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ABSTRACT 

Suppose G i s a Lie group and M i s a manifold (G and M are 

not necessarily f i n i t e dimensional). Let D(M) denote the group of 

diffeomorphisms on M and V(M) denote the Lie algebra of vector fields 

on M . If X: isv a. complete-vector: field- then; Exp tX w i l l denote the 

one-parameter group of X . A local action <£ of G oh M gives rise 

to a Lie algebra homomorphism <J>+ from L(G) into V(M) . In particular 

i f G i s a subgroup- of D(M> and <|> : G x M —> M i s the natural global 

action (g»p) —> g(p). then G i s called a Lie transformation group of M. 

If M i s a Hausdorff manifold and G is a Lie transformation group of M 

we show that <j> i s an isomorphism of L(G) onto <f> (L(G)) and 

L = <j>+(L(G)) satisfies the following conditions : 

(A) L consists of complete vector f i e l d s . 

(B) L has a Banach Lie algebra structure satisfying the following 

two conditions : 

(BI) the evaluation map ev : (X,p) —> X(p) is a vector 

bundle morphism from the t r i v i a l bundle L x M into T(M), 

(B2) there exists an open b a l l B r(0) of radius r at 0 

such that Exp : L — > D(M) i s infective on B r(0). 

Conversely, i f L i s a suba-lgebra of V(M) (M Hausdorff) satisfying 

conditions (A) and (B) we show there exists a unique connected Lie transfor-

+ 

mation group with natural action <j> : G x M —> M such that tj) is a 

Banach Lie algebra isomorphism of L(G) onto L . 
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Chapter 1 

Preliminaries 

A l l manifolds considered are real Banach. manifolds of class C 

where K = «° or K = to . The word morphism w i l l mean a C map between 

K 

C manifolds. In this chapter, we collect the necessary facts on 

foliations of manifolds and on i n f i n i t e dimensional Lie groups. Almost 

a l l of this material w i l l come from Bourbaki [1, §9] or Bourbaki 

[2, Chapter 3], . _ 

§1 Foliations and Integrable Subbundles 

Let M and S be manifolds and p : M —> S a submersion. We 

then have, for each s e S, a manifold structure induced on the level set 

p ''"(s) by M . Denote by the manifold which i s the disjoint union 

over S of p ^(s ) . Each p ^"(s) i s an open submanifold of and 

topologically i s the topological sum of the topological spaces p ^"(s). 

Definition (1.1) Let M be a manifold. A foliation of M is a manifold 

Y having the same point set as M. and satisfying the condition that for 

a l l x e M, there exists an open submanifold U of M containing x, a 

manifold Sy and a submersion p : U —> S such that the manifold 

i s an open submanifold of Y.. 

The inclusion map of Y into M i s easily seen to be a bijective 
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immersion. 

We c a l l the pair (M, Y) a foliated manifold. A set U is 

called a (connected) leaf i f i t i s -a (connected) open set i n Y . The 

maximal connected leaves are therefore the connected components of Y. 

Definition (1.2) If (M, Y) and .(M1, Y') are foliated manifolds, a 

morph ism from (M, Y) into (M' , Y'1) is a map which is a morphism of M 

into M' and. at the same time a morphism of Y into Y' . 

Using the inclusion map of Y into M, for each x e M we can 

identify the tangent space T x(Y) with a subspace of T x(M). With this 

identification we have the following propositions. 

Proposition (1.3) The spaces T

X(Y) are the fibers of a subbundle T(M, Y) 

of T(M). Furthermore i f Y i s defined by a submersion p : M —> S , 

then T(M, Y) = ker T(p) . 

Proposition (1.4) Let (M, Y) and (M*, Y') be two foliated manifolds and 

f : M —> M' be a morphism. A necessary and sufficient condition that f  

i s a morphism from (M, Y) into (M', Y') i s that T(f) takes T(M, Y) 

into T(M*, Y'). 

Let. F be a subbundle of T(M). We now examine the conditions on 

F which imply the existence'of a manifold Y such that T(M, Y) = F . If 

this i s the case then F i s called an integrable subbundle-of T(M) and 

the foliation i t defines i s unique. 
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Theorem of Frobenius (1.5) F is integrable i f there exists a family 

{£.}.,. of sections of F such that 
1 l e i —: : 

(1) for a l l x e M .the set {£^(x) : i e 1} is a total subset 

of the fiber F of F above x . — . x — 

(2) for a l l pairs ( i , j) of elements of I and a l l x e M , 

[ q . ^ ( x ) e F x . 

§2 Total Differential Equations 

We now construct a particular subbundle and examine what i t means 

for i t to be integrable-. This w i l l be the setting for discussing 'generalized 

di f f e r e n t i a l equations. 

Suppose M is the product of two manifolds A and B. Let 

p^ : M — > A and p 2 : M —> B be the projections on the f i r s t and second 

factors. There are two subbundles, p 1*T(A) and p 2*T(B), of 

T(M) = T(A) x T(B) associated with p 1 and p 2 . The fiber P j * T ( A ) ^ b^ 

of p 1*T(A) over (a,b) i s T a(A) x {0b> where 0 b is the zero vector i n 

T b(B). We identify this fiber with T a(A). Similarly the fiber 

P 2*T(B) ( a b ) of p 2*T(B): over (a,b) i s {0fl} x T b(B) which i s 

identified with T b(B) . 

Let f be a vector bundle morphism from p^*T(A) into p 2*T(B). 

Then for each (a,b) e M, f is a continuous linear map 

f(a,b) : T a ( A ) _ > T b ( B ) (after identifying T Q(A) with p 1 * T ( A ) ( a b ) 
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and Tb(B) with P2*T(B) b ) ). 

Proposition (2.1) The graphs of the f ^ ̂  are the fibers of a subbundle  

of T(M) which we denote-by- F^ . 

Definition (2.2) Let A' be an open set in, A . A morphism $ : A' —> B 

is,called an integral of f- if- for a l l a. e A'- one has T (*) = f, ,, SN. 
52 a (a,cf>(a)) 

The following two propositions describe the local uniqueness of 

integrals. 

Proposition (2.3) If (f>̂  and <j>2 are two integrals of f taking the  

same value at a point a e A, then they coincide in a neighbourhood of a. 

Proposition (2.4) Let Z be a manifold, A1 an open set in A, and 

a e A' . Suppose cfi^ and §^ are morphisms of Z * A' into B such 

that <j)̂  and coincide on Z x {a} and for a l l . z e Z, the morphisms 

a —> <j>̂ (z,a)' and a —> <j>2(z,a) are integrals of f . Then cfi^ and  

coincide on a neighbourhood of Z x {a} . 

Suppose now that F^ i s integrable and therefore defines a 

foliation Y of M with T(M, Y) = F f . Let o> : A' —> B be an integral 

for f. and define ty : .A' ••—> M by i|»..(,a) = (a, <j>,(a)).. .We have 

Tip(T(A')) C F^ since .<j> was an integral and Proposition (1.4) gives 

that ty i s also a morphism from A' into Y . Let v e T A1 . Now 
a a 

W "
 ( v

a» V'V* = ( v a ' f

( a . ( a ) ) ^ ^ w h i c h i m p l i e s T a * i s a n 
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isomorphism (of Banach spaces) of T A' onto F^. ,, • This means ty 
1 ' a (a,<j>(a)) 

i s a local diffeomorphism into Y at a and as a was arbitrary we have 

proven the following result. 

Proposition (2.5) If_ F^ is --int e grab le and- cj> : A' —> M i s an. integral  

for f then {(a, cj>(a))« :. a e A' } is a. leaf (open set) of the foliation  

defined by F^ . 

We complete this section with the existence theorem for integrals. 

Proposition (2.6) Suppose that F^ is integrable. Let (Z q, a Q) e Z x A 

and p be a morphisny from- Z» into- B- Then there exists- an- open  

neighbourhood Z' x A' of. ( Z Q J a Q) in Z x A and a morphism 

<J> : Z' x A' > B such that for every z e Z1 the morphism a —> cj)(z,a) 

of A' into B 1 i s an integral for f and p(z) = <}>(z,ao) . 

We w i l l mainly use this with Z = B and p = identity. 

§3 Lie Groups and Lie Algebras 

A Lie group G i s a group, which is also a Banach manifold 

(not necessarily f i n i t e dimensional) such that the operations of multiplica-

tion G x G —> G and taking inverses G —> G are morphisms. G w i l l be 

called f i n i t e (infinite) dimensional i f i t s manifold structure i s modelled 

on a f i n i t e (infinite) dimensional Banach space. '. 
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A Banach Lie Algebra L is a Lie algebra with a Banach .space 

structure such that the bracket [ , ] : L x L —> L i s continuous. We 

c a l l L f i n i t e (infinite) dimensional i f the underlying vector space is 

f i n i t e (infinite) dimensional. 

Almost a l l of the standard f i n i t e dimensional Lie group theory 

carries over to i n f i n i t e dimensions. If G i s a Lie group then there is 

a Banach Lie algebra L(G) corresponding to G arid an exponential map 

from L(G) into G, which is a local diffeomorphism at 0 . (We break 

with the usual convention of having L(G) equal to the set of l e f t 

invariant vector fields on G and instead i t w i l l be the set of right 

invariant vector fields. Defining L(G) to be the right invariant vector 

fields w i l l make the definition of an infinitesimal action in Chapter 2 

easier. This i s a slight change since i f we identify L(G) with T e(G), 

the tangent space at the identity, then the only difference between the 

right invariant Lie algebra structure and l e f t invariant Lie algebra struc-

ture i s that the bracket differs by a sign.) 

The major difference between the f i n i t e and i n f i n i t e dimensional 

theories is that there exist i n f i n i t e dimensional Banach Lie algebras L 

for which there does not exist any Lie group G such that L = L(G). If 

a Lie group G does exist such that L = L(G) then the Banach Lie algebra 

L i s called enlargeable. For an example of a non-enlargeable Banach Lie 

algebra see Est and Korthagen [4]. Although L may not be enlargeable, a 

Banach Lie algebra closely related to L is always enlargeable. This Lie 

algebra i s the path space of L which we now examine. 



- 7 -

Let BL denote the category of Banach Lie algebras with conti-

nuous homomorphisms as morphisms. Then we have the path functor 

A : BL —> BL which takes L to AL = {f | f : [0,1] —-> L continuous 

with f(0) = 0 } with the following Lie algebra structure. If f, g e AL 

then the norm of f i s max | | f ( t ) | | and the bracket i s defined 

te[0,l] 

pointwise, [f, g] (t) = [ f ( t ) , g(t)]. If cf> : L —> L' i s a morphism of 

Banach Lie algebras then Act : AL —> AL' is given by Act'(f) = <f>°f . 

Theorem (3.1) Let L be a Lie algebra and AL be as above. Then 

(1) the -endpoint evaluation map f —> f ( l ) from AL into L 

is continuous. 

(2) AL is enlargeable. 

Proof : The proof of (1) is obvious from the definition of AL . The 

reader i s referred to Swierczkowski [8] for a proof of (2). 

For later reference, we now l i s t some facts on subgroups and 

subalgebras of Lie groups and Banach Lie algebras. The proofs are in 

Bourbaki [2, Chapter 3]. 

Definition (3.2) A subset H of G i s a Lie subgroup of G i f i t i s a 

subgroup and a submanifold of G . 

Proposition (3.3) Let H be a subgroup of a Lie group G . A necessary 

and sufficient condition for H to be a Lie subgroup is that there exists  

a point h e H and an open neighbourhood U of h in G such that 
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H fl U i s a submanifold of G .. 

Let L be a Banach Lie algebra. A Banach Lie subalgebra of L 

i s a closed vector subspace of L which is closed under, the bracket 

operation, i.e. a subalgebra. If H is a Lie subgroup of a Lie group 

G then using the inclusion we identify L(H) with a Banach Lie subalgebra 

of L(G) which sp l i t s i n L(G). (A closed subspace F of a Banach space 

E i s said to s p l i t i f there exists a closed subspace F^ such that 

F + F 1 = E and F f ^ = 0 ). If i n addition H i s normal then L(H) i s 

an ideal in L(G), i.e. [L(G), L(H)] C L(H). 

Proposition (3.4) Let G b,e a,Lie., group and H be a no.rmal Lie subgroup 

of G . Then there exists.a structure of a Lie group on G/H such that  

the projection map i s a submersion and L(G/H) = L(G)/L(H) . 

Proof : Bourbaki [2, prop. 11, p.105 and p.141] . 
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Chapter 2 

Local and Infinitesimal Group Actions 

We determine the correspondence between local group actions and 

infinitesimal group actions in "this chapter. Our treatment of this 

subject follows that of Palais [7]. 

Before proceeding we establish some notation conventions. G w i l l 

denote a connected Lie group and L(G) w i l l be i t s Banach Lie algebra of 

right invariants vector fields. Right multiplication, by an element g e G 

w i l l be denoted by R(g) . The Identity element in. G w i l l be denoted by 

e . M w i l l denote a manifold and V(M) w i l l be the Lie algebra of vector 

fields on M . 

§4 Local Group Actions 

Definition (4.1) A local (left), action of G on M is a morphism <j> from 

an open set D containing {e} x M in G x M into M satisfying the 

following conditions : 

(1) <|>.(e, p) - p for a l l p e M . 

(2) If (h, p), (g, <Kh, p)) and (gh, p) a l l belong to D 

then <j>(gh, p) = Kg. <f>(h, p)) • 

If D = G x M then <{> is called a global action of G on M . 
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Let D P = { g : (g, p) e D } . The morphism g —> <j>(g, p) of 

D P into M w i l l be denoted by <J>P . 

The definition of local action we have given i s from Palais [7]. 

Bourbaki [2, p.118] gives what appears to be a different definition of 

local action as follows. 

Definition (4.1(a)) (Bourbaki) A local (left) action of G on M i s a 

morphism ty defined on an open set ft of G x M containing {e} x. M , 

with values i n M, possessing the following properties 

(1) ty(e, p) = p for a l l p e M ; 

(2) there exists a neighbourhood ft^ of .{e} x .{e} x M i n 

G x G x M such that, for (g, g', p) c ft^, the elements (g 1, p), 

Cgg'> P)> (g. Mg', P)) are in ft and ty(g, ty(g', p)) = ty(gg', p) . 

This i s slightly different from the version in Bourbaki since we 

aren't considering actions of "grouplets". 

Proposition (4.2) Definition (4.1) and Definition (4.1(a)) are equivalent. 

Proof : Def.(4.1) implies Def.(4.1(a)) 

Let ty = <j) and ft = D . We have to find an open set ft^ i n 

G x G x M satisfying condition (2) i n Def.(4.1(a)). Define 6 from 

G x D into G x M by 6(g,. h, p) = (g, <j)(h, p)), then 5 ^(D) is open 

and contains {e} x {e} x M . Define y from G x D into G x M by 

Y(g» h, p) = (gh, p) then y *(D) i s open and contains {e} x {e} x M . 



- 11 -

Let ft^ = 6 "'"(D) H y "^(D), then ft^ i s an open neighbourhood of 

{e} x {e} x M and i f (g, h, p) e we have (h, p) e D; (g, (j)(h, p)) e D 

since (g, h, p) e 6 "''(D); and (gh,, ,p) e D since (g, b, p) e y ^ " ( n ) « 

Then Def.(4.1) (2) gives 

Kg,ty(h, p)) = Mg, $(h, p » = eV(gh, p) = \Hgh, p) 

and condition (2) of Def.(4.1(a)) i s satisfied. 

Def.(4.1(a)) Implies Def.(4.1) 

Let <f> = ty . We w i l l find D such that condition (2) of Def. (4.1) 

i s s a t i s f i e d . Let ft^ be as i n Def.(4.1(a)). Since ft^ is an open 

neighbourhood of {e} x {e} x M we can find neighbourhoods and 

of e i n G and W of p in M such that V x TJ x w C I ft, . For 
P P P P 1 

each p e M, l e t G = exp (15^(0)) where 15̂ (0) i s the b a l l of radius r 

centered at 0 in L(G) and r is so small that G C v H U • Then 
P P P 

G i s connected, G = G ~ 1, G C U , G C V , and G x G x W i s 
P P P P P P P P P P 

an open neighbourhood of (e, e, p) contained in ft^ . Also ^p^p e^
 a r e 

ordered by inclusion so i f we have G and G then either G C G or 
x y x y 

G C G • Define D = ( J G x w and suppose (h, p), (g, <j>(h, p)) and 
7 X peM P P 

(gh, p) e D . Since D i s "symmetric" (each Ĝ  was symmetric) we have 

(h, p) e D implies (h \ p) e D . Now by the definition of D ; (gh, p) 

and (h p) belonging to .D means there exists x e M such that 

(h 1 , p) e G x W and there exists y z M such that (gh, p) e G x w '. 

x x ' & ' v y y 

By the remark above either G C G or G (~ G so (without loss of 
x y y x 



generality) assuming the latter we have (gh, p) e G x W also. Now 

X X 

Gl C V n U implies ((gh)(h - 1), p) e G\ x w. . C V y x W , i.e. 
A A. A. - A A A A 

(g, p) e V x .w . We also have (h, p) e G x W CT U x W which means 
X X X X X X 

(g, h, p) e V x U x W G fi, and condition (2). of Def. (4.1(a)) gives 

X X X X 

tHg", <K-h-> P')'> K"g-» vb-(-h-, p)-)* =*Hgh'» p ) = ( f i'(gh, p). 

Examples of local actions 

Example (4.3) : Let H be a paracompact manifold and £ be a vector f i e l d 

on M . Then the flow (see Bourbaki [1, §9]) of 5 i s a local l e f t action 

of CR. on M . 

Example (4.4) : If E and F are Banach spaces then denote by Hom(E, F) 

the Banach space of continuous linear maps from E into F and by GL(F) 

the Lie group of invertible elements in Hom(F, F). GL(F) i s open in 

Hom(F, F). (See Lang [5, p.5] for proofs). Let M = Hom(F, E), G be the 

additive Lie group Hom(E, F), and I„ be the identity in GL(F). Define 
r 

the morphism y : G x M —> Hom(F, F) by y(g> P) = g°P + 1- • Let 
r 

D = y 1(GL(F)); then D i s open and contains {0} x M. Define the local 

action <j> : D —> M of G on M by c{>(g, p) = P°(g°P + I - p ) ^ • <(> i s a 
r 

local action for ; 

CD cK-o-, p) = p°(p + i F )
_ 1 = P 



(2) <f>(g, ;<Kh,. PO). = <Kh,� p)o(g.o*(h,,.P). + i F ) _ J -

= p°(hop + I p)
 1(g 0p 0 (hop + i p ) 1 + I p)

 1 

= po((gop0(ho-p + I F )
_ 1 +• I F)(hop + I F ) ) - 1 

- p ° ( g ° p + hop + r F )
 1 

= P°((g + h ) o p + i p )
 1 

= <{)(g + h, p) . 

§5 Infinitesimal Actions 

Let L be a Banach Lie algebra. 

Definition (5.1) A (left) action of L on M i s a Lie algebra homomorphism 

6 : L —> V(M) satisfying the condition that the evaluation map 

(x, p) —> 8(x.)(p) i s a vector bundle morphism from the t r i v i a l vector 

bundle L x M into T(M). 

Remarks : (1) If L = L(G) for some Lie group G then 0 is called an 

infinitesimal (left) action of G on M . 

(2) If L is f i n i t e dimensional then the evaluation map is 

automatically a vector bundle morphism (Bourbaki [2, Remarque p.140]). 
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Example (5.2) : An infinitesimal group action 

Suppose H i s a real Hilbert space with scalar product ( , ) . 

Let M = H and G be H with the additive group structure of H . Then 

L(G) = H also. Define 6 : L(G) —> V(M) by 6(Y)(X) = 2(X,Y)X - (X,X)Y. 

We show that 0 i s an infinitesimal action of G on M . 

(1) The map e : (Y,X) —> 6(Y)(X) i s a vector bundle morphism 

from L(G) x M into T(M) : e i s obviously a morphism. Let Hom(H, H) 

denote the continuous linear maps from H into H and let ^ e H'om(H, H) 

be the map Y — > G (Y) (X). We need that the map X —> 8 of H into 

x 

Hom(H, H) is continuous, but this i s the case since ( , ) : H x H —> H 

is continuous. 

(2) 0 i s a Lie algebra homomorphism : 0 is obviously linear. 

In order to prove that 0 preserves brackets i t suffices to show that 

[0(Y), 0(Z>] = 0 for any Y and Z in L(G) since L(G) = H is abelian. 

By definition 

[0(Y), 0(Z)](X) = D0(Z)| y(0(Y)(X)) - D0(Y)| x(0(Z)(X)) . 

A short calculation gives D9(W)| (H) =2 (X,Y)H + (H,Y)X - (X,H) and 

substituting this into the above equation with W = Z (and Y) and 

H = 0(Y)(X) (and 0(Z)(X) ) makes the equation identically zero. Therefore 

0 preserves brackets. 



Suppose <j> : D —> M is a local action of G on M . Define 

V"": L (G) —> V(M) by <}>+(v) (p) = T(<j>)(v(e), 0 ) where 0 p is the zero 

vector in T (M) . 
P 

Proposition (5.3) cj>+ is. an infinitesimal action of G on M . 

+ 

Proof : Evaluation map of <j> is a vector bundle morphism : 

We have the following sequence df maps 

L (G) x M —> L (G) x G x. M — ^ % . T D — > TM 

(v, p) > (v, e, p) > (v(e), 0 ) > T(<^)(v(e), 0 ) 

where *£ i s the t r i v i a l i z i n g vector bundle isomorphism (v, g) —> v(g) 

of L (G) x G into T(G) and y is the zero section. The fact that the 

evaluation map i s a vector bundle morphism then follows from the fact that 

6 and T(<f>) are. 

(j)**" is a Lie algebra homomorphism : 

t}>
+ i s obviously linear and therefore i t remains to show that i t 

preserves brackets. Let p e M, suppose (g, p) E D and <f>(g, P) = Q » 

then i f h e D Pg ^ fl D q we have (h, q) = (h, <f>(g, p)), (hg, p) and 

(g, p) e D which implies <j>(h, g) = <K'h> c}>(g, p)) = tj>(hg, p) by 

Def. (4.1) (2). This means $q = c})
P

<>R(g) on the open set D^" 1 H D q 

containing e which implies T(cj>
q

) = T(<j>P) °T(R(g) ) on T(D Pg - 1 Tl Dq) 

and that T £ ( G ) C T(D Pg - 1 H D q). Then for v e L (G) we have 



4>+(v)(<j>P(g)) = <j>+(v)(q) = T(<J>)(v(e), Oq) 

= T(<j>q)(v(e)) = T(<j,
P

)oT(R(g))(v(e)) = T(<j>P) (v(g)) 

which implies that v and 4>+(v) are <{>P-related vector fields. Then 

[v, v'] i s <f>P-related to [<)>+(v), <j)+(v')] (Bourbaki [ , 8.5.6 p.17]) . 

Then <{>"*" i s a Lie algebra homomorphism for 

<f>+([v, v*])(p) = * + ( [ v , v'])(<J>P(e)) 

= T(<j>P)([v, v'](e)) 

= [<J>+(v), <J>+(v')]0f>P(e)) 

= [$ + (vT, <j»-+(v')T(p)' 

where p was an arbitrary point of M. This completes the proof. 

ty+ i s called the infinitesimal generator of <j> . If an infin i t e -

simal action 8 of G on M i s equal to <f>+ for some local action ty 

then 0 is called generating. 

Example (5.4) Let ty be the local action considered in Example (4.4). 

Let X e L(G) = Hom(E, F). Then 

cp+(X)(p) = T(«J,)(X(0), 0 p) 

d_ 
dt 

d_ 
dt 

<J)(tX, p ) 

t=0 

p o ( t X ° p + I ^ ) - 1 = - p ° X ° p 

t=0 • 
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§6 The Infinitesimal Graph 

Let 6 : L(G) —> V(M) be an infinitesimal l e f t action and l e t 

:Pg : G x M —> G and p^ : G x M —> M be the canonical projections. 

Define f from p *T(G) into ' p *T(M) by 

f ( g j m ) ( X ( g ) ) = 6(X)(m) 

where X(g) is the value of X e L(G) at g . (See §2 for definitions of 

p *T(G) and p *T(M) ). We have f(X(g), 0 J = ( 0 . 9(X)(p)) and f i s 
\> W P 6 

a vector bundle morphism since the evaluation map (X, p) —> 6(X)(p) was 

assumed to be a vector bundle morphism of L(G) x M into T(M). Then 

prop.(2.1) implies that the graphs of the .f ̂  ^ , 

t(X(g), e(X)Cp)") : p e M }., are the fibers of a subbundle F f of 

T(G) x T(M). F f is called the infinitesimal graph of 9 . 

Proposition (6.1) F f is an integrable subbundle of T(G) x T(M) . 

Proof : Consider the family of sections ^x^XeL(G) °^ ^ where 

? x ( g . P) = (X(g), e(X)(p)). Then 

(1) by definition of F^ the set {C^(g> P^xeL(G) "*"S tota-'-

i n the fiber F^ above (g, p) in F^, and 
(g,p) 

(2) i f (X, Y) is any pair of elements of L(G) and i f 

(g> P) e G x M then 

[ ? x , C Yl ( g . P) = ([X, Y](g), [9(X), 6(Y)](p)) 

= ([X, Y](g), 6([X, Y](p» 
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since 0 i s a Lie algebra homomorphism. This shows £y](g, p) e 

and the Theorem of Frobenius (1.5) implies F^ i s integrable. 

By the definition of integrability there is a fo l i a t i o n Y of 

G x M such that T(GxM, Y) = F £ . 

Proposition (6.2) For : g e G, let R(g) be the morphism of G x M into  

i t s e l f given by R(g)(h, p) = (hg, p), then R(g) i s also a morphism of 

Y into Y where Y is the foliation defined by any infinitesimal action 

9 of G on M . 

Proof : T(R(g))(T ( h j p )(GxM, Y)) 

= T(R(g))({(X(h), 0(X)(p) : X e L(G)» 

= {(X(hg), 9(X)(p) : X e L(G)} 

= T(hg,p) ( G X M> Y ) 

and prop.(1.4) implies that R(g) is a morphism of Y into Y . 

Remark : Since R(g) i s a diffeomorphism i t takes a maximal connected 

leaf of Y diffeomorphically onto another maximal connected leaf of Y . 

The next proposition explains the name "infinitesimal graph". 

Proposition (6.3) If $ i s any local l e f t action with domain D and  

infinitesimal generator (f>+ then the morphism (j>P : g -—> <}>(g, P) of D P 
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into M i s an integral (Def. (2 .2 ) ) of f (where f is defined as above  

with 8 = cj> ) . Also the graph of is a leaf containing (e, p) of the 

foli a t i o n Y and the morphism : Y —>. G given by ^pCg* P) =

 g i s a 

local diffeomorphism at each point of Y . 

Proof -: -Let X e L(G) . -Then . 

T (4>P)(X(g)) = T (4>P)°T (R(g))(X(e)) 

= Te(<j>-
P

oR(g))(X(e).) 

= T e ( < ^
( g , p ) ) ( X ( e ) ) 

= *+(X)(Mg, p)) . 

Hence T <|>P = f. j r ), N. and so d>
P is an integral of f . The fact that 

g (g,<f>
p

(g)) 

the graph of <J)P i s a leaf containing (e, p) follows from prop. (2.5). 

Let (g, p) be any point in Y . Then ir^ is a local d i f f eomor-

phism at (e, p) because N^ = {(h, <j)p(h)) : h e D P) i s an open neigh-

bourhood of (e, p) i n Y mapped diffeomorphically onto D P by ir^ . 

Now R(g)(Np) is an open neighbourhood of (g, p) in Y by the remark 

after prop. (6.2) and -nn is a local diffeomorphism on R(g) (N ) which 
Lr P 

completes the proof. 

We now show that two local actions with the same infinitesimal 

generator coincide in a neighbourhood of {e} x M . We need a lemma. 



Lemma (6.4), If an infinitesimal action 8 of G on M i s generating  

then,the foliation Y defined by the infinitesimal graph of 0 i s a  

Hausdorff manifold. 

Proof : See Palais [7, Theorem VIII, p.44]. 

Note : Palais' deM-niL't*ion^of-'leaf--*-di-f-fers"-slightlyfrom'ours; 

Let <j> and ty be local actions of G on M with domains 

and .respectively. Let be the connected component of e in 

D?'- fi D P , then D =• (J? D x. (p) i s an, open neighbourhood of {e} x M 
* V P'EM P 

i n G x M (Palais [7, Theorem 1, p.32]). 

Uniqueness Theorem (6.5) If ty and ty have the same infinitesimal  

generator 8 then ty and ty coincide on D . 

Proof : By prop.(6.3) both ty^ and ty^ are integrals of f (where f 

is defined as i n prop.(6.3)). Let A C be the set of points on which 

<J>P and ty^ agree. A i s nonempty since <}>P(e) = ty^(e) = p . Prop. (2.3) 

implies that A i s open. Let Y as usual be the fol i a t i o n defined by the 

infinitesimal graph of 8 . A i s closed in since A = $ ̂ (A) where 

$ i s the morphism from into Y x Y given by $(g) = (<|>P(g)> ^ ( g ) ) 

and A i s the diagonal i n Y x Y which i s a closed set since Y i s 

Hausdorff (Lemma (6.4)). Then A = D since D i s connected. 

P P 



§7' Existence Theorem 

We now give necessary and sufficient conditions on M for an 

infinitesimal action of G on M to be generating. 

Theorem (7.1) A necessary and' sufflcient''condition'that an, infinitesimal  

action 8 of G on M is generating i s that the foliation defined by the  

infinitesimal graph of 9 is a Hausdorff manifold. 

Proof : This theorem i s proven in Palais [7, pp.52-58] for f i n i t e 

dimensional M . The same proof works i n i n f i n i t e dimensions. A weaker 

theorem giving sufficient (but not necessary) conditions for 9 to be 

generating i s proven i n Bourbaki" [-2V do-r.'S','- p-.4«84-]*.~ 

Example (7.2) : Local action generated by an infinitesimal action 

Consider the infinitesimal action defined i n Example (5.2). 

Keeping the same notation, let exp : L(G) —> G be the exponential map, 

then exp = id. If X e V(M), l e t 6 denote the local one-parameter 

X,t 

group defined by X . Now i f $> i s a local action of G on M such that 

(J)* = 9 then <f>(tY, p)
 =

 <Kexp tY, p) = 6 + f . (p) by the uniqueness 

T \*-) jt 

theorem for d i f f e r e n t i a l equation and definition of <f>+ . Therefore in 

order to find the local action <j> corresponding to 9 we must find the 

local one-parameter group corresponding to 0(Y). To shorten notation we 

w i l l denote (p, p) by p and (p, p)(p, p) by p for p e H . Now 

we have 
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V ) , t

( p ) = 

1 - 2t(p, Y) + t Z(p, p)(Y, Y) 

for 

( 1 ) 6e(Y ) ,o ( p > * P 

( 2 ) d F ^ . t ^ = 0 ( Y ) ( V Y ) , t ( p ) > 

Proof of (2) : We have 

and 

^ V ) ' t ( p >
 = { r - 2 t ( p , Y ) + t

2 p 2 Y 2 } 

+ {2(p, Y) - 2tp 2Y 2} . • 2 V , 
+ o o o o IP - tp Y} 

{1 - 2t(p\ Y) + t p T J 

6 ( Y ) ( 6 e ( Y ) > t ( p ) ) o- 2 { 6 0 ( Y ) f t ( p ) } ( 6 6 ( Y ) f t ( p ) f Y) 

~
 (

V ) , t ( p ) ' 6 e ( Y ) , t ( p ) ) Y 

= 2 / P-tp 2Y V 

l 1 - 2t(p, Y) + t 2p 2Y 2 / 

P - tp"Y 

1 - 2t(p, Y) + t 2p 2Y 2 

, Y 

{1 - 2t(p, Y) + t 2p 2Y 2} 2 

(p - tp2Y, p - tp2Y)Y 

= 2 { p - tp 
M l - 2t(p, Y) + t 2p 2Y 2} 

{1 - 2t(p, Y) + t 2p 2Y 2} 
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Comparing these two equations we see that (2) is true.. Let 

D = |(Y, p) e G x M | 1 - 2(p, Y) + (p, p)(Y, Y) t 0 

D i s open and contains {0} x M . Finally define <j> : D —> M by 

A fy T>) = P - (P>- P> Y -
n Y ' P ; 1 - 2(p, Y) + (p, p)(Y, Y) * 

We complete this chapter with a discussion of a special type of 

^infinitesimal .action. 

§8 Uniform Infinitesimal Actions 

Let 0 : L(G) —-> ~V(M) be an infinitesimal l e f t group action and 

be the maximal connected leaf through (e, p) of the f o l i a t i o n Y 

defined by 0 . TT^ : Y —> M is the morphism given by ^gCgj p) = 8 • 

Definition (8.1) 0 is called a uniform infinitesimal (left) action of G 

on M i f there exists a connected neighbourhood V of e i n G such that 

for each p e M the connected component containing (e, p) i n 

E fl rr ^(y) i s mapped one-to-one onto V by ir-, . V i s called a 

uniform neighbourhood for 0' . 

Theorem (8.2) Each maximal connected leaf E of Y is a covering space  

for G with covering map TT . = TT^| i f and only i f 0 i s uniform. 



Proof : Suppose- 8 is uniform. Let V be a uniform neighbourhood. We 

hav.e to show that for each g c G there exists an open neighbourhood W 

'such that T T ̂"(W) i s a disjoint union, of open sets in- E- , each of which 

i s mapped diffeomorphically onto W by TT . We f i r s t show that TT(E) = G : 

Let (g, p) e E , then by prop.. (6.2), R(g "S-(E). = E^ since. 

R(g - 1)(g, p) = (e, p)~ and- TT(E)- =• ffoR-(gY(r ) = R(g)°TT_(E ) . So i f 

P 13 P 
TT (E ) = G then TT(E) = G also. This w i l l be proven by showing that for 

G p 

every positive integer n ; V n CZ TT (E ), then T r 0(E ) w i l l equal G 

Cr p V J p 

since any neighbourhood of e in a connected group generates the group. 

Since V i s a uniform neighbourhood for 8 this i s true for n = 1 . 

Assume now that V CT . 7 r_(E ), we w i l l show that V C nn(T. ) also. 

(j p b p 
> n-l' 

Let g be any point of V then by the induction hypothesis there exists 

q-e M such that (g, q) e E P . By prop.(6.2), R ( g _ 1 ) ( E P ) - E Q . Now 

V C T G(£q) since V i s uniform and so V CZ TrG°R(g~'
L) (E p) = R(g

_ 1) 0 T r

G(^p) • 

This means gV C TT„(E ) for each g e V , i.e. V CL TT_(E ) . 
O p b p 

Now l e t g be any point of G . Let U be a symmetric connected 

2 

neighbourhood of e in G such that U C V, then W = Ug i s a 

neighbourhood of g . We w i l l show that TT ̂ (W) i s a disjoint union of 

open sets in E , each of which i s mapped diffeomorphically onto W by 

TT . Since Tf(E) = G we have TT (̂W) i s nonempty. Let C be any 

component in E of TT 1(W) = ir ̂ "(Ug). If (h, s) is any point of C then 

h e Ug which means gh 1 e U 1 = U and Ugh * C D D C ' V , This implies 

that Ugh i s a uniform neighbourhood for 8 since V was. Prop. (6.2) 

gives R ( h _ 1 ) ( E ) = E G since R(h - 1)(h, s) = (e, s) and RCn" 1)(C) is the 



component of (e, s) i n ,Eg O iT^CUgh x) . But ;%Q maps .the component 

of (e, s) i n E A Tr~x(Ugh x) diffeomorphically onto Ugh x since 
s G 

_1 

Ugh i s a uniform neighbourhood which means IT maps C diffeomorphi-

c a l l y onto R(h) (Ugh x) = Ug and therefore the pair (E, TT) i s a 

covering space for G . 

Conversely suppose TT I : E, —> G i s a covering map. Let V 

q 

be any simply connected open neighbourhood of e . Then the component 

containing (e, q) i n ir ~*"(V) H E" i s a covering space for V and 
G q 

therefore must be mapped diffeomorphically onto V . 

We w i l l need the following theorem i n Chapter 3 . 

Theorem (8.3) I f G i s simply connected and M i s a Hausdorff manifold  

then a uniform i n f i n i t e s i m a l l e f t action 9 : L(G) —> V(M) generates a  

global action of G on M . 

Proof : By the above theorem each leaf E i s a covering space f o r G and 

since G i s simply connected ^QIJ- : E — > G i s a diffeomorphism. For 

p e M denote t h i s d i f feomorphism of E onto G by TT? • As usual denote 

P G 

by f, the vector bundle morphism from Pg*T(G) into p^*T(M) induced by 

0 , and by Y the f o l i a t i o n of G x M defined by the integrable subbundle 

F f : Define <J>
P : G —> M to be <f>P(g) = * o (Tr P) - 1(g) where TT m : Y —> M 

i s TTM(g> m) = m. F i n a l l y define tj> : G x M —> M to be (|>(g, p) = <j>P(g). 

We w i l l show that <j> i s a global group action with i n f i n i t e s i m a l generator 
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G . Let v E L ( G ) . Note that each cj>P is an integral for f since 

T((j>P)(v(g)) = TCTr^oTCTT^^CvCg)) 

= T(TT M ) (v(g), f n , (V(g))) 

�(g,o£) (g)) 

= f n (v(g)) as ( T r P ) _ 1 ( g ) = <j>P(g) . 

(g,*P(g)> 

ty is a global action : 

(1) ty(e, p) = TT m° ( T T P )
 1(e) = Tr M(e, p) = p since (e, p) is 

the unique point in E^ with f i r s t component equal to e . 

(2) Show ty(g, ty(h, p)) = ty(gh, p) for a l l g, h e G and p E M. 

Define ty-^(g) = <Kg> <J>(h, p)) and = "f^S*1, P) • B y t' i e definition of 

ty , the graph of ty^ is p) a n c* t^ i e g r aPh of ty^ is 

R(h _ 1)(E p) = l since R(h _ 1)(h, ty(h, p)) = (e, <j>(h, p)). Then since 

^ K h j p ) i g o n g _ t o _ o n e o n E ^ ^ ^ we have <f>(g, <f>(h, p)) = tyigh, p). 

We now show that ty : G x M —> M i s a morphism. For p E M , 

define 

P f 

A = < g E G : there exists some open neighbourhood U 

of g and some open neighbourhood V of 

p such that ty i s a morphism on U x V j- . 
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(a) A F contains e and'therefore Ap £ 0 ' . 

Let p : M —> M be the identity. By prop. (2.6) there exists 

a connected open neighbourhood U x V of (e, p) in G x M and a morphism 

if) : U x v —> M such that for a l l m e V the morphism. i p m : g — > i|>(g, m) 

is-an integral for f with i|>m(e") = p(m)- = m- .» <j>™ is- also an integral for 

f on U x v with <J>m(e) = i^ m(e). . Since- M i s Hausdorff and U i s 

connected i t follows, just as in the proof of theorem (6.4) using the 

uniqueness of integrals, tHat <j>m = ^ m on U ; i.e. § = on U x V 

and A? . contains e . 

(b) A P is open i n G by definition. 

(c) A? i s closed in G .• 

Let g e A P , by (a) above there exists a connected neighbourhood 

U x V of (e, <J>(g, P)) such that <}> is a morphism on U x V . We denote 

<|> by g on U x v to emphasize that i t i s a morphism. Furthermore we 

assume U = U x . Since h —> (j>(h, p) i s an integral, and so in particular 

continuous, there exists a neighbourhood N of g such that c|>(N, p) CI V. 

Let h e N f\ Ug H A? ; h exists since g e A P and N O Dg i s a 

neighbourhood of g . By the definition of A P there exists a connected 

neighbourhood x of (h, p) on which <j> i s a morphism and since 

<Kh, p) e V we can assume (shrinking i f necessary) that <f)(h, V^) C V . 

Define y : Uh x V x —> M by y(k, m) = 6(kh~ 1, <J>(h, m)). y i s a morphism 

on Uh x since i t is a composition of morphisms; y = go(R(h x) x . 

Now for m e V^, we have the morphism ym : U..J, —-> M given by 
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y m(k) = y(k, m) with y(h, ro) = -<j)(h, m) . We w i l l show that y m i s an 

integral for f and then (as in the proof of (a)) since <j>m i s also an 

integral with the same value at h, <f>m w i l l equal y m and <J> w i l l be a 

morphism on Uh x . Let g m : U —> M be the morphism defined by 

B m(k) = B(k, m). Since g = ty on U-x V we: have g m = <f>m on U . Let 

X e L(G), to show that y is <an integral'we need that 

T (y m) (X(g)) = f m (X(g).) = . e(x.).(.Y

m(g)) . 
g (g,Y (g)) 

We have 

T ( Y

m)(X(g)) = T ( B ( | , ( h' m )oR(h" 1))(X(g)) (by def. of y) 
o o 

= T ( B < | ) ( h' m ))(X(gh" : i :)) (s'ince X e L(G)) 
• gh" 1 

= 8 ( X ) ( ^ h ' m ) ( g h
_ 1 ) ) 

(since B* ( h' m ) = * K h ' m ) i s an integral of f ) 

l ( X ) ( B *
( h ' m ) o R ( h - 1 ) ( g ) ) 

i(X)(y m(g)) 

and so y m i s an integral of f . Therefore ty is a morphism on Uh x 

and h e Ug implies g E U \ = Uh , i.e. (g, p) E Uh x and g E A P 

showing that ' A P = A P . Since G is. connected (a), (b) and (c) imply 

that A P = G . As p was arbitrary ty is a morphism on G x M . 

It remains to show that e i s the infinitesimal generator of ty. 
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Let X e L(G), then 

Te<j>
P(X(e)) = f: (X(e)) (since <j-P is an 

(e,(j)P(e)) integral for f) 

6(X)(<J,P(e)) = 0(X)( P) 

showing that 9 is- the- infinitesimal- generator-of? <J> and completing 

the proof of the theorem. 

The proof that <j> i s a morphism is essentially the same as the 

proof showing that the flow of a vector f i e l d i s a morphism. (Cf. Lang 

[5, p.80]). 

Proposition (8.4) Let ty : G x M —> M be a global l e f t action of G 

a Hausdorff manifold M. Let X e L(G) and {6t} be the one-parameter  

group corresponding to <j>+(X). Then 

S t(p) = <J)(expGtX, p) for a l l p e M 

Proof : <J)(expG0-X, p) =
 A ( e , p) = p 

and 

• — <J.(expGtX, p) = jj^ <j)(expG(s+t)X, p) 
s=0 

on 

d 1 (f>(expGsX, c()(expGtX,. p)) 
s=0 

since .ty is a global action 

ds 

+ • + 
= ty (X) (ty (exp GtX, p)) by definition of <j> 

The result then, follows from the uniqueness theorem- for- d-if"ferential equations. 
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Chapter 3 

Connected Lie.Transformation Groups 

Let D(M) be the group of diffeomorphisms of the manifold M .. 

A Lie group G is- called a- Lie- transformation group of M;> if-the-

underlying group of G is a subgroup of D(M) and i f the map 

(gj P) —> g(p) of G x M into M i s a morphism. Of course one could 

give G the discrete topology and this would automatically be true. A 

nontrivial example is the group I(M) of isometries of a f i n i t e dimen-

sional Riemannian manifold, which is a Lie transformation group with 

respect to the compact open topology. Further examples of Lie transforma-

tion groups can be found in H. Chu and S. Kobayashi [3]. The main result 

of this chapter is to show that there i s a one-to-one correspondence 

between connected Lie transformation groups of M and certain subalgebras 

of the Lie algebra of vector fields V(M) where M i s a Hausdorff 

manifold. In this chapter M w i l l always denote a Hausdorff manifold. 

§9 The Image of the Infinitesimal Generator of a. Lie Transformation Group 

Let G be a Lie transformation group of M . Then there is a 

global action of G on M with infinitesimal generator 

(j) : L(G) —> V(M) . We now examine the image of (j> i n V(M). Let 

exp : L(G) —> G be the exponential map. 
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+ Proposition (9.1) The image <f> (L(G)) consists of complete vector fields 

and the one-parameter group corresponding to <f> (X) is exp tX . 

Proof : exp tX .is a one-parameter group and 

d_ 
dt 

exp tX(p) = cf, (X)(p) 
t=0. 

The result then follows from the uniqueness theorem for di f f e r e n t i a l 

equations. 

+ 

Proposition (9.2) <f> is injective. 

Proof : If <j,+ (X) = 0 then 
d_ 
dt 

exp tX(p) = 
t=s 

dt 
t=0 

exp((s + t)(X)(p) 

d_ 
dt 

t=0 
exp tX(exp sX(p)) 

= <j> (X)(exp sX(p)) ' 

= 0 
exp sX(p) for a l l p e M . 

This means exp tX(p) = p for a l l t e R and a l l p E M, i.e. exp tX = id 

which implies that X = 0 since exp has a radius of i n j e c t i v i t y at 0 in 

L(G). 

M 

Proposition (9.3) $ (L(G)) 'possesses a Banach Lie algebra structure such  

that the evaluation map (Y,. p) —> Y(p) is a vector bundle morphism from 
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the t r i v i a l vector bundle <J>-' (L(G) ) x M into T(M) and 

(j>+ '• L(G) —> <j>+(L(G)) i s a Banach Lie- algebra isomorphism. Furthermore, 

-this Banach space structure is necessarily unique. 

Proof : By prop. ( 9 . 2 ) <j>+ : L(G) —> <j>+(L(G)) is a Lie algebra isomor-

phism and hence induces a Bariach Lie algebra structure on <f>"*"(L(G)) making 

+ + 
<J> a Banach Lie algebra* isomorphism; Define 3 : <j> (L(G)) x M —> L(G) x M 

H — 1 

by 3(Y, p) = ((<f> ) (Y), p) , then 3 is easily seen to be. a vector bundle 

morphism. Now prop. ( 5 . 3 ) gives.that the map a : (X, p) —> <j>+(X) (p) of 

L(G) x M —> T(M) is a vector bundle morphism. The evaluation map 

+ 

(j> (L(G)) x M —> T(M) is equal to a°3 and therefore is a vector bundle 

morphism. The uniqueness of the Banach space structure comes from the 

following proposition. 

Proposition ( 9 . 4 ) Let E be a vector bundle over M and l e t V be a  

vector space of sections :of E . If V admits two Banach space structures  

such that the evaluation map (X, p) — > X(p) of V x M. into E i s 

continuous with respect to both then the identity map from V into V i s 

a homeomorphism, i.e. the two norms are equivalent. 

Proof : Let and denote V with respect to the two topologies 

and let e i : x M —> E ( i = 1, 2) be the evaluation maps. By the 

closed graph theorem, i n order to show that id : ••—-> V 2 is continuous, 

i t i s enough to show that the diagonal i s closed in x . Let 

1 2 

{ ( X ^ , X r) } be a Cauchy sequence in the. diagonal of x V^, i.e. 

1 2 1 2 
X„ £ V,, X E V„ and X = X . Since V, x V. is complete there exists 
n l n z n n . 1 2 
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a limit point (X, Y) of this sequence; but for a l l p e M we have 

. X(p) = lim e^X*, p) = lim X*(p) 
n-*» n-*» 

= lim X 2 C p ) 
n 

n-x» 

= ,lim-e2.(X
2, p) = Y(p) . 

n-*=° 

Therefore X = Y and the diagonal is closed in x . Interchanging 

and V 2 above gives that id : —> i s continuous also and id 

is a homeomorphism. 

If Y is a complete vector f i e l d then denote by Exp tY, the 

one-parameter group generated.,by Y. Let <|>. : G x M —> M be the global 

action of a Lie transformation group G. Prop.(9.1) gives that 

exp_(X) = Exp(<j>+(X)) and this implies the following result. 

Proposition (9.5) Exp i s injective on a neighbourhood of 0 i n A +(L(G)) 

in the topology induced on <|)+(L(G)) by <j>+ . 

§10 Banach Lie Algebras of Complete Vector Fields 

We now consider when a Lie subalgebra L of V(M) is the image 

of the infinitesimal generator of a connected Lie transformation group. In 

view of propositions (9.1), (9.3), and (9.5) we only consider Lie subalgebras 

L of V(M) which satisfy the following conditions . 

(A) L consists of complete vector f i e l d s ; 
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(B) L has a Banach Lie algebra structure, (necessarily unique 

by Prop. (9.4)) such that ; 

(Bl) the evaluation map ev : (X, p) —-> X(p) is a vector bundle 

morphism from the t r i v i a l bundle L x M into T(M). 

(B2) there exists an open ball- B̂ (O-) of. radius r at 0 such 

that Exp : L —> D(M) is infective on B r(0). 

•Proposition (10.1) If L is f i n i t e dimensional and satisfies (A) then 

condition (B) is true also. 

Proof : Since L is f i n i t e dimensiional i t has a natural Banach space 

structure. A proof of (Bl) is in Bourbaki [2, Remarque p.140] and a proof 

of' (B2) is in Loos '[6, p. 182]. 

The rest of this section w i l l be devoted to proving the following 

theorem. 

Theorem (10.2) If M is a Hausdorff manifold and L is a Lie subalgebra  

of V(M) satisfying conditions (A) and (B) then there exists a unique  

connected Lie transformation group G with natural global action 

(J) : G x M —> M such that <j>+ is a Banach Lie algebra isomorphism of 

L(G) onto L. 

Remark : Palais [7] f i r s t proved this theorem in the case where L and M 

are f i n i t e dimensional. Using a different method, Loos [6] extended this 

result to the case where L i s f i n i t e dimensional and M i s a (not 
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necessarily Hausforff) Banach mainfold. The proof given here i s similar to 

Palais' . 

In order to prove Theorem (10.2) we need the following theorem, 

which i s of interest in i t s e l f . 

Theorem (10.3). If II is a Hausdorff manifold and L is a Lie subalgebra 

of V(M) satisfying condition (A) and admitting a Banach Lie algebra 

structure such'that (Bl) js true (but not necessarily (-B2)) then there exists  

a simply connected Lie group G with L(G) = AL and a global action 

ty : G x M —> M such that ijj +(L(G)) = L, ty + is a continuous linear map  

into L, and for C e AL ; ty+(C) = C(l). 

Proof : By theorem (3.1)-there exists a Lie group with Lie algebra AL. 

Let G be the universal covering group (see Bourbaki [2, p.113]) of this 

group ; then L(G) = AL. We have an infinitesimal l e f t action, which we 

c a l l ty+, of G on M given by the following sequence of vector bundle 

morphisms, 

ev 
AL x M -—> L x M > T(M) 

(C, p) > (C(l), p) > C(l)(p) 

where ev i s the evaluation map which is a vector bundle morphism by 

condition (Bl). The map ty+ : C —•> C(l) i s continuous by theorem (3.1). 

The existence of the global action ty w i l l follow from theorem (8.3) by 

showing that ty+ is a uniform infinitesimal l e f t action. 
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By condition (BI), ev : L x M —> T(M) is a vector bundle 

morphism. Then the global version of the existence theorem for d i f f e r e n t i a l 

equations depending on a parameter (in this case the parameter space is L) 

implies that the map (t, X, p) —> Exp(tX)(p) from (R x L x M into M 

i s a morphism. The fact that this flow is defined on a l l of IR follows 

from condition (A) . 

Now let B (0) be an open b a l l about 0 in AL on which, exp-
p G 

is a dif feomorphism. We w i l l show that i|> i s uniform on V = exp^(B (0)) 
G p 

P + -1 
Define, for each p e M, the map 6^ : g —> (g, ExpOJi (exp ? (g)))(p)) 

G 

from V into G x M . Let £ p be the maximal connected leaf containing 

(e, p) i n the foliation Y of G x M defined by the ••infinitesimal graph 

of 4 . For X e L(G) -and p e M define 

aX ! t ~~~> ( e xPG^ t X)» Exp(t^ +(X)(p)) 

from IR into G x M . Now 

T(a P) 
d 

Ut s 
da 
X 

dt 

dt 
t=0 

ex Pg(tX)expg(sX), ~ 
Exp (tip (X))(p) 

t=s 

X(expg(sX) , i|»+(X) (Exp(si|; +(X)) (p)) 

belongs to T(G x M, Y). Then prop.(1.4) implies that the image of a P 

i s in Z p since a P(0) = (e, p) and IR i s connected. In particular i f 
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g•= expx(X) for X e. B (0) then-
^ P 

•a P(l) = (expg(X), Exp(./(X))(p)) 

= (g, Exp(4 )

+(exp~ 1(g))(p)) 

which shows 'that S P ( V ) CT ^p * 

Denote by V P the image of V under 5 P . The "projection" 

T T g : Y — > G obviously maps V P onerto-one onto V . In fact we now show 

that V P is the component containing (e, p) in TT^(V) fl E . We have 
b P 

(e, p) = 6 P(e) e V P . Suppose (g, q) i s any point in V P and l e t U 

be ah open set in E containing (g, q) on which TT~ i s a diffeomoephism 
P G 

(prop. (6.3)). Let W be'ah- open-set in' V ft ir~(U')' cO'nta'ihl'ri'g g" , then 

TT~^ : Tr~(U) —> U takes W onto an open set containing (g, q) and 

-1 
Ĝ irft(U) 

(W) C V P since TT-1 = 6 P on W . This proves that V P 

i s 

open. In order to show that V p is the component containing (e, p) in 

n>,̂ (V) H E i t remains to prove that V P is closed in ir=^(V) . Let 

Or P \J 

(h, m) be any point in irx^(V) D E such that (h, m) i V P . Now since 
G p 

IT- i s one-to-one on V P there exists a unique point in V P with f i r s t 

component h, say (h, n). E^ is Hausdorff since i t i s an open submani-

fold of Y and therefore we can find disjoint open neighbourhoods A and 

B of (h, m) and (h, n) respectively which TT~ maps diffeomorphically 

onto the same neighbourhood of h ; this i s possible since Tr= is a local 

diffeomorphism. By restricting A and. B further we can assume that • 

A C. V P and i t then follows that B fl V P = 0 since TTX is one-to-one on 
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V1' . This completes the proof that if/ i s uniform and proves the theorem. 

Proof of Theorem (10.2) 

We keep the notations used above. L i s assumed to be a subalgebra 

of V(M) s a t i s f y i n g conditions (A) and -(B); 

Consider the i d e a l ker if) = { C e L(G) : C ( l ) =0} . i n L(G) 

which i s the kernel of the map ip + : L(G) — > V(M); i t i s closed i n L(G) 

since ker if; + = C\ (if;+) x ( 0 ) where, ifj~|~ i s the continuous l i n e a r map 

peM p P P 

X — > ij; +(X)(p) from L(G) i n t o T p(M) ( 0 p denotes the zero vector i n 

Tp(M) ). Therefore ker ifj + i s a Banach L i e subalgebra of L(G) . Let 

L' = j C £ L(G) = AL : C(t) = tX for some -X e L 

then L' i s a closed vector subspace i n L(G) which complements ker if; , 

i . e . ker if)+ s p l i t s i n L(G) and we i d e n t i f y L ( 5 ) with ker ifj + x L 1 . 

For g £ G, denote by if; the d i f feomorphism p —> iKg, P) of 

M in t o M. Let 6 : G — > D(M) be the group homomorphism g —> ifj . Let 

H = ker 6 , then we have a group isomorphism 6 : G/H — > 6(G). We w i l l 

show that H i s a L i e subgroup of G. Condition (B2) gives the existence 

of a open neighbourhood N of 0 i n L on which Exp i s i n f e c t i v e . Let 

A x B C ker if;+ x L' = L(G) be an open neighbourhood of 0 on which exp~ 

i s a d i f feomorphism and such that if)+(A x B) C N. Let h E H f\ exp- ( A x B) , 

G 

then h = expg (C) for some unique C E A x B. Now f o r a l l p E M we 

have 
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P = K » , P) = ^(exp~ CC), p) 

= Exp OJi+(C))(p) Cby prop. (8,4)) 

= Exp (C(l))(p) . 

Since C(l) e N and Exp (C(l)) = id we have C(l) = 0, i.e. C e A x {0} . 

Also i f C e A x {0} then iJj(exp(C), p) = p for a l l p and exp--(C) E H. 

The fact that H i s a Lie subgroup then follows from prop. (3.3) since 

expg (A x {0}) = H H expg (A x B). We also have L(H) = ker if)+ . 

It follows from prop. (3.6) that there exists a connected Lie 

group structure on G/H such that the projectiion p : G —> G/H i s a 

submersion and L(G/H) = L(G)/L(H) = L . Using the group isomorphism 

6 : G/H —> 6(G) we have a Lie group structure induced on 6(G) such that 

6 is a submersion, ker L(6) = ker \p
+, L(6(G)) = L, and 6 is a 

diffeomorphism. With this Lie group structure 6(G) w i l l be denoted by G. 

Define <J> : G x M —> M to be the natural action <j>(g, p) = g(p). Let a 

be the submersion (k, p) —> (6(k), p) of G x M into G x M. Then 

if) = <j>oa and <j> i s a morphism since if) is a morphism and a i s a 

submersion. 

We now show that cf>+ i s a Banach Lie algebra isomorphism. Let 

C e L(G) = AL and p e M, then 

C(l) (P) = if)+(C) (p) 

= T ( e j p ) C ) ( C ( e ) , 0 p) 
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T ( e > p ) ( * o a ) ( C ( e ) , 0 p) 

T ( i d > P ) ^ T e 5 C C ( e ) ) ' V 

<J>+(L(S)(C))(p) , 

i.e. ty+ = <j>+°L(5). • 

+ + 
We see that ty maps L(G) onto L- since ty- maps L(G) onto L 

+ + 
(theorem (10.3)). Since L(6)(kar ip< ) = 0 we have that .-ty is infective. 

The fact that ty+ i s continuous' follows easily from the following; 

(1) ty+ i s continuous 

+ 

(2) L(5) is continuous, surjective and ker L(6) = ker ty 

s p l i t s in L(G) (since 5 i s a submersion). 

It remains to prove the uniqueness of G. Let F be another Lie 

transformation group with the same properties as G and let f3 : F x M —> M 

be the map (f, p) —> f(p). Now exp„ (tX) = Exp (tB +(X)) for X e L(F) 

by prop. (9.1) and therefore since F i s connected i t i s generated by 

Exp (L). Similarly G i s generated by Exp (L) which shows that the 

underlying groups of G and F are the same in D(M). The following 

commutative diagram 

( e W 
L(G) — > L(F) 

exp G e x P p 
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shows that Id from G into F is a morphism and completes the proof of 

the theorem. 

§11 A Banach Lie algebra of complete vector fields which does not generate 

a connected Lie transformation group 

If we have a subalgebra L of V'(M). which satisfies condition (A) 

and admits a Banach Lie algebra structure such that (Bl) i s true but not 

(B2) then prop.(9.4) implies that this L won't admit any Banach space 

structure such that (B2) i s satisfied-. Hence by prop. (9.5), L isn't the-

image of the infinitesimal generator of any connected Lie transformation 

group. 

We now give an example of such an L which, although i t doesn't 

generate a connected Lie transformation group, i s s t i l l enlargeable. Let 

M = disjoint KJ S where is the unit c i r c l e S . Define the vector 
J • , n 

n=l 

f i e l d X by 
n 

xn(P) -

0 i f p e s\ and i ^ n 
P 3 

, t, „l 2irit 
where a is the curve on S ; t —> e 

n 

Let L be the normed vector space consisting of a l l sums 

co co | c | • 
T c X , c e IR, such that Y — — <<*>. If C = J c X E L , define 
tl-, n n n L. n L n n * 

n-1 n=l 
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0 3 c 
i i i i r n 

the norm of C to be | | C | ] = I . We w i l l show that L i s a 
n=l 

Banach Lie algebra satisfying (A) and (Bl) but not (B2). L consists of 

complete vector fields since we have a disjoint union of compact manifolds. 

It is a vector space for 

lc + b I 
MI c X + I b X || = I n n 

' 1 u n n L n n' 1 L n 

|c | |b | 
< oo 

n u n 

i f 7 c X^ and I b X belong to L. Similarly L i s closed under u n n u n n ° J 

scalar multiplication. L i s closed under the bracket operation since 

ll c X , J b X- ] = V c.b.[X., X.] = 0 u n n L n n .L. I i i ' i 

We now give the usual proof that a space of sequences i s complete. 

Let {An} be a Cauchy sequence of elements in L, i.e. given e > 0 

there exists N such that i f i , j > N we have 

M A
1

- A^ll =1 < e 

k k 

where A n = £ ̂ y^k ' ^n P a r t i c u l a r this implies that for fixed k, 
k 

is a Cauchy sequence. Let A^ = lim A^ and A = ̂ A^X^ . We w i l l show that 

A e L and lim A n = A . From above we have 
n-x» 
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for a l l s > 1 and i , j > N , then 

lira 2, = 2, Z—— < °°- f° r a*-*- s > 1. 

k=l k 1=1 k 

Since this i s true for a l l s we have 

k=i k 

But this implies that A - A"' e L which means A = (A - A~*) + A^ e L . 

We also have for j > N , | |A - A~* | | < E ; which shows that lim A~* .= A 

We have now shown that L i s a Banach Lie algebra and i t i s t r i v i a l l y 

enlargeable since i t is abelian. 

It remains to show that the evaluation map ev : L x M —> T(M) 

is a vector bundle morphism. Local coordinates on each of the 's are 
n 

given by the local inverse of the map t —> e^ 1*" . We denote this map 

by l ° 8 n • This induces local coordinates on T(M) and we denote this map 

T 
by i ° 8 n • If TT • T(M) —> M i s the usual projection and i f Z = £ z

n

x

n 

then 

log^(Z(p)) = (log n (Tr(Z(p)), z n) = (log n(p), z n) . 

Denote by Trn ' the continuous linear map from L into R given by 

£ a]Xy_ — > a

n • A local coordinates map at (Y, p) z L x M is given by 

(Y, p) —> (Y, log n(p)) i f , p e SJ . Let Y = £ and W be an.open 

neighbourhood of Y(p) = ev(Y, p) in T CM). Now log^(Y(p)) = (log n(p), y ) 
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and by the definition of the topology of T(M) there exists an open set 

U containing log (p) and an interval B (y ) about y such that 
° . n p n n 

( l o g 1 ) " 1 ^ x B (y )) C W . Let Z = Y z X , i f v bn p •'n ^ . L n n 

( Z , q) e B p / n(Y)' x (iog n)
_ 1(U) C L * M t h e n l l z ~ Y ' l I < p / n which 

implies, \'z^ - y^J v , <~ p,*. whic,.̂ . lrapLi,es,^ lp,ĝ .(-§.CaX).» x~ B̂ .Cy.̂ ),;, which shows 

ev(B , (Y) x TJ) C~ W . Hence ev. i s continuous and these local coordinates 
v p/n — 

ev is given By the map r in the following diagram, 

(Y, p) 2 L _ > Y(p) 

(Y, log n(p)) — — > (log n.(p), TTn(p).) 

and x is a morphism since TT i s . This proves that ev i s a morphism of 

manifolds. It i s a vector bundle morphism since the constant map p — > TT^ 

i s a morphism from U into the space of continuous linear maps from L 

into (R . 

Condition (B2) doesn't hold because Exp doesn't have a radius 

of i n j e c t i v i t y at 0 in L, for Exp X^ = identity for a l l n and 

lim X = 0 . 
n 

n-*» 

Although L doesn't generate a connected Lie transformation group 

theorem (10.3) ensures that.it i s the image of the infinitesimal generator 

of a global l e f t action. 

http://that.it
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