different definition of

local action as follows.

Definition (4.1(a)) (Bourbaki) A local (left) action of G on M is a
mOrphiSm Y defined on an open set .Q of G x M containing {e} X M ;
with values in M, posSessing_the following.properties
(1) ¢(e, p) =p for all p e M ;
(2) there exists a:ngighbdurhqod Q) of "{e} x {e} x M in

-G X% G:X-M such - that, -for ‘(g, g‘,-p)ﬂeAﬂi, ‘the elements (g', p),

(gg's B (8, ¥(g's P)) aredin @ and u(g, v(g', p)) = ¥(gg's D) -

This is slightly different from the version in Bourbaki since we -

aren't considering actions of "grouplets".

Proposition (4.2) Definition (4.1) and Definition (4.1(a)) arebequivalent.

Proof : Def.(4.1) implies Def. (4.1(a))

Let y=¢ and Q =>D . We have to fiﬁd an open set Ql in-
G x G # M sgtisfying condition (2) in‘Def.(4.l(a)).'lDefine § from
GxD into G x M by 6(2» h, p) = (g, ¢(h, p)), then 6-1(D) is open
and contains '{é}‘X'{é} x M . Define y from G x D into G X M by

v(g, h, p) = (gh, p) then Y_l(D)‘ is open and contains “{e} x {e} XM,
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Let »Ql'= Gfl(D)df\ y_l(D), then Ql is .an open neighbourhood of
{e} x {e} x M and if (g, h, p) € Q, we have (h, p) € D; (g, ¢(h, p)) €D
since (g, h,‘pﬁ‘e 6_1(D); and . (gh, p) € D since (g, h, p) ¢ Y_l(D).

" Then ~Def;(4.l) (2) . gives
V(e ¥(h, P)) = ¢(g, $(h, P)) = ¢(gh, p) = ¥(gh, p)

and condition (2) of Def.(4.1(a)) is satisfied.

- Def.(4.1(a)) implies Def. (4.1)

foLet ¢ = w:. We will fin& D such that condition (2) of Def.(4.1)
ié satiéfied. Let Ql ‘befas'in Def.(4.l(a)). " Since Qi is an obeg
neighbburhood of.>fé} x {e} x M we can find neigﬁBOufHOodS* V% and Up
.of e. in G ‘and Wp of -p- in M such that Vp x Up x W%IC: Ql . For
each p e M, let Gp = exptBr(O)j where ~Br(0) is ‘the ball of rédius T
cgntefed at 0 in?‘L(G) and' ? is ‘so small that. Gg C: Vp“f\ Up . Then .>'

_ | 1 - ot
G_ - is connected G =G G U G CV and G x G x W is
P S Tp . Tp pC p> p p B¢ Fp t % P

an open neighbourhood of (e, e,’p) contained in Ql . Also V{Gp}peM are
ordered by inclusion so if we have GX and Gy then either G#'C: Gy or

G.C G . Define‘ D= |J 6 xW_ and suppose (h, p), (g, ¢(h, p)) and
y X : peM. PP :

‘(éh; P) e D. Since D is "symmetric" (each Gp was symmeﬁric) we have
'(h, p)_e D implies‘ (h_;;.p) e D . Now by‘the definition of D s (gh, p)'
and (h_l, p) beionging to. .D means there exists X € M such that -

,(hfl, P) € Gx X Wk ‘and there.exists 'y e M such that . (gh; p) € Gy X Wy'.

By the remark above either Gx‘C: Gy or Gy C Gx so\(without loss of
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-generality) assuming the latter we have (gh, p) ¢ Gx X Wx also. Now
2 C V. N U implies ((gh)(h™H), p) e GE x W C V. x W i.e

X X X . , ? ' X b:4 X x ? T

(g, p) é Vx X WXQ We also have (h, p) € Gk X W;:C: UX X Wx which means
(g, h, p) e V_ x‘UX x W C 9, and condition (2). of Def.(4.1(a)) gives

tgs G DY) =Ulg, Vln, P)) = (gh, p) = ¢(gh, P).

Examples of local actions

Exémple (4.3) : Let M be a paracompact manifold and £ be a vector field
~.on ‘M .. Then the flow (see Bourbaki [1, §9]) of & is a local left action

of R on M. _ . . -

Example (4.4) : If E and F are Banach spaces then denote by Hom(E, f)
the Banach space-of contipuoué linear maps ffom E into F and by. GL(F)
tﬁe Lie group of invertible eleménfs in Hom(F, F). GL(F) is open in
Hom(F, F). (See Lang [5, p.5] for proofs). Let.fM = Hom(F, E), G be the
additive Lie group Hom(E, F), and IF be the identity in GL(F). Define
tﬁe morphism y : G x M —> Hom(F, F) by v(g, p) = gop +‘IF_' Let

D‘= y_l(CL(F));_ fhen D is open and contains {0} x M. Define the local
aptionb ¢.: D f—§ M of G on M .by $(g, p) = pe(gep + IF)—l . ¢ is a

local action for ;

M) ¢, p) = pe(@ + I = p
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(2) (g ¢(h, D)) = 6(h, Yolgos(h, p) + I) "

-1

-1, -1 .
peo (hop + IF) . (gopo (hop + IF) + IF)

o -1 \ -1
po((gepo(hop + I,)7" + I.) (hop + I))

[

po(gep + hop + )

N

pe((g + h)op + 1) "

¢(g + h, p) .

-§5 Infinitesimal Actions

Let L be a Banach Lie algebrd.

-Definition (5.1) A (left) action of L on M is a Lie algebra homomorphism
6 : L —> V(M) satisfying the condition that the evaluation.map
(x, p) — 6(x)(p) 1is a vector bundle morphism from the trivial vector

bundle L x M dinto T(M).

'Remarks : (1) If L =L(G) for some Lie group G then © is called an

infinitesimal (left) action of G on M.

(2) }If L is finite dimensional then the evaluation map is

automatically a vector bundle morphism (Bourbaki [2, Remarque p.140]).
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- Example (5.2) : An infinitesimal group action

Suppose H. is a real Hilbert space with scalar product ( , ) .
Let M=H and G be H with the additive group structure of H . Then

L(G) = H also. Define 6 : L(G) —> V(M) by 6(Y)(X) = 2(X,V)X - (X,X)Y.

We show that 6 is an infinitesimal action of G on M.

(1) The map ¢ :‘(Y,X) —> 6(Y)(X) is a vector bundle morphism
'from L(G) x M into T(M) : e is obviously a morphism. Let Hom(H, H)
-denote the continuous linear mapé from H iinto H and let GxAs Hom(H, H)
be the map Y —> (YY) (X). 'We‘need that the map X.——> GX >of. H. into
Hom(H, H) 1is continuous, 5ut this is the case since (, ) : Hx H— H

-

. is continuous.

(21‘ 6 is a Lie algebra homomorphism : 6 is obviously linear.
In order to prove that 6 preserves brackets it suffices to show that
[6(Y), 6(2)] = 0 for any Y "and Z in L(G) since L(G) = H is abelian.

By definition

[6(¥), 6(2)1(X) = D6(2) |, (6(¥) (X)) - DOV |, (8(2) (X)) .

A short calculation gives DG(W)IX(H) =»2[(X,Y)H + (H,V)X - (X,H)] and
substituting this into the above equation with W = Z (and Y) and
" H =.0(Y)(X) (and 6(Z)(X) ) makes the equation identically zero. Therefore

- . 8 preserves brackets.



Suppose ¢ : D —> M is a local action of G on M. Define
ot L) — ven by 6T () = T() (v(e), 0) where 0 is the zero

vector in TP(M>

o + . e s . . :
Proposition (5.3) ¢  is an infinitesimal action of G on M.

. - +’ - . - s .
Proof : Evaluation map of" ¢ 1is a vector bundle morphism :

We have the foIIo&ingrsequence of maps

L(G) X M —> L(G). x G x M —2XYs p T L oy

(v, p) > (v, e, p). > (v(e), Op), > T(¢).(V(e)’ OP),

where ‘B 1is ‘the triVializing.vector bundle “isomorphism (v, g) —> v(g)
of L(G) x G into T(G) and vy is the zero section. The fact that the
evaluation map is a vector bundle morphism then follows from the fact that

‘B and T(¢) are.

N A
¢ dis a Lie algebra homomorphism =

¢+ is obviously linear and therefore it remains to show that it
preserves brackets. Let p ¢ M, suppose (g, p) ¢ D and ¢(g, P) = q ,
then if h e DPg " N D! we have (h, @) = (b, 6(g, b)), (hg, p) and

(8 p) € D which implies ¢(h, g) = ¢(h, ¢(g, P)) = ¢(hg, p) by

Def.(4.1) (2). This means ¢q = ¢p°R(g) on. the open set- ngfl'(\ pd

containing e which implies T(¢q) = T(¢p)°T(R(g)) on’ T(ng—¥'(\'Dq) ‘

and that Te(G)C: 'I(ng_l‘(\ Dq). Then for v e L(G) we have



k- L6a .

st P@) = 6T @ = 1) (v(e), 0,

= 1D (w(e)) = TWP) TR(g)) (w(e)) = T(P) (v(g))

" which implies that v ‘and ¢+(v) afe ¢p—related vector fields. Then
[v, v'] is o¢P-related to [4(v), ¢"(v')] (Bourbaki [ , 8.5.6 p.17]) .

. Then ¢+ is a-Lie-algebra~homonorphism- for-

o v, v @ = ¢ v, v 6P e))

TP ([v, v']1(e))

]

[ ), ¢ ) 16PE)

oo F e .
= [¢ @), ¢ YT®)
where p was an arbitrary point of M. This completes the proof.

+ ~ :
¢ is called the infinitesimal generator of ¢ . If an dinfinite-

. . . + ‘ .
simal action 6 of G on M is equal to ¢ for some local action ¢

then 6 is called generating.

Example (5.4) Let ¢ be the 1o¢al action considered in Example (4.4).

Let X € L(G) = Hom(E, F). Then

sFw = 1) X0, 0)

= 9t ¢ (tX, p)
) _ t=0

= -q_ po(tXep + IF)-l = - boXoP .
t=0 . :
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- Let e'ﬁ L(G) —> V(M) be an infinitesimal left action and let
Pg * GxM—> G and Py t.GxM—>M be the .canonical ‘projections.
- Define f from ‘pG*T(G) into"pM*T(M) by

£
S8

&) = 8@

where -X(g) is thé value of X € L(G) at g . (See §2 ' for definitions of
pG*T(G) and pM*T(M) ). We have £(X(g), Qp) = (Qg, 8 (X)(p)) and f is |
a vector bundle morphism since the evaluation map = (X, p) — 8 (X) (p) was
assumed to be a Veétor bﬁndle morﬁhiém of L(G) xM dinto TM). Then
 prop;(2}l) “implieS‘that_thefgréphs of the f

(gap)”, -
“{(X(g), 6(X)(p)) =p e MV}‘, are the fibers of a sibbundle Ff of

T(G) x T(M). rf is called the infinitesimal graph of © .

" Proposition (6.1) Ff is an integrable subbundle of T(G) x T(M) .

. . , . P f :
Prqof.. Consider the family of sections {gx}XeL(G) of F wherg

EX(g, p) = (X(g), 8(X)(p)). Then

' e e f ’ . k . .
(1) by definition of F~ the set {EX(g"p)}XeL(G) is total
f

in the fiber Ff above (g, p) in F, and
. (g>p)

(2) if (X, Y) 4is any pair of elements of L(G) .and if

(g, P) ¢ G xM then

[EX’ EY](ga P) = ([X} Y](g)s [e(X), e(Y)J(P))

(IX, Y1(g), 6([X, Y](p))
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since 6 is a Lie algebra homomorphism. This shows [gx, EY](g; P) € Fﬁ

and the Theorem of Frobenius (1.5) implies Ff is integrable.

By the definition of integrability there is.a foliation .Y .of

¥,

G x M such that T(GxM, Y)

Propositidq.(6.2) For ‘g e G, let R(g) be the morphism of G X M -into

itself given by R(g)(h, p) = (hg, p), then R(g) 1is also a morphism of

Y :into Y where Y is the foliation defined by any infinitesimal action
0 of G on M.

Proof s | | T(Ti(g))-(T(h’p) (GxM, Y)) )
= T(R(8)) ({ (X)), 6(X)(p) : X ¢ LG)D
= {(X(hg), 0(X)(P) : X ¢ L(G)}

= Tlng,p) @M 1)

and prop.(l.4) implies that R(g) is a morphism of Y into‘ Yﬁ,

Remark : Since E(g) is a diffeomorphism it takes a maximal connected

leaf of Y diffeomorphically onto another maximal connected leaf of Y .

The next proposition explains the name "infinitesimal graph'.

Proposition (6.3) If ¢ is any local left action with domain D énd

infinitesimal generator ¢+ then the morphism ¢p : g —> ¢(g, p) of pP

g,P)
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into M ' is an integral '(Def.(2.2)) of f (where f iE‘dgfigquaswabo?e

with "6 = ¢+). Also the graph of ¢F is a leaf containing (e, p) of the

foldation Y aﬁd-the morphism. L Y — G _given by UG(g, P =g 1is a

’local diffeomorphism at each point of Y .

Proof : Let X e L(G). -Then.

]

T, 67 (X(8)) = T,(67) °T_ (R(8)) (X(e))

T, (7R (g)) (X(e))

T, 6? ® ) (x(e))

87 () (b (gs D)) .-

Heqcé Tg¢p = f(g,¢P(g)) and so ¢P 1is an integral of f . The fact that

the graph of ¢p is a leaf containing (e, p) follows from prop.(2.5).

Let (g, p) be anj point in 'Y . Then s is a 1ocal diffeomor-
phism at (e, p) because Np = {(h, ¢p(h)) : he Dp} is an open neigh-—
bourhood of (e, P) in Y mapped diffeomorphically onto DP by To -

Now 'ﬁ(g)(Né) is‘an open neighbourhood of (g; P) in .Y by the remark
after prop.(6.2) 'andv WG‘ is a local diffeomorphism on" ikg)(Np) which

completes . the proof.

‘We now show that two local actions with the same infinitesimal

generator coincide in a neighbourhood of '{é} X M . We need a lemma.
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“Lemma (6.4). If an infinitesimal action © of G on M is generating

then. the foliation Y defined by the infinitesimal graph of 8 is a

Hausdorff manifold.

‘Proof : See Palais [7, Theorem VIII, p.44].

Note : Palais' definition~of+leaf-differs-slightly~from ours.

Let ¢ and ¢ be local actions of G on M with domains D

¢

and D, respectively. . Let Db be the connected component of e in

v

o> n o?

p v , then D= {J D x {p} is an. open neighbourhood of {e} x M

ptM”'p
in G x M (Palais [7, Theorem 1, p.32]).

-

Uniqueness Theorem (6.5) If ¢ and ¢ have the same infinitesimal

generator 6 then ¢ and ¢ . coincide on D .

Proof : By-prop.(6.3) both ¢p and wp are integrals of f (where £
is defined as iﬁ prop.(6.3)). Let A C Dp be the sét of points on which
¢P -aﬁd wp agree., A -ié nonempty since ¢p(e)l= wp(e) =p . Prop.(2.3)
implies that A 1is open. Let Y . as usual be the foliation defined by the
_ infin;tesimal graph of 6 . A is élosed in Dp since A = ¢—1(A) vwhere
§ is the morphism from Dp into ‘Y x Y given by &(g) = (¢p(g), wp(g))
and A is thé diagonal in Y X Y which is a closed set since Y is

Hausdorff (Lemma (6.4)). Then A = Dp since Dp is connected.
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§7° Existence Theorem. .

We now give necessary and sufficient conditions on M for an

infinitesimal action of G on M to be generating.

Theorem (7.1) A necessary and sUfficient cénditibn’ that an infinitesimal

“action 6 gf G on M is generating is that the foliation defined by the

.infinitesimal graph of 6 is a Hausdorff manifold.

Proof : This theorem is proven in Palais [7, pp.52-58] for finite
dimensional M . The same proof works in infinite dimensions. A weaker
theorem giving sufficient (but not necessary) conditions for 6. to be

generating is proven in BoufbékthZ;*berﬁ;:p§£84f:' -

Example (7.2) : Local action generated by an infinitesimal action

Consider the infinitesimal action defined in Example (5.2).
Keeping the same notation, let exp : L(G) —> G be the exponential map,

then exp = id. If X e VM), let § denote the local one-parameter

X,t
group defined by X . Now if ¢ dis a local action of G on M such that

¢+ = 0§ then ¢(tY, p) = d(exp tY, p) = 6¢+(Y) t(p) by the uniqueness
. 3

theorem for -differential equation and définition of ¢+ . Therefore in
order to find tpe local action ¢ cqffequnding.to 8 we must find the
local one—parémeter group corresponding fo 8(Y). To shorten nétation we
will denote (p, p) by p2 'and », p){p, p) By‘ p4 for peH. ﬁow

we have
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}p:‘ t(p, PIY
1-2t(p, V) + t2(p, P) (¥, V)

66(Y)’t(p)
-;for

1) 'Ge(Y)}O(p) = P

@ Tt Soery,c® T SD Gy @)

Proof of (2) : We have

g » -p2 _ ,
- ¢ (p) = { . — ‘ } Y
dt “e(Y),t 1 - 2t(p, ) + tzszz -

{2(p, Y) - 2tp’¥)

: 2
+ {p - tp°Y}
L - 2t (8, V) + £5p2v?y? C-
and
G(Y)(GG(Y)’t(p)) = Z{GG(Y),t(p)}(de(Y)’t(p), Y)

- (56(Y),t(P), GG(Y)ét(p))Y

-, { p - tp’Y } [ p - tp’y ¥ ]
= — 2 2.2 2 2.2°
1-2t(p, V) +t7p7Y" . 1-2t(p, ¥) +tpY

1 : 2 ' 2
- >2 2 2.9 (P - tp Y, p-tp Y)Y
{1 - 2t(p, Y) +tp°Y"} ‘
| o 2.2
. . Y . :
= 2{p-—_tp2Y,}{ {e, ¥) tPYgz_zz}

{1 - 2t(p, Y) + t"p°Y"}

= p%)
{1l - 2t(p, Y) + ¢t

+ Y

;
2P Yz}
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.Comparing these two equations we see that (2) is true. Let:
D = {(Y, P) e G XM l 1 - Z(P, Y) + (P, P)(Y{ Y) f 0 } .
D is open and contains {0} x M . Finally define ¢ : D —> M by

' p - (p, pP)Y - -
1l - 2(P: Y) + (ps P) (Y’_ Y)

$(Y, p) =

We .complete this chapter with a discussion of a special type of

_infinitesimal action.

§8 Uniform Infinitesimal Actions
Let 8 : L(G) —> V(M) be an infinitesimal left group action and

Zp- be the maximal connected leaf through (e, p) of the foliation Y

defined by 8 . L Y — M is the morphism given by nG(g, P) =g .

Definition (8.1) 6 is called a uniform infinitesimal (left) action of G
on M if there exists a connected neighbourhood V of e in G such that
for each p € M the connected component containing (e, p) in

Zﬁ N wél(V)' is mapped one-to-one onto V by LA V is called a

uniform neighbourhood for 6 .

Theorem (8.2) Each maxim31 cqnnécted leaf T of Y is a coveriﬁg space

for G with covering map - w.= T if and only if 6 4is uniform.

G'L
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Prbof :  Suppose 8 is'uniforﬁ. Let . V be a uniform neighbourhood. We
have to,show that for éach‘ g.e G- there. exists an open neighbourheod W
”sucﬁ‘that ﬁ—l(W) is atdisjoint union.of open sets in- I., each of which .
is mapped diffeomofphically'onto W by w . We first show that w(X) = G :
Lét g, -p) e.Z‘, tﬁen by prop. (6.2)., i(g;l)(Z)'=“Z§5 since.
R ») = e, by and” m(Z) =“w’o'§;(é>'(>:'i)) = R(g)omg (L)) . So if

ﬂG(Zp) =G then 7(I) =G alsp. This will be proven by showing that for
. -every positive integer n vl C nG(Zp), ;hen WG(ZP) will equal G

- since any neighbourhood of e 1in a connected group generates the group.
Since 'V is a uniform neighbourhood for 6 this is true for n=1.
AséumevnOW that. Vnrl'C:,ﬂG(Zp); we will show that~\f1C:_nG(Zp) also.
' ﬁef_ g be any po{nt_of{AVn—lf then by the induction hyp&thesis there exists

- q € M such that (g, q) e.Zp . By prop.(6.2), E(g—;)(zp) = Zq . Now

. | . b . - = =1 - -1 :
vV C ﬂG(Zq),v51nce V is gnlfo?m_and so V C m;°R(g )(Zp)_— R(g. )OHG(;p)’

1

This means gV C:‘ﬂG(ZP) for each g ¢ v , i.e. V' C ﬂG(Zp)°'

Now let g' be any point of G. Lét- U 5e a symmetric connected
neighbourhood of e in .G such that U2 C V, then W=Ug is a
neighbourhood of g .. We will show that ﬁ_l(W) ‘is a disjoint union of
_ open sets in Z, each of which is mapped -diffeomorphically onto W by

T . Since m(Z) = G we have n-l(w) is nonempty. Let C be any

component in I of n—l(W) = l(Ug). ‘If (h, s) is any point of C then

-~
. . -1 -1 =1 : ' . s .
h € Ug which means' gh ~ ¢ ¥~ =U and Ugh C UUC V. This implies
-1 . R - .
that Ugh is a uniform neighbourhood for 6 since V was. Prop. (6.2)

gives ﬁ(h_l)(z) = ZS sinc¢ E§Kh—l)(H;_s)'= (e, s) and ﬁ(h—l)(c) is the
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component of (e, s) in “Zs r\bwél(ugh-l).';Bﬁt ‘wG,;maps¢the component

"of - (e, s) in '25 (irﬂé%(UgHTl) diffeomorphically -onto -Ugﬁ_l since

Ugh is a uniform neighbourhood which means 7 maps C diffeomorphi-
cally onto ﬁkh)(Ugh-l) = Ug -and therefore the pair (I, w) is a

covering space for G .

Cohversely suppose ﬂGlZ
q

be any simply connected open neighbourhood of e . Then the component

t L —> G 1s a covering map. Let V

containing (e, q) in m£1(V)-fT Za -is a covering space for V  and

therefore must be mapped diffeomorphically onto V .

We will need the following theorem ip Chapter 5 .

Theorem (8.32) If G 1is simply connected and M is a Hausdorff manifold

"then a uniform infinitesimal left action 6 : L(G) —> V(M) ' generates a

global action of G on M.

Proof : By the above theorem each leaf I is a covering space for G and.
since G is simply connected VWGIZ.: I —> G is a diffeomorphism. For

peM denote this diffeomorphism of Zp onto G by np As usual denote

G -
. by £, the vector bundle morphism from pG*T(G) into pM*T(M) induced by

8 , and by Y the foliation of G x M defined by the integrable subbundle

£ ] : - :
F~ 0 Define ‘¢p : G—> M to be ¢p(g) = ﬂMo(ﬁg) 1(g) where Ty t Y — M

is ﬂM(g; m) = m. Finally define ¢ : G x M —> M to be ¢(g, p) = oP(g).

We will show that ¢ dis a global group action with infinitesimal generator

N
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P

0 .f,Let>'v e L.(G). Note that each ¢ is an integral for £f since

TGP @) = Tr) TR (v (e))
= T(m)(v(g), £ _ (v(g)))
" & ) (@)
= £ ) e (D7 - e
(g,9"(8)) '

¢ 1is a global action :

M oo, p) = M) (@) = myle, P) = since (e, p) is

the unique point in- Zp with first component equal to e .

(2) show ¢(g, ¢(h, p)) = ¢(gh, p) for all é, heG and p e M.
- Define wl(g) = ¢(g, ¢ (h, b)) and wz(g) = ¢(gh,.p). By the definition of

¢ , the graph of wl is Z¢(h,p) and Fhe graph of wz is

E(h’f)(zp> = Tyn,p) Since: E(ﬁ'l)(h, ¢ (h, p)‘) = (e, ¢(h, p)). then since .

ng(h’P) is one-to-one on Z¢(h,p) we have ¢(g, ?(h, P)) = ¢(gh, p).

- We now show that ¢ : G X M —> M is a morphism. For pe M,
define
Ap = { g € G : there exists some open neighbourhood U °

of g and some~opeh neighbourhood V of

p such that ¢ is a morphismon U x V } .
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(a) AP contains e and “therefore Ap_¢ g,

‘Let p't M —> M be the identity. By prop.(2.6) there exists
a connected open neighbourhood UxV of (e, p) in G x M and a morphism
Y 1 U x V¥ ;f> M such that for all m & V the morphism. wm g — y(g, m)
‘isﬁanwintegnal for f with @mée) =pfm)» = m . ¢?' is also- an integral for
f on U x V with ¢™(e) = y™(e). . Since M iérHausdorff and U ‘is
connected it follows, just as in. the proéf of theorem (6.4) wusing the
m

uniqueness of integrals, that ¢m’= Y on U j; i.e. ¢=9% on UxV

.and Ap,_contéins e .

(b) AP s open-in‘ G by definition.

() AP is closed in G .

Let g e AP » by (a) above there exists a connected neighbourhood -
U xV of‘ (e, @(g, p)) ‘such.that ¢ 1s a morphism on U x V . We denote
¢ by B on. UxV to emphésize'that it is a morphism. . Furthermore we |
assume U = U-l ;. Since h —;> ¢(h, p) is an ihtegral, and so in particular
continuous, there exists a neighbourhbod N of g such that ¢(N, p) (:' V;
Let .h eN N vg N AP : lh exists since g e ZEI and N f\lUg is a
. neighbourhood of g . By the definitibn of AP there exists a connected
néighbourhood .Ul X Vl of (h, p) on which ¢ ~is a morphism and since
¢ (h, ﬁ) e V we can assume (shrinking if necessary) that ¢ (h, Vi) - V‘.
Defing Y : Uh x Vl — M by vk, m) = B(khﬁl, ¢ (h, m)). & is a morphism‘

on Uh x Vl since it is a composition of morphisms; vy = Bo(R(h_l) X ¢h) .

Now for m € Vl;“we have the-mopphism ym : UI — M ‘given by
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Y'(k) = y(k, m) with y(h, m) = ¢(h, m). We

integral for f and then (as in the proof .of

m

integral with the same value-at h, ¢ will

morphism on Uh X V1 . Let Bm t: U —> M be

Bm(k) = B(k, m). Since B =¢ on U.xV we

-X € L(G), to show that vy is.an integral-we

T (") (X(g))
8 (8,77 (g))

We have

Tg<ym>(x<g)>

[

gh

B¢ (th) - ¢¢(h’m)

(since is an integral of

.

6(X) (Y"(8))

and so. Ym is an integral of f . Therefore

8 (x) (8% (™ (gn71y)

will show that Ym_ is an
(a)) since_ ¢m is also an
equal -ym and ¢ will be a
the morphism defined by

m

have- Bm = ¢ on U . Let

need that

6 (x). (v (2)) .

r 6" TR X(8)) by def. of )

T M) k@) (since X e L6)

£f)

0x) 8° ™™z (g))

¢ 1s 'a morphism on Uh x V

and h e Ug implies g ¢ v n =Th, i.e. (g, p) ¢ Uh x vV, and ‘ge AP

showing that 'Ap‘= AP . since ¢ is_éonnected (a), (b) and (c¢) dimply

that AP =G . As p was aibitrary ¢ is a

morphism on G x M .

1

It remains to show that 8 is the infinitesimal generator of ¢.
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Let Xe L(G), then

il

£ ‘ (X(e)). (since o is an

o1 P (X ee)) o
(e,97 (e)) integral for f)

0 (x) (4P (e)) = B(X)(p)

. showing that 0 is the infinitesimal: generator: off ¢- and completing

the proof of the theorem.

The proof that ' ¢ is a morphism is essentially the same as the
propf.showing‘that the flow of a vector field is a morphism. (Cf. Lang

[5, p.801).

<

Proposition (8.4) Let ¢ ::G xM—>M be a global left action of G on

a Hausdorff manifold M. Let X e L(G) and '{6£} be the one-parameter

’ +
group corresponding to ¢ (X). Then

Gt(p) = ¢(exthX, P) for all p e M.
Proof : ¢(exp 0-X, p) = ¢(e, p) = p
and
4 hexptx, p) = S| plexp.(s+OX, p)
- dt G dsls=0 YG ?
- 4 ¢ (exp,sX é(exp tX, p))
ds’S=O STTEGTT? R

sincé $ is a giobal action

¢+(X)(¢(exthX, p)) by definition of ¢ .

The result then. follows from the uniqueness theorem for- differential équations.
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Chapter .3

Connected Lie Transformation Groups

Let D(M) be the group of diffeomorphisms of the manifold | M.

A Lie group. G iswca&iedwaubiewﬁransformationwgroupmgﬁ_‘yf if- the-

underlying group of G is a subgroup of D) and if the map’

(g, p)'——> g(p) of G x M dinto M is a morphism.‘ Of course one could
give G the discrete: topology and this would automatically be true. A
nontrivial example is the group - I(M) of isometries of a finite dimen-
sional.Riemannian manifold, which is a Lie transformation group with
fespect-to the eomoéct oﬁéﬁ‘tdﬁologf Fuffﬁer e#éﬁoléé of ﬁie transforma-
tion groups can be found in H. Chu and S. Kobayashl [3]. The main result
of thlS chapter is to show that there is a one-to-one correspondence
between connected Lie transformation groups of M and certain subalgebras
of the Lie algebra of vector fields V(M) where M is a Hausdorff

manifold. In this chapter M will always denote a Hausdorff manifold.

§9"The“Image19§!the Infinitesimal Generator of a Lie Transformation'Group

Let G be a Lie transformation group of M . Then there is a
- global action ¢ of G on M with infinitesimal generator
+ - u ,
¢ :L(G) — VM) . We now examine the image of ¢+ in V(M). Let

exp. L(G)vf—> G be the exponential map.
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"Proposition (9.1) The image ¢+(L(G)) consists of complete'vector fields

' + 3 v
and the one-parameter group corresponding to ¢ (X) is exp tX .

Proof : exp tX dis a one-parameter group and
d +
ar exp tX(p) = ¢ (X)(p)
t=0. '

The result then follows from the uniqueness theorem for differential

equations.

. S
Proposition (9.2) ¢ is injective.

Proof : If ¢+(X) = 0 then

Tl e e =S (s + 00 R
t=s . S te=0
d
=I5 exp tX(exp sX(p))

t=0

87 (X) (exp sX(p))

= 0exp sX(p) for all p e M 3

ﬁ for all t e R and all p e M, i.e. exp fX = idM

This means exp tX(p)

0 since exp has a radius of injectivity at 0 in

which implies that = X

L(C).

+
Proposition (9.3) ¢ (L(G)) ‘possesses a Banach Lie algebra structure such

that the evaluation map (Y, p) —> Y(p) is a vector bundle morphism from

€
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+,_ , |
the trivial vector bundle ¢ (L(G)) x M into T(M) and

;¢+ : L(G) — ¢+(L(G)) is a. Banach Lieﬁalgebtauisomorphism. Furthermore,

this ‘Banach space 'structure is necessarily unique. .

Proof : By prop. (9.2) ¢+ : L(G) — ¢+(L(G)) is a Lie algebra isomor-
-phd:sm -and ‘hence induces a Banach Lie algebra structure on $+(L(G)) making
-¢+ a Banach Lie algebra“isomorphiSmT Define B : ¢+(L(G))'x M}—¥> L(G) x M
by B(Y, p) = ((¢+)—1(Y),_p)3 then B 1is easily seen to be a vector bundle
.morphismw ‘Now prop.(5.3). gives .that the map o : (X, p) — ¢+(X)(p) of
L(G) x.M —> T(M) is. a vector bundle morphism. The. evaluation map

¢+(L(¢)) X M —> T(M) is equal to a°¢B and therefore is a vector bundle
morphism. The uniqueness qf the Banach space structure»gpmes from the

~following proposition.

Proposition (9.4) Let E' be a vector bundle over M and let V be a _

vector space of sections iof E . If V admits two Banach space structures

such that the evaluation map (X, p) —_ X(p) of V xM into E is

continuous with respect to both then the identity map from V into V is -

a2 homeomorphism, i.e. the two norms are equivalent.

Proof : Let V1' and Vé denote V with respect to the two topologies
and let e, ¢ Vi xM—>E (i=1, 2) be the evaluation maps. By the

closed graph theorem, in order to show that id Eer —> V2 is continﬁous,

it is enough to show that the diagonal is closed in V, x V. . Let

1 2
'{(Xi, Xi)}, be a Cauchy sequence in the diagonal of Vl X V2, i.e.
xlev, X2 eV, and Xt =x%. st vV, x V, i lete th st
n €V X eV, e ince v, 5 1s complete there exists
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a limit point (X, Y) of this sequence; but for all p e M we have

S | R |
. X(p) = lim el(Xn, p) = lim Xn(p)
= -1im Xz(p)

110 n

. 2 .
I=wllm~e2(Xﬁgvp)v=wY(p) .
N>

Therefore X =Y and the diagénal is closed in V1 X V2 . Interchanging
’Vl and 'V2 above gives that id :.V2 —> V1 is continuous also and id

is a homeomorphism.

If Y 1is a complete vector field then denote by ‘Exp tY, the
one—parameter,group‘generated%by‘ Y. Let ¢ ¢+ G xM—>M be the global
action of a Lie transformation group G. Prop.(9.1) gives that

+ .
expG(X) = Exp(¢ (X)) and this implies the following result.

Proposition (9.5) Exp is injective on a neighbourhood of 0 in ¢+(L(G))«

in the topology'induced on ¢+(L(G)) by ¢+ .

§10 Béﬁach Lie Algebras of Complete Vector Fields

We now consider when a Lie subalgebra L of V(M) . is the imagé
of thg infini;esimal generator of évconnectéd Lie fransformation group. In
view of propositions (9.1), (9.3), and (9.5) we only consider Lie_subalgebfas
L of V(M) which satisfy the following conditions

(A) L consists of cbmplete vector fields;
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‘(B) L has a BanachALie algebra structure, (neceésarily unique

| by Prop.(9.4)) such that ;

(B1)  ‘the evaluation map ev : (X, p) —~> X(p) 1is a vector bundle

: morphiém.from the trivial‘bundle 'L xM dinto T(M).

(32) “there exists an open ball Bf(O) of. radius r ‘dt. 0 such

~that Exp : L —> D(M) is injective on Br(O).

-Propesition (10.1) If 1L is finite dimensional and satisfies (A) then

condition (B) is true also.

Proof : Since L is finite dimensiional it has a natural Banach space
structure. A proof of (Bl) is in Bourbaki [2, Remarque p.140] and a prdof

-of “(B2) ‘is in Loos ‘[6, p.182].

The rest of this section will be devoted to proving the following h

theorem.

Theorem (10.2) If M is a Hausdorff manifold and L . is a Lie subalgebra

of V() satisfying conditions (A) and (B) then there exists a unique

connected Lie transformation group G with natural global action

$ : GxM—>M such that ¢ is a Banach Lie algebra isomorphism of

'L(G). onto -L.

‘Remark : Palais [7] first proved this theorem in the case where L and M -
are finite dimensional. Using a different method, Loos [6] extended this

result to the case where L is finite dimensional and M is a (not-
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necessarily Hausforff) Banach mainfold. The proof given here is similar to
Palais' .

In order to prove Theorem (10.2) we need the following theorem,

‘which is of interest in itself.

"Theorem (10.3). If M 'is a Hausdorff manifold and L is a Lie~subalgebra

of V(M) satisfying condition (A) and admitting a Banach Lie algebra"

structure such ‘that (Bl) is true (but not necessarily (B2)) then there exists

a simply connected Lie group G with L(é) = AL and a global action

~ .~ +
Y+ GXxM—>M such that. ¢ (L(G)) =L, ¥ is a continuous linear map

into L, and for C ¢ AL w+(C) = C(1)..

”Proof,; By theorem (3.1).thefe exists a Lie group with Lie algebra AL.
Let. ézvbe the universal covering group (see Bourbaki [2, p.113]) of this
group ; then L(é) = AL. We have an infinitesimal left action, which we

céll w+, of é ‘on M given by the following sequence of vector bundle

morphisms,

ev
ALxM—> LxM—> TM)

(C, p) —> (C(1), p) —> C(1)(p)

- where ev 1is the evaluation map which is a vector_bﬁndle morphism by

. + ' - '
condition (B1). The map ¢ : C —> C(l) is continuous by theorem (3.1).
The existence of the global action ¢ will follow from theorem (8.3) by

. + . s e .
showing that ¢ is a uniform infinitesimal left action.
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By coﬁdition (Bl), ev ; LxM-— T(M) is a vector bundle
" morphism. Then‘thé_global version of the existence theorem for differential .
equations depe@ding on a parameterv(in this case the parameter space is L)
implies that thezmap -(t; X; P) — Exp(tX) (p) from R x L # M into M
is a morphism. The fact that this flow is defined on all of R follows

from condition (A)

Now let Bp(Q) be an open Ball about 0 in AL on which..expé
‘is a-diffeomorphism;‘ We will show that w+ is uniform on V = éxpé(Bp(O)).
Define, for each pbs M, the map 6P : g — (g, Exp(w+(ex§él(g)))(p)5
from V into G x M . Let ,Zp be the maximal connected leaf containing
(e, p).rin»the foliation .Y of G x M defined by the infinitesimal graph

- -of .w+ . For X.e-L(G) rand p ¢ M -define

gt t > (expg(tX), Exp(ty (X)(p))

~

from R into G x M .  Now-

f dap
Py d | - X
T(ax)[a—i!s] T

= &EE : expé(tX)expé(SX), %{' EXP(t¢+(X))(P)I‘

t=0 t=s

- [x<exp(~;'(sx> 0T Exp (st (0) <p>>]

belongé to T(G x M, Y). Then prop.(1.4) dimplies that the image of _&gb

is in Ep since a§(0) = (e, p) and R is connected. In particular if
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.g.= QXPE(X) for X e,Bp(O)A then.

R = (expg®), Exp T 0YG)

(8, Exp(¥ (expz () (»))
~which shows that &°(V) C I -

Denote by VP the image of V under 6° . The "projection"
"ﬂé‘t‘Y'——> G obviously_maps vP one~-to-one onto V . 1In fact we now show
that :Vp is the component containing” (e, p) in - ﬂél(V) N Zp . We have

(e, p) = 6p(e) e VP . Suppose (g?‘q)- is any point in VP and let U

- be an open set in Zp containing (g, q) on which " 1s a diffeomoephism

(prop.(6.3)). Let W be an oper set im V A né-‘ctj-‘)i- containtng g , then
:ﬁél : né(U) —> U takes W onto an open set containing (g, q) and

ﬂjl W) C VP since F:l =8P on W . This proves that vP . is

G G
“a(U).‘ |
open. In order to show that = VP is the component containing - (e, p) in

'wél(V) N Zp it remains to prove that VP is closed ' in wél(V) . Let

(h, m) be any point in ﬂél(V) n Zp such that (h, m) £ VP . Now since
né' is one-to-one on VP there exists a unique point in VP with first
~component h, say (h, n). .Zp.bis Hausdorff since it is an open submani-

fold of Y and therefore we can find disjoint open neighbourhoods- A and

B of (h, m) and (h, n) -respecfively which 7

g maps diffeomorphically

onto the same neighbourhood of h ; this is possible since T is a local
diffeomorphism. By restricting A and. B further we can assume that - -

A C VP and it then follows that B N Vp = ¢ since wé is one-~to-one on
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Vp . This completes the proof that is .uniform and proves the theorem.

Proof of Theorem'(lO.Z)

We keep the notations used above. L 1is assumed to be a subalgebra

of vV(M) satisfying conditions -(A) -and (B):

Consider the ideal ker w+'=‘{ C e L(C)Y : C(l) =0} .in L(G)
which is the kernel of the map w+ : L(G) —> V(M); it is closed in' L(G)

since ker w+ =N (w;)~1(0p) . where. w;_ is the continuous linear map
peM :

X —> w+(X)(p) from L(G) into TP(M)' (Op_ denotes the zero vector in

Tp(M) ). Therefore keru¢+ is a Banach Lie subalgebra of L(G) . Let
L' = {_C £ L(G)- =-AL - C(t) = tX for some -.X £ L } R

' ~ , +
then L' is a closed vector subspace in L(G) which complements ker ¢ ,

i.e. ker w+ splits in L(G) and we identify L(G) with ker w+ x L'

For g € é, denote by wg the diffeomorpﬁism p — V¥(g, p) of
M into- M. Let & : G —> D(M) be the group homomorphism g —> wg .. Let
H = ker 6 , thenbwevhave a group isomorphism Eﬂ: a/H —> S(é). We will
show that H 1is a Lie.sﬁbgroup of G. Condition' (B2) gives>the existence
of a open neighbourheod N of 0 in L on which Exp is injective. Let
A x B C ker w+ x L' = L(é) be Aﬁ open neighbourhood of 0 on which 'expé
is a diffeomorphism and such that w+(A x B C N. Let heH (l_expé (A x B),
then h = expg (C) for some unique C € A x B, Now for all p ¢ M we

have



p = ¥(h, p) = y(expy (C), p)

Exp (37(C)) ()  (by prop.(8.4))

Exp (C(1)) (p)

Since C(1) ¢ N and Exp (C(1)) = id ‘we have c(l) =0, i.e. Ce A x {0} .
Also if C ¢ A -x {0} then Y(exp(C), p) = p for all p and exp:(C) ¢ H.
The fact that H is a Lie subgroup then follows from prop.(3.3) since

exp (A x {0}) =H N expg (A-x B). We also have L(H)

ker w+ .

It follows from prop. (3.6) that there exists a connééted Lie -
group structure on G/H sﬁch tﬁat the projectiion p : G —> G/H is a
submersion and L(G/H) = L(G)/L(H) = L . Using the group isomorphism
s : G/H — 8§(6) we have a Lie group structure.induced on G(é) such that
§ is avsubmersion, ker L(8) = ker ¢+, L(8(G)) = L, and S- is a
: diffeomofphism. With this Lie group structure 6(@) will be denoted'by G.
Define ¢ : G x M - M to be the natural action ¢(g, p) = g(p). Let «a
be the Submersidn (k, p) — (6(k), p) of G xM into G x M. Then
Y = ¢oa and - ¢ dis a morphism since ¢  is a morphism and o is a

submersion.

+
We now show that ¢ is a Banach Lie algebra isomorphism. Let

C e L(G) = AL and p e M, then

I

c() (p)

T(e’p)w(c (e) ’ Op)
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1]

Te,p) (do0) (Cle), O)

= Tiiq. 0yt TS, 0)

.\ .
¢ (L(SYE))(P) ,
fee. 3= ¢ten(s) .
: + - . + %
We see that ¢ maps L(G) onto L since ¢ maps L(G) onto L
(theorem (10.3)). Since L(8)(ker wf) = 0. we have that ,¢+ is injective.

The fact that ¢+ is continuous follows- easily from the following;

L +
1) v is continuous

- +
(2) L(S8) 1is continuous, surjective and ker L(S) = ker ¢

splits in L(G) (since § is a submersion).

It remains to prove the uniqueness.of G; Let F be anéﬁher Lie
transformation group with the same properties as G and let B : Fx M —> M
be the map (£, p) — f(p). Now expp, (tX) = Exp (tB+(X)) for X e L(F)
by prop. (9.1) and therefore since F 1is connected it is generated by
Exp (L). Similarlj‘ G is generéted by Exp (L) which shows that the
underlying groups of G and F are the same in D(M). ihe following
commutative diagram

N Y T
L(G) - L(F)

‘expG‘ o l expy

G .. 1d > F
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-shows that Id from G into F 1is a morphism and completes the proof of

the theorem.

§11° A Banach Lie algebra of complete vector fields which does no

If we have a subalgebra L of V(M) which satisfies condition (A)
and admits a Banach Lie algebra structure such that (Bl) is true but not
(B2) fhen prop.(9.4) implies that this I won't admit any Banach space
© structure such that (B25 is satigfied. Hence by prop.(Q;S), L isn't the.
image of the infinitesimal generator of any-coﬁnected»Lie transformation

-

gfdup{

We now give an example of such an L -which, although it doesn't.
generate a connected Lie transformation group, is still enlargeable. Let

1

©o . B
M = disjoint J Si where -Si is the unit circle S~ . Define the vector
' n=1

field Xn by
0 if pesl and j#n
P j ‘
X (p) =

do. . 1
Et—(p)' if- pe SI,1

C2mit o
e

where o is the curve on Si ; t

Let 'L be the normed vector space consisting of all sums -

© — o e |
2' c Xn s ¢_ eR, such that E
n=1 © n o n=1

<o, If C=) cX elL, .define
n . : nn
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| @ ||
the norm of C to be |]C|] = 2 L
n=1

Banach Lie algebra satisfying (A) and (Bl) but not (B2). L consists of

We will show that L is a

n

complete vector fields since we have a disjoint union of compact manifolds.

It is -a vector space for

..ICAA+.b l
ol n

Ifex +Tbx]]

[A
~1
]
+
~1
=]
A
8

if z cnxﬁ and__z ann belong to L. Similarly L is closed under

scalar multiplication; L 1is closed under the bracket operation since

-

[y c X, ) b X ] = iij cibj[Xi, xj] =0 .
b

We now give the usual prbof that a space of sequences is complete.
Let {A"} be a Cauchy sequence of elements in L, i.e. given ¢ > 0

there exists N such that if i, j > N we have

i,
HAi-'AJ'||=-z'il;ﬁ<l<e

where Al AEXk In partlcular this implies that for fixed k, {A;}
i .
is a Cauchy sequence. Let - = lim .and A = 2 X, . We will show that = -
. B T A Akk

A gl and 1lim Al = A . ‘Frpm above we have .

s |ar - )|
Ly

k=1

€
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for all- s > 1 and i, j > N, then

- N § I jl S -
lim § _fiiizjﬁi_ =) ———<w for all s > 1.
ipe k=1, i= '

Since this is true for all s we have

°2° o - Aﬂl .
k=1 ke o

But this implies that A - A3 € L which means A = (A - AJ)-+ AJ e L .

' We also have for j >N, |[A - Al|| < e ; which shows that 1im AJ = A .
Jooo

We have now shown that L 1is a Banach.Lie algebra and it is trivially

enlargeable since it is abelian. -

It remains to show that the evaluation map ev : L X M —> T(M)
is a vector bundle morphism. Local coordinates on each of the “Si 's are
. . . e ' omit o
given by the local inverse of the map t —> e . We denote this map
by logn . This induces local coordinates on T(M) and we denote this map
- by logg . If m: TM) — M is the usual projéction and if Z = 2 ann
then

log (2(p)) = (log (1(Z(»)), z.) = (log_(p), z_) .

Denote by T the continuous linear map from L into R given by
2 aka —>a . A local coordinates map at (Y, p) ¢ L x M is given by

@, p) —”9'(Y,_10gn(P)) if pe Sé . Let Y=Y kak and’ W be an.open

neighboUrhdod of Y(p) = ev(Y,.p) in T@). Now logE(Y(p)) = (logn(p); yn)
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and by the definition of the topology of - T(M) there exists an open set

U containing logn(p) and an interval va(yn) about Yy such that
(log) (U x B fy ) W Let Z = ) z X i

gnv p'n . , nn’
(Z, q) ¢ Bp/n(Y=)'_'-.>< (lagn)'l(U), C LxM then ||z -Y|| <p/n which

implies. l’zi,;. Ynl <.p, which, implies.. lﬁoegg(-zl(\q.)f-)g e. U, x. B"b'(&’ri)’;’ which shows

ev(Bp/n(Y)'X U) C W . Hence ev. is continuous and these local coordinates

ev. is given by the niap T  in the following diagram,

(¥, p) ——>  Y(p)

]

(@, log (®) ——> (log_(p), m_(p))

*

and T dis a morphism since T is. This proves that ev 1is a morphism of
manifolds. It is a vector bundle morphism since ‘the constant map p —> L

is a morphism from U into the space of continuous linear maps from L

into R .

‘Condition (B2) doesn't hold because Exp doesn't have a radius
of injectivity at 0 in t, for Exp Xn = identity for all n and

lim X = 0.,
: n
oo

Although L doesn't generate a connected Lie transformation group
theorem (10.3) ensures that,it is the image of the infinitesimal generator

of a global left action.
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