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Abstract

The integrable structure of the three-wave equations is discussed in the set-
ting of geometric mechanics. Lie-Poisson structures with quadratic Hamiltonian
are associated with the three-wave equations through the Lie algebras su(3) and
su(2, 1). A second structure having cubic Hamiltonian is shown to be compati-
ble. The analogy between this system and the rigid-body or Euler equations is
discussed. Poisson reduction is performed using the method of invariants and
geometric phases associated with the reconstruction are calculated. We show
that using piecewise continuous controls, the transfer of energy among three

1



waves can be controlled. The so called quasi-phase-matching control strategy,
which is used in a host of nonlinear optical devices to convert laser light from
one frequency to another, is described in this context. Finally, we discuss the
connection between piecewise constant controls and billiards.
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1 Introduction

The three-wave equations model the dynamics of the amplitudes of three light-wave-
envelopes as they interact through the quadratic response of a nonlinear optical
material. They are also used to model resonant wave interactions in fluids and
plasmas. During the asymptotic reduction from Maxwell’s equations or another
set of primitive equations, one assumes that the wave vectors and frequencies of the
three waves are nearly resonant in the sense that k1(ω1) ≃ k2(ω2)−k3(ω3), and ω1 ≃
ω2 −ω3 for a decay process or the matching conditions k1(ω1) ≃ −k2(ω2)−k3(ω3),
and ω1 ≃ −ω2 −ω3 for an explosive process. Since the wave vectors are functions of
the frequencies, a given set of frequencies may not satisfy the resonance condition
for both frequencies and wave vectors. This restrictive condition is overcome in
order to enhance or suppress the conversion of light from one frequency to another
by controlling the three-wave interaction.

The quadratic three-wave system of ordinary differential equations (representing
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the dynamics of traveling waves for the three-wave PDE) is

dq1

dt
= i(∆k)q1 + is1γ1q2q̄3 , (1.1)

dq2

dt
= i(∆k)q2 + is2γ2q1q3 , (1.2)

dq3

dt
= i(∆k)q3 + is3γ3q̄1q2 . (1.3)

We now explain the notation. First of all, each qi ∈ C , so this is a parameter
dependent system of ordinary differential equations on complex three space, C 3 .
We have chosen the evolution variable to be t here; in an optical wave interaction
this often corresponds to the distance the waves propagate, usually denoted z. The
term ∆k is the amount by which the wave vectors of the three wave envelopes
fail to be in resonance for a given set of three frequencies. Assuming that the
waves propagate nearly collinearly in the z-direction, ∆k is the z-component of the
mismatch among the wave vectors, so ∆k = (k1 − k2 + k3) · ẑ, where ẑ is a unit
vector in the z-direction.

The γi are nonzero real numbers such that γ1 + γ2 + γ3 = 0. They measure
the strength of the nonlinear coupling among the waves. For a fixed choice of the
γj , the choice of signs, determined by (s1, s2, s3) distinguishes between three decay

interactions which have bounded solutions in time and an explosive interaction which
has solutions that blow up in finite time. Choosing γ1, γ3 > 0 and γ2 < 0, the
decay systems are obtained by choosing (s1, s2, s3) to be (1,−1, 1), (1,−1,−1) or
(−1,−1, 1). The explosive system is obtained by choosing (−1,−1,−1).

One of the main objectives of this paper is to discuss some control theoretic
aspects of these equations. To do so, we shall make use of symmetry and reduction
appropriate to these equations. Thus, we first shall review some aspects of this
symmetry and reduction from Alber, Luther, Marsden and Robbins [1998a].

Reduction theory for these equations can be viewed in two useful ways. First, by
means of invariants and second, by viewing the equations as Lie-Poisson equations
for the groups SU(3) and SU(2, 1). More generally, the structure of the n-wave
interaction is related to the family of Lie groups SU(n) and SU(p, q) and their Lie
algebras su(n) and su(p, q). We shall explain both of these views of the equations.

Basic wave interactions of this kind are fundamental in the understanding and
analysis of a variety of phenomena including patterns, symmetry induced instabili-
ties, the Benjamin-Feir instability and many others. The three-wave equations are
closely related to the equations governing coupled harmonic oscillators, tops, and
the rigid body. This is understood by realizing that the three-wave equations are
the complex equations for a resonant three degree of freedom Hamiltonian system.

There is a strong association between the three-wave system and the Euler equa-
tions for the motion of a free rigid body. The Euler equations are realized on a real
subspace of the three-wave equations (see for instance, Guckenheimer and Mahalov
[1992]). Below we write the three-wave equations as an Euler equation associated
with groups SU(3) or SU(2, 1). In this context it is clear that SO(3) as a real
subgroup produces the Euler equations for an appropriate rigid body. We develop
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this analogy further between the real and complex equations, and in doing so the
connection to the n-component Euler equations is made (Manakov [1976]).

The integrable Hamiltonian structure of the three-wave equations is of course
well known; here we explore it from a somewhat novel point of view, namely that of
compatibility between the canonical Hamiltonian and the Lie–Poisson structures.

Using the Lagrangian point of view, the three-wave system can be realized as
a set of Euler-Poincaré equations, while from the Hamiltonian point of view, the
equations are Lie-Poisson. One of the three-wave decay systems is Lie-Poisson for
the Lie algebra su(3), while two of the decay systems and the explosive three-
wave system are Lie-Poisson for su(2, 1). Using the method of translation of the
argument, two compatible Hamiltonian structures are obtained. One is the canonical
Hamiltonian structure embedded in su(3) (respectively su(2, 1)) in a way we will
explain, and it has a cubic Hamiltonian. The other is non-canonical having the
standard left invariant Lie-Poisson bracket and it has a quadratic Hamiltonian.
These two Poisson brackets lead to a recursion relation that is expressed in terms
of Lie brackets, and this recursion relation is the same one that is found using the
Lax pair approach.

Solutions for the integrable three-wave equations and other similar systems are
well known. In our approach below, they are reduced and integrated using a pair
of S1 actions, the canonical Hamiltonian structure and the technique of invariants.
In solving the reconstruction problem, phase formulas analogous to those obtained
for the rigid body (Montgomery [1991]) are obtained. These formulas give the
value of the phase shifts that accompany the periodic exchange of wave action in
resonant wave systems (see for example McKinstrie [1988], McKinstrie and Luther
[1988], McKinstrie and Cao [1993], Alber, Luther and Marsden [1997], Alber, Luther,
Marsden and Robbins [1998a]).

Kummer [1990] treated reduction for the n-degree of freedom Hamiltonian with
resonances. Our approach differs somewhat in that we choose the invariant coordi-
nates for the reduced phase space in such a way that a family of pinched spheres lie
along a vertical axis. These coordinates also produce Hamiltonians that are planes
depending on only two of the reduced coordinates. The choice of coordinates for
the reduced phase space described below provide a particularly simple geometrical
understanding for controlling the dynamics of the waves.

The reduced phase space is a useful setting in which to understand and analyze
control strategies for three-wave mixing in nonlinear optics. Armstrong, Bloember-
gen, Ducuing, and Pershan [1962] proposed that the flow of energy among interacting
light waves could be controlled by modulating the sign of the quadratic nonlinear
coupling constants. These ideas have been particularly useful for converting light
to its second-harmonic frequency in optical waveguides (Fejer, Magel, Jundt, and
Byer [1992]) where the quadratic coefficients are modulated along the direction of
propagation of the waves by periodically reorienting the molecular structure of the
host material. We show below that this so called quasi-phase-matching tech-

nique which is used to convert the light from one frequency to another (Armstrong,
Bloembergen, Ducuing, and Pershan [1962], Fejer, Magel, Jundt, and Byer [1992])
has a simple geometric description. This geometric approach also provides a com-
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plete description of possible control strategies for three interacting light waves and
has been extended to treat more waves.

The general picture developed here is useful for many other purposes, including
the understanding of polarization dynamics as in David, Holm, and Tratnik [1989] or
Akhmediev and Ankiewicz [1997], and perturbations of Hamiltonian normal forms
as in the work of Knobloch, Mahalov, and Marsden [1994], Kirk, Marsden, and
Silber [1996], and Haller and Wiggins [1996]. Notice that this geometric description
generalizes the construction of the Poincaré sphere that is typically used in the
analysis of polarization dynamics (see Born and Wolf [1980] and David, Holm, and
Tratnik [1989].)

In this study of piecewise constant controls on the reduced phase space of the
three-wave equations, a series of generalized billiard problems arises. The locus of
points where piecewise controls are switched between two states, form a boundary
on the three-wave surface at which a generalized reflection can be defined. In certain
cases, these billiards project in a simple and natural way into a plane. This is an
interesting example of the connection between nonlinear controls and billiards. A
discussion of billiards in the context of the reduced three-wave equations is included
in §5.

2 The Canonical Hamiltonian Structure.

We shall first describe a canonical Poisson structure using a γi-weighted canonical
Poisson bracket on C 3 . This bracket has the real and imaginary parts of each
complex dynamical variable qi as conjugate variables. The Hamiltonian for the
three-wave equations is cubic in this setting.

The Canonical Symplectic and Poisson Structure. Writing qk = xk + iyk

and treating xk and yk as conjugate variables, the (scaled) canonical Poisson bracket
is given by

{F,G} =
3
∑

k=1

skγk

(

∂F

∂xk

∂G

∂yk

−
∂G

∂xk

∂F

∂yk

)

. (2.1)

In matrix notation, this reads

{F,K} = (∇F )J (∇K) , (2.2)

where the gradients are standard gradients in R6 (with the variables ordered as
(x1, x2, x3, y1, y2, y3)) and where

J =

(

0 Γ
−Γ 0

)

(2.3)

in which Γ is the 3 × 3 matrix with skγk on the diagonal and zeros elsewhere.
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This bracket may be written in complex notation as

{F,G} = −2i
3
∑

k=1

skγk

(

∂F

∂qk

∂G

∂q̄k

−
∂G

∂qk

∂F

∂q̄k

)

. (2.4)

The corresponding symplectic structure is given as follows:

ω((z1, z2, z3), (w1, w2, w3)) = −
3
∑

k=1

1

skγk

Im(zkw̄k) . (2.5)

The Hamiltonian. The Hamiltonian for the three-wave interaction is

H3 = −1
2∆k

3
∑

k=1

|qk|
2

skγk

− 1
2 (q̄1q2q̄3 + q1q̄2q3) . (2.6)

Hamilton’s equations for a Hamiltonian H are the standard ones written in
Poisson bracket form as Ḟ = {F,H}, or equivalently,

dqk

dt
= {qk,H}. (2.7)

It is straightforward to check that Hamilton’s equations in our case are given in
complex notation by

dqk

dt
= −2iskγk

∂H

∂q̄k

. (2.8)

One checks that Hamilton’s equations with H = H3 coincide with (1.1)–(1.3).

This computation shows the following standard result.

Proposition 2.1 With the preceding Hamiltonian H3 and the symplectic or equiv-

alently the Poisson structure given above, Hamilton’s equations are given by the

three-wave equations (1.1)–(1.3).

Integrals of Motion. In addition to H3 itself, one can easily check that the
following quantities are constants of motion:

K1 =
1

2

(

|q1|
2

s1γ1
+

|q2|
2

s2γ2

)

, (2.9)

K2 =
1

2

(

|q2|
2

s2γ2
+

|q3|
2

s3γ3

)

, (2.10)

K3 =
1

2

(

|q1|
2

s1γ1
−

|q3|
2

s3γ3

)

. (2.11)

These are often referred to as the Manley-Rowe relations. The Hamiltonian with
any two of the Kj are checked to be a complete and independent set of conserved
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quantities in involution (the Kj clearly give only two independent invariants since
K1 −K2 = K3). One concludes that the system is integrable the sense of Liouville-
Arnol’d (see, e.g., Arnol’d [1989] or Abraham and Marsden [1978]).

One can reinterpret the Manley-Rowe relations in terms of momentum maps in
the following way.

Proposition 2.2 The vector function (K1,K2,K3) is the momentum map for the

following symplectic action of T 3 = S1 × S1 × S1:

(q1, q2, q3) 7→ (q1 exp(−iγ), q2 exp(−iγ), q3) , (2.12)

(q1, q2, q3) 7→ (q1, q2 exp(−iγ), q3 exp(−iγ)) , (2.13)

(q1, q2, q3) 7→ (q1 exp(−iγ), q2, q3 exp(iγ)) . (2.14)

Any combination of two of these actions is generated by the third reflecting the
fact that the Kj are linearly dependent. Another way of saying this is that the
group action by T 3 is really captured by the action of T 2.

3 Poisson Reduction

Poisson reduction may now be performed on the three-wave Hamiltonian system
using the S1 symmetries associated with the momentum maps Kk. The Poisson
reduction process considers the quotient bundle C 3 → C 3/T 2 and puts the unique
Poisson structure on the quotient that makes the projection to the quotient a Poisson
map (see Marsden and Ratiu [1998], Chapter 10). The symplectic leaves in the
quotient C 3/T 2, which are the symplectic reduced spaces, will be analyzed using
the method of invariants.

Invariants as Coordinates for Three-wave Reduction. Invariants for the T 2

action (i.e., functions invariant under the T 2 action) are:

X + iY = q1q̄2q3 , (3.1)

Z1 = |q1|
2 − |q2|

2 , (3.2)

Z2 = |q2|
2 − |q3|

2 . (3.3)

These quantities provide coordinates for the four (real)-dimensional orbit space
C 3/T 2. The coordinates, X,Y,Z1 and Z2 are Hopf-like variables (see, e.g., Cush-
man and Rod [1982]) and they generalize the well known Stokes parameters (see,
e.g., Born and Wolf [1980]) to resonant interactions for systems with more than two
complex components.

Reduced Three-wave Surfaces. The following identity holds amongst the in-
variants and the conserved quantities:

X2 + Y 2 = κ4(2s2γ2K1 + Z1)(2s3γ3K2 + Z2)(2s2γ2K2 − Z2) , (3.4)
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where

κ4 =
s1γ1s2γ2s3γ3

(s1γ1 + s2γ2)(s2γ2 + s3γ3)2
.

Trajectories in these reduced coordinates lie on the set defined by this relation.
Using the conservation laws Kk and the definitions of Z1 and Z2, one obtains a
second relation between K1,K2 and Z1, Z2 and either of the coordinates Zj may
then be removed, thereby reducing the number of real dimensions to three. This
procedure allows one to realize the reduced trajectories as lying on the following
invariant set in R3 :

X2 + Y 2 = κ3(δ − Z2)(2s3γ3K2 + Z2)(2s2γ2K2 − Z2) , (3.5)

where

κ3 =
s1γ1s2γ2s3γ3

(s2γ2 + s3γ3)3

and

δ = 2s2γ2K1 + 2s3γ3(K1 − K2).

This relation defines a two dimensional, perhaps singular, surface (also called an
orbifold as in Sjamaar and Lerman [1991]) in (X,Y,Z2) space, with Z1 determined
by the values of these invariants and the conserved quantities; thus, it may also be
thought of as a surface in (X,Y,Z1, Z2). The relations between the invariants and
the conserved quantities may imply inequalities for, say, Z2; for example, these are
useful in determining when the corresponding surface is compact. A sample of one
of these surfaces is plotted in Fig. 3.1. These surfaces will be called the three-wave

surfaces below.

Reduced Three-wave Equations. Any trajectory of the original equations de-
fines a curve on each three-wave surface, in which the Kj are set to constants. These
three-wave surfaces are the symplectic leaves in the four-dimensional Poisson space
C 3/T 2 having coordinates (X,Y,Z1, Z2).

The original equations define a dynamical system in the Poisson reduced space
and on the symplectic leaves as well. Using these new coordinates, the Poisson
bracket and the Hamiltonian are reduced directly. The reduced Hamiltonian is

Hr = −X −
∆k

2(s2γ2 + s3γ3)
(2(s2γ2 + s3γ3)K1 + 2s2γ2K2 − Z2) . (3.6)

Using the reduced Poisson brackets and the variables (X,Y,Z2), the Hamiltonian
Hr produces the following reduced equations of motion

dX

dt
= −∆kY , (3.7)

dY

dt
= ∆kX +

∂φ

∂Z2
, (3.8)

dZ2

dt
= −2(s2γ2 + s3γ3)Y , (3.9)
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Figure 3.1: A three-wave surface is drawn in (X,Y, Z2) coordinates for the decay inter-
action. Trajectories are also drawn showing the phase space of the reduced three-wave
equations on the three-wave surface when (s1, s2, s3) = (1, 1, 1), (γ1, γ2, γ3) = (1, 1,−2), and
(K1,K2) = (1,−1/2).

where the dynamical invariant φ is defined by

φ = (s2γ2 + s3γ3)
[

(X2 + Y 2)

− κ3(δ − Z2)(2s3γ3K2 + Z2)(2s2γ2K2 − Z2)] . (3.10)

Following Kummer [1975, 1990], the reduced equations may be written as Ḟ =
{F,Hr} for the Poisson bracket

{F,G} = ∇φ · (∇F ×∇G) . (3.11)

The Poisson structure on C 3 drops to a Poisson structure on (X,Y,Z1, Z2)-space and
this in turn induces the Poisson structure above. Correspondingly, the symplectic
structure drops to one on each three-wave surface – this is an example of the general
procedure of symplectic reduction (see Marsden and Weinstein [1974]).

The three-wave surfaces may have singularities – this is because the group action
is not free; in this case it is a fairly simple “orbifold” singularity. For the three-wave
system a singular point appears on the three-wave surface when |q1|

2/(s1γ1) =
|q3|

2/(s3γ3) or equivalently K1 = K2 and K3 = 0. In this case two of the roots of
the cubic polynomial in φ come together. From the geometry, it is also clear that a
homoclinic orbit passes through such a singular point.

Equations (3.11) show that Hr and φ are constants of the motion. Expressed
in terms of the wave amplitudes qj , φ(X,Y,Z2) vanishes identically. Thus the re-
duced dynamics is confined to the three-wave surfaces defined by φ(X,Y,Z2) = 0.
Trajectories of the reduced equations are the curves produced by intersecting the
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three-wave surfaces with level sets of Hr. Since Hr is linear, its level sets are the
planes

Z2 = mX + (γ2 + γ3)

(

K1 +
2Hr

∆k

)

+ γ2K2,

where m = 2(γ2 + γ3)/∆k.
A reduced phase space is plotted in Fig. 3.2. For the fixed point set a similar

surface is obtained, but a singular point associated with a homoclinic trajectory
appears along (X,Y ) = (0, 0).

-0.5
0

0.5

X

-0.5 0 0.5

-2

-1

0

-0.5
0

0 5

Y

Z2

Figure 3.2: A reduced three-wave phase space on a three-wave surface. Here the mismatch
is not zero, and |m| = 3/5, where (γ1, γ2, γ3) = (−1,−2,−1), ∆k = 10.0 and the point
(q1(0), q2(0), q3(0)) = (1.0, 0.05, 1.5) is used to fix K1, K2 and H.

As the slope, m, of the Hamiltonian planes varies, the qualitative nature of the
dynamics changes. When m is small, the Hamiltonian planes and therefore orbits on
the three-wave surfaces are nearly horizontal. For fixed γj, m is small far from phase
matching (∆k = 0). Here, the linear oscillation captured in Eqs. (3.7) and (3.8)
dominates, so the dynamics is well approximated by a driven harmonic oscillator
with oscillation period 2π/∆k.

Since the orbits are nearly horizontal over the entire three-wave surface, this
approximation is valid over most of the reduced phase space. It breaks down only
when a homoclinic orbit connected to the singular point mentioned above is present.
For small m this region occupies a small portion of the three-wave surface. For
large m the orbits are nearly vertical and the nonlinear oscillation captured in Eqs.
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(3.8) and (3.9) dominates. The two fixed points move from the top and bottom of
the three-wave surface when m = 0 to the sides along Y = 0 when m = ∞ and
are positioned at points where the Hamiltonian plane is tangent to the three-wave
surface.

In applications the goal is often to produce the largest amount of conversion
among the waves. This means making the largest vertical excursion on the three-
wave surface. When ∆k = 0, the orbit passing through (X,Y ) = (0, 0) produces
maximum conversion. When the singularity is present this is the homoclinic orbit,
where Hr = 0. For intermediate values of m a trajectory has components of both
the horizontal or linear oscillation and the vertical or nonlinear oscillation. Here
the orbit with the largest variation in Z2 produces maximum conversion. In some
applications the goal is to produce the largest phase shift with a minimum amount
of conversion.

4 Geometric Control of Three-wave Interactions

In many applications the goal is to convert as much light at frequency ω1 into light
at the frequencies ω2 and ω3. Since |q1| is large compared to either |q2| or |q3| at
the bottom of the three-wave surface, most of the light is at frequency ω1 there.
Near the top the light at ω1 has been converted into the two other waves. Notice
that when ∆k = 0 a trajectory at the bottom of the three-wave surface connects
to the top. This would seem to be the most desirable situation if the goal is to
produce the maximum conversion for a given three-wave interaction. Unfortunately
this condition is typically difficult to achieve with available materials and device
constraints. More often ∆k ≫ γj for each j and the orbits are nearly horizontal.
Thus the amount of wave energy or action converted during each orbit is relatively
small. This problem has been circumvented by introducing a piecewise constant con-
trol (see Armstrong, Bloembergen, Ducuing, and Pershan [1962] and Fejer, Magel,
Jundt, and Byer [1992]). The key point is that reversing the signs of the γj leaves the
three-wave surfaces invariant while changing the slope of the Hamiltonian planes.
Since this change in signs only changes the direction of increase in the equation
for Z2 in (3.7)–(3.9), a C0 trajectory that spirals up the three-wave surface can be
generated. Just as the wave interaction saturates and light begins to convert back
to frequency ω1, the direction of conversion is reversed by inverting the sign of γj .
The light-wave energy or action then continues to flow into the waves at frequencies
ω2 and ω3. This control strategy is called quasi-phase-matching in nonlinear optics.

To reach the top of the three-wave surface quasi-phase-matching is performed
by alternating the signs of the γj at every half-period of the oscillation cycle. In
general, the half-periods will depend on Z2. For small m this dependence is weak, so
in practice the period for the control is approximated by half the linear oscillation
period, i.e., the coherence length, defined as lc = π/∆k.

Quasi-phase-matching is now described geometrically on the three-wave surfaces.
The fact that the substitution γj → −γj leaves the three-wave surfaces invariant but
reverses the slope of the Hamiltonian planes leads to the following geometrical con-
struction for quasi-phase-matching trajectories: they are obtained by concatenating
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intersections of the three-wave surface with Hamiltonian planes of alternating slope.
In the optimal case, the sign changes along Y = 0, at a point of maximal Z2 on one
segment and minimal Z2 on the next. In Fig. 4.1 a quasi-phase-matching trajectory
is plotted on a three-wave surface.
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Figure 4.1: A composite trajectory with 30 segments of length lc = π/∆k for the quasi-
phase-matched control of the three-wave system. Here, |m| = 0.3, where (γ1, γ2, γ3) =
(−1,−2,−1), ∆k = 30.0 and (q1(0), q2(0), q3(0)) = (0.1, 1.0, 0.2) is used to fix K1, K2

and H.

The curve in this figure was generated numerically from Eqs. (1.1)–(1.3) by
alternating the signs of the γj after steps of size lc. It spirals up the three-wave
surface towards larger values of Z2 as more light is converted. The initial data is
on Y = 0 with X > 0 since m = −0.3 for (γ1, γ2, γ3) = (−1,−2,−1) and ∆k = 30.
Note that excellent conversion efficiency is achieved after 30 layers in this example
even though lc is used. In a typical optical device the value of ∆k may be much
larger and as many as 500 to 1000 layers may be used.

The nonlinear component of the oscillation contributes a small shift to the linear
period, 2lc. This shift leads to the eventual saturation of the quasi-phase-matching
conversion. As m increases, the linear period is an increasingly poor approximation
to the actual oscillation period and the quasi-phase-matching conversion saturates
after only a few steps of length lc. At these larger values of m, the signs of the
quadratic coefficients must be alternated at half the nonlinear period to obtain
the most efficient quasi-phase-matching conversion. To produce maximum second-
harmonic conversion, the initial data are chosen in the plane Y = 0 where Ω = nπ
with n = 0, 2, 4, . . . if m > 0 and n = 1, 3, 5, . . . if m < 0. At these points Z2

has its minimum value and makes the maximum excursion in Z2 on a given orbit
over a half-period. The composite quasi-phase-matching trajectory is constructed
as before, changing the sign of the quadratic coefficients each time the plane Y = 0
is crossed. In a system where the generated waves start from noise, those waves
initially near the optimum relative phase grow most efficiently. In systems where
the process is seeded, the relative phase is tuned to achieve optimum conversion.

Because the nonlinear period varies as the harmonic grows, optimizing the con-
version efficiency requires that the length of the piecewise segments be varied along
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the propagation path. If m is large enough, only a few layers are needed to produce
complete conversion. The nonlinear periods are calculated using standard tech-
niques (see also Alber, Luther, Marsden and Robbins [1998b] for optimization of
the linear mismatch of averaged wave systems). If the length of the piecewise seg-
ments can not be varied, corrections to both lc and the initial relative phase give
the constrained optimum conversion efficiency for the system. Note that for small
m the nonlinear period shifts are rather small.

Quasi-phase-matching is a robust technique. Note that if there are small errors
in the the distance between each switch in the γj , they are not compounded directly
and have no catastrophic effects.

The usual strategy for quasi-phase-matching described above is only one of many
possibilities for controlling energy flow in wave interactions. Any two points on the
three-wave surface can be connected by a composite C0 trajectory if the system
parameters are modulated between at least two states. In standard quasi-phase-
matching the two states are the two signs of γj . An alternate strategy for the
robust control of frequency conversion at any value of m works by modulating the
sign of the mismatch parameter at a period shorter than the oscillation period for
frequency conversion. The portions of the trajectories that are most nearly vertical
produce the most conversion and are located near X = 0. Therefore, in contrast to
the standard quasi-phase-matching strategy, the optimum initial data has relative
phase near Ω = nπ/2, n = 1, 2 . . . . Geometrically, the composite trajectory looks
like a zig-zag stepping up the side of the three-wave surface along X = 0. In Fig. 4.2
a trajectory is plotted on the three-wave surface.
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Figure 4.2: A composite trajectory for the zig-zag control.
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We refer to this strategy as the zig-zag control. In each step the trajectory
goes less than half of the way around the three-wave surface. Notice that in general
the length of the component trajectories is not critical. Small randomly distributed
errors in the length from segment to segment tend not to cause early saturation of
the conversion. As in conventional quasi-phase-matching, a relatively small amount
of conversion is obtained between each modulation of the parameters, while the net
conversion can be quite large.

This geometric approach to controlling wave interactions extends to a broad class
of resonant wave interactions, and it introduces a general way to view nonlinear
control strategies for nonlinear wave interactions. In nonlinear optics it underscores
the idea that engineering dynamical systems can improve the net performance of
optical materials.

5 Projection of the Reduced Phase Space and Billiards

The piecewise constant control strategies described above generate billiard trajec-
tories on the three-wave surfaces. In this section, we elaborate on this construction.
Using the piecewise constant controls described above billiard trajectories are gen-
erated by gluing together segments of solutions of different systems of three-wave
equations; these systems differ from one another by the choice of coefficients γi of
the quadratic terms or ∆k of linear terms. To specify a particular strategy, the
rules for changing these parameters and the time the system evolves between these
changes must be specified. In what follows we discuss three examples.

In the first case we discuss, the three-wave system switches back and forth be-
tween two states defined by changing the quadratic coefficients after evolving for a
full half-period. The second case is the same except that the time is defined by a
coherence length (it could be longer or shorter than a full half period) and again
we switch between two three-wave systems. In the third case we consider a billiard
trajectory on the three-wave surface obtained by lifting a Birkhoff billiard trajectory
inside the domain bounded by a meridian of the three-wave surface. In this case the
switching times are determined by the reflection times, and the constants γi char-
acterizing a segment of the billiard trajectory after each reflection are calculated by
lifting the billiard trajectory to a curve on the three-wave surface and identifying
it with a curve that is the intersection of a plane and the three-wave surface. This
plane defines a unique choice of constants for a three-wave system.

Half-period. Now we consider the first case mentioned above. Using the quasi-
phase-matching technique and taking the propagation time to be half the nonlinear
period of each orbit, the boundary of the billiard is a meridian of the three-wave
surface.

The invariant coordinates we choose to effect the reduction from C 3 to the three-
wave surfaces in R3 are particularly useful here. Notice that the reduced Hamiltonian
is independent of Y . When projected onto the (X,Z2)-plane, trajectories on the
three-wave surface become lines. Using the quasi-phase-matching control strategy
where the signs of the quadratic coefficients are switched after one half period of the
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motion, trajectories starting at Y = 0 end on Y = 0. The curve φ(X,Y = 0, Z2) = 0,
namely a meridian, is the boundary of the billiard in the (X,Z2)-plane. The angle
between incoming and outgoing segments of this billiard is the same for all points
of reflection. These reflection conditions are illustrated in Fig. 5.1.
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Figure 5.1: Billiard flow for quasi-phase-matched controls. The piece wise constant controls
are switched between two states at half the nonlinear period. The locus of these points lie
on the boundary φ(X, 0, Z2) when projected into (X,Z2).

A formula for the Z2-motion is obtained by reducing (3.7)–(3.9) to quadratures.
One obtains the following potential equation,

1

2

(

dZ2

dt

)2

= −2(s1γ1 + s2γ2) [φ(0, 0, Z2) − rZ2] −
∆k2Z2

2

2
+ C , (5.1)

where

r = ∆kHr + ∆k2

(

K1 +
s2γ2K2

s2γ2 + s3γ3

)

(5.2)

is a constant and X is obtained as a function of Z2 through the reduced Hamiltonian
Hr.

Fixed Coherence Length. The propagation length can be chosen to be a fixed
distance, for instance the coherence length, lc = π/∆k. An example is shown in the
numerically generated plot in Fig. 5.2.

As was mentioned in the beginning of this section, in the most general case,
billiards are constructed directly on the three-wave surface itself. As an example,
consider the standard implementation of quasi-phase-matching control that uses a
fixed propagation distance lc during each piece-wise constant segment of the control.
(This distance as measured along the curve coincides with the evolution parameter t
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Figure 5.2: Billiard flow for quasi-phase-matched controls. The piece-wise constant controls
are switched between two states at half the linear period as is typical in devices. The locus
of these points appears to lie on two curves that intersect a finite number of times on the
boundary φ(X, 0, Z2).

or the geodesic length of the curve.) In what follows we calculate points of reflection
of the billiard trajectory for a given initial point. Equation (5.1) yields the following
integral problem of inversion

∫ Z2

Z0

2

dZ2
√

C±(Z2)
= t + t0 (5.3)

where C±(Z2) denotes a polynomial of the second order in Z2 with + and − in-
dicating the choice of the signs of γ′s. Now, one can describe a particular billiard
trajectory (Z2(0), Z2(1), ..., Z2(2n)) by fixing initial point at Z2 = Z2(0) and by
inverting the following elliptic integrals one by one:

∫ Z2(2k+1)

Z2(2k)

dZ2
√

C+(Z2)
= (k + 1)lc + t0 (5.4)

∫ Z2(2k+2)

Z2(2k+1)

dZ2
√

C−(Z2)
= (k + 2)lc + t0 (5.5)

where k = 0, ..., (n − 1).
One now wishes to find a curve on the three wave surface with the property that

with initial conditions on the curve, a billiard trajectory has all its reflection points
on a single pair of intersecting curves. The preceding formulas give an implicit
relation that points on such a curve must satisfy. Figure 5.2 provides an example of
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such billiard trajectory together with a set of reflection points which appear to lie
on two curves.

In the special case when the quadratic coefficient is switched at half the non-
linear period that was discussed above, this boundary is a single meridian curve.
Considering ergodicity, periodic orbits, fixed points and stability in the context of
these billiards and their generalizations will be the subject of future work.

Birkhoff Billiard. We now consider a further generalization of the billiard inter-
pretation of control strategies on the three-wave surface by introducing the Birkhoff
billiard. Here each segment of this Birkhoff billiard is mapped into a trajectory of
a three-wave system by choosing parameter values for the control that produce the
correct angle of reflection.

A standard class of Birkhoff billiards can be realized on the three-wave surfaces.
They are constructed as follows. Consider a fixed domain either in the plane (X,Z2)
(bounded by the projection φ(X, 0, Z2) = 0 of the three-wave surface), or on the
three-wave surface itself. Starting from the boundary of this region, evolve the three
wave equations up to the next intersection with the billiard boundary. Impose the
standard Birkhoff reflection condition using (5.1) and choose the value of the param-
eter m that produces the correct angle of reflection. (The problem can be rescaled
so that the three-wave surface is invariant with respect to changes in the magnitudes
of the γk.) These conditions on the parameters of the three-wave equations provide
an alternate strategy for controlling the three-wave system.

6 Reconstruction and Phases

Phase formulas for the three wave interaction can be developed that are somewhat
parallel to the phase formulas for rigid body dynamics (see Marsden, Montgomery
and Ratiu [1990] and Montgomery [1991]). The basic idea is to use a connection in
the process of reconstructing the trajectories in the full space C 3 from a knowledge
of the trajectories in the reduced space (the three wave surfaces).

The reduced dynamics determines the evolution of the wave intensities. Once
it has been solved, the full dynamics of the three-wave system, including the wave
phases, may be reconstructed.

Here we only give the idea of what is involved in the reconstruction process. We
consider the decay interaction, and, for definiteness, the particular case (s1, s2, s3) =
(1,−1, 1), epitomized by (1.1)–(1.3). We also assume that ∆k = 0; in this case the
reduced dynamics is typically periodic (the exceptions are fixed points, homoclinic
orbits and heteroclinic orbits), but the full dynamics is not. Thus, after a period T
of the reduced dynamics, the wave intensities return to their starting values while
the phases are shifted.

The initial and final wave amplitudes are related by the phase symmetries (2.12)–
(2.13) (as remarked in Section 2, the third phase symmetry (2.14) is generated by
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the first two), so that

q1(T ) = exp(−i∆φ1)q1(0) , (6.1)

q2(T ) = exp(−i∆φ1 − i∆φ2)q2(0) , (6.2)

q3(T ) = exp(−i∆φ2)q3(0) . (6.3)

There are two methods for calculating the total phase shifts ∆φ1 and ∆φ2. The
first, the traditional method, involves integrating the system by means of action-
angle variables. One finds a canonical transformation from the wave amplitudes
qj to new canonical coordinates, in which two of the generalized momenta are the
constants of motion K1 and K2; their conjugate angles, φ1 and φ2, are then ignorable
coordinates. Once the reduced dynamics is known, the total phase shifts ∆φ1 and
∆φ2 may be computed by integrating Hamilton’s equations

φ̇j =
∂H

∂Kj
, (6.4)

in which the Hamiltonian is expressed in terms of action-angle variables, over the
reduced period T .

While straightforward in principle, in execution the traditional method is rather
involved. In contrast, the alternate method of geometric phases (Marsden, Mont-
gomery and Ratiu [1990], Marsden [1992], Shapere and Wilczek [1989]), while re-
quiring some additional theoretical machinery, leads in many cases to simpler cal-
culations, as well as a suggestive geometric description of the phase shifts. Its
application to the three-wave system may be viewed as a generalization of Mont-
gomery’s [1991] analysis of rigid body rotation. For discussions of the well known
geometric phases which appear in polarization optics (e.g., Pancharatnam’s phase),
the reader is referred to Shapere and Wilczek [1989] and Bhandari [1997].

We shall not develop such formulas here, but rather refer to the author’s paper
Alber, Luther, Marsden and Robbins [1998a] for details. In the present paper we
are focusing on control ideas that involve the reduced dynamics and not the phases,
but in other contexts, control of the phases may be quite important. For instance, in
nonlinear optics a phase shift of order π enables all optical switching. The controls
described here can be used to manipulate the optical wave interaction to reliably
produce the desired phase shift. A second example is a laser in which the light is
amplified through a three-wave mixing process. As light circulates in the optical
cavity, its phase should be controlled to ensure that it is periodic over a round trip.

7 The Lie-Poisson Formulation

In this section the three-wave equations are written both on the dual of the Lie
algebra of the group SU(3) or SU(2, 1) using a Lie-Poisson structure; one can also
formulate the problem on the Lie algebra using the Euler-Poincaré structure, focus-
ing on variational principles, but we shall not undertake the latter here.

The Lie-Poisson description is obtained by recasting (1.1) as a differential equa-
tion in su(3)∗, the dual of the Lie algebra of SU(3), for one of the decay interactions
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and a differential equation in su(2, 1)∗, the dual of the Lie algebra of SU(2, 1), for
the explosive interaction and the other two decay interactions.

Map to the Dual of the Lie Algebra. Define a map U : C 3 → su(3)∗ and a
map U : C 3 → su(2, 1)∗ as follows. Identify su(3) with su(3)∗ using the standard
Killing form:

〈A,B〉 = Tr(AB) . (7.1)

Thus, su(3)∗ ∼= su(3) is concretely realized as the space of complex skew Hermitian
matrices with zero trace. The standard Killing form is also used to pair su(2, 1) with
su(2, 1)∗. While the resulting inner product remains nondegenerate in this case, it
does become Lorenzian.

To obtain complex Hamiltonian systems for which the complex conjugate equa-
tions are self consistent we restrict the map so that

U = −MU †M−1 , (7.2)

where M = diag(m1,m2,m3) and mj = ±1. Below we show that the sj are given by
the mj , so by choosing a set of values for the mj , one fixes a particular three-wave
system.

The map of q = (q1, q2, q3) to the matrix U is then

U =















u1 q1 q2

−
m2

m1
q̄1 u2 q3

−
m3

m1
q̄2 −

m3

m2
q̄3 u3















, (7.3)

where U ∈ su(3)∗ for (m1,m2,m3) = ±(1, 1, 1) and U ∈ su(2, 1)∗ otherwise. Here,
the uj are purely imaginary to satisfy (7.2).

Define a second map Q1 : C 3 → su(3) or Q1 : C 3 → su(2, 1) as

Q1 =















v1 α1q1 α2q2

−
m2

m1
α1q̄1 v2 α3q3

−
m3

m1
α2q̄2 −

m3

m2
α3q̄3 v3















, (7.4)

where αj ∈ R are given in terms of the γj as shown below and the vj are pure
imaginary to satisfy (7.2).

We take α1 > α2 > α3 > 0 throughout. Below we show that the uj and vj can
be chosen to produce the linear terms in ∆k in the three-wave equations.

With these definitions, the three-wave equations are written in matrix form as

dU

dt
= −[U,Q1] (7.5)
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where [ , ] : g× g → g is the Lie bracket and in this context is equivalent to standard
commutation of matrices. In component form these equations are:

dq1

dt
= [(u2 − u1)α1 − (v2 − v1)]q1 −

m3

m2
(α2 − α3)q2q̄3 , (7.6)

dq2

dt
= [(u3 − u1)α2 − (v3 − v1)]q2 − (α3 − α1)q1q3 , (7.7)

dq3

dt
= [(u3 − u2)α3 − (v3 − v2)]q3 −

m2

m1
(α1 − α2)q̄1q2 . (7.8)

By comparison with the three-wave equations (1.1)–(1.3), the linear coefficients
become

(u2 − u1)α1 − (v2 − v1) = i∆k , (7.9)

(u3 − u1)α2 − (v3 − v1) = i∆k , (7.10)

(u3 − u2)α3 − (v3 − v2) = i∆k , (7.11)

the nonlinear coefficients become

γ1 = (α2 − α3), γ2 = (α3 − α1), γ3 = (α1 − α2) ,

and the signs are

(s1, s2, s3) =

(

m3

m2
,−1,

m2

m1

)

.

With these identifications, one obtains the three-wave system (1.1)–(1.3) after qk →
iqk.

Note that with this definition,
∑

γk = 0 automatically.

The Quadratic Invariants. The quadratic invariants (2.9)–(2.11) for (7.6)–(7.8)
are

2K1 =
m2|q1|

2

m3(α2 − α3)
+

|q2|
2

(α1 − α3)
, (7.12)

2K2 =
|q2|

2

(α1 − α3)
+

m1|q3|
2

m2(α1 − α2)
, (7.13)

2K3 =
m2|q1|

2

m3(α2 − α3)
−

m1|q3|
2

m2(α1 − α2)
. (7.14)

If any two of these are positive or negative definite solutions are necessarily bounded.
When this is not true solutions may blow up in finite time. If m = (m1,m2,m3) is
±(1, 1, 1), ±(1, 1,−1) or ±(1,−1,−1) the system corresponds to a decay interaction
and if m = ±(1,−1, 1) it is an explosive interaction. Notice that from the definition
of the map U one decay interaction is associated with su(3) and the other two as
well as the explosive interaction are associated with su(2, 1).
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The Quadratic Hamiltonian. The quadratic Lie-Poisson Hamiltonian is H2 =
−Tr(UQ1)/2, and it has the explicit form

H2 = −1
2

3
∑

k=1

ukvk +
m2

m1
α1|q1|

2 +
m3

m1
α2|q2|

2 +
m3

m2
α3|q3|

2 ,

This Hamiltonian can be written in terms of the quadratic invariants as

H2 = −1
2

3
∑

k=1

ukvk + 2α1(α2 − α3)
m3

m1
(K1 + βK2) ,

where

β =

(

α3

α1

)(

α1 − α2

α2 − α3

)

.

The Lie-Poisson Bracket. As we show below, Q1 = −δH2/δU , so we can write

dU

dt
=

[

δH2

δU
,U

]

.

The general theory of Lie-Poisson structures (see Marsden and Ratiu [1998]) is used
to construct the Lie-Poisson bracket

{f, k}1 (U) = −

〈

U,

[

δf

δU
,

δk

δU

]〉

, (7.15)

where for g = su(3) or su(2, 1), f, k : g∗ → R, δf/δU, δk/δU ∈ g, and U ∈ g
∗.

Theorem 7.1 The Euler equation (7.5) governs the evolution of the matrix U and

is equivalent to the three-wave equations (1.1)–(1.3). This equation for U is the

Hamiltonian evolution equation associated with a non-canonical Hamiltonian struc-

ture having the (standard left invariant) Lie-Poisson bracket and a quadratic Hamil-

tonian. Realized through the evolution of U , we have the following :

1. the three-wave decay equations are Lie-Poisson equations on su(3)∗ for s =
(1,−1, 1) and m = ±(1, 1, 1);

2. the three-wave decay equations are Lie-Poisson equations on su(2, 1)∗ for s =
(−1,−1, 1) and m = ±(1, 1,−1), and also for s = (1,−1,−1) and m =
±(1,−1,−1);

3. the explosive three-wave equations are Lie-Poisson equations on su(2, 1)∗ for

s = (−1,−1,−1) and m = ±(1,−1, 1).

Here we assume without loss of generality that γ1, γ3 > 0 and γ2 < 0 (equivalently

α1 > α2 > α3 > 0).
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Proof Let F : g∗ → R, then with the definitions above, dF/dt = {F,H2}, or
〈

δF

δU
,
dU

dt

〉

= −

〈

U,

[

δF

δU
,
δH2

δU

]〉

, (7.16)

where 〈 , 〉 is the trace defined above. Now,

DH2(U) · V = −1
2 Tr(V Q1(U)) − 1

2 Tr(UQ1(V )),

for V ∈ g
∗. We claim that Q1 is a symmetric linear function of U . In fact, one can

check directly that Q1(U)i,j = ci,jUi,j (no sum), where ci,j is a symmetric matrix.
Thus,

Tr(UQ1(V )) = Tr





∑

j

Uk,jcj,kVj,k



 =
∑

j,k

Uk,jcj,kVj,k = Tr(Q1(U)V ) .

Hence, DH2(U) · V = −Tr(V Q1(U)) and so δH2/δU = −Q1(U). Using this fact,
write

〈

δF

δU
,
dU

dt

〉

= −

〈

δF

δU
, [U,Q1]

〉

, (7.17)

to obtain

dU

dt
= − [U,Q1] . (7.18)

It is checked that these indeed are the three-wave equations. �

Connections to the Rigid Body The appearance of the three-wave equations
suggests that they should be related to the Euler equations for the free rigid body. In
fact having put the three wave equations in the general context of Euler equations for
Lie groups, this connection between the two systems can be illustrated easily. Begin
by making the maps U and Q1 real. Then U : R3 → so

∗(3) and Q1 : R3 → so
∗(3).

Renaming them M and −Ω, respectively,

dM

dt
= [M,Ω] , (7.19)

where M is now identified as the body angular momentum and Ω as the body
angular velocity. Using the recurrence relations where we assume all Qj are now
real so that they also drop to so

∗(3), it follows that M = JΩ + ΩJ , were Q0 = −J
and A = J2. With this additional relation we obtain the Euler-Arnol’d equations
for the free rigid body. The Manakov equations are also easily produced here taking
Q(1) = −ξJ − Ω and P = ξJ2 + M to obtain,

d

dt

(

ξJ2 + M
)

= [ξJ2 + M, ξJ + Ω] . (7.20)

Because the group SO(3) is a subgroup of SU(3), the free rigid body is contained
within the three-wave interaction as a real subspace. Similarly, the extension of
the three-wave system to su(N)∗ contains Manakov’s N -component rigid body on
so(N)∗.
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8 Connections between the Two Hamiltonian Structures

The three-wave equations have now been expressed using both the well known canon-
ical Hamiltonian structure and the Lie-Poisson structure. In this section the rela-
tionship between them is discussed. A recursion relation is also produced and it is
shown to be the same one obtained using the Lax approach.

The Second Hamiltonian Structure. Modify the Lie-Poisson bracket for the
three-wave equations as follows:

{f, k}0 (U) = −

〈

U0,

[

δf

δU
,

δk

δU

]〉

, (8.1)

in which the first matrix is fixed at U0, where U0 ∈ su(3)∗ or U0 ∈ su(2, 1)∗ is
independent of t and is to be specified. Taking δf/δU and δk/δU at U , this new
bracket produces the equations of motion,

dU

dt
=

[

U0,
δk

δU

]

. (8.2)

By choosing U0 to be a constant diagonal matrix with Tr(U0) = 0 and k ∝ H3, so
that δk/δU = Q2, Q2 is quadratic in the qi, we arrive at the three-wave equations.
In this way the scaled canonical Hamiltonian structure is obtained directly from
the Lie-Poisson bracket. Compatibility follows since this is a “translation of the
argument” of the Lie-Poisson bracket, where {, } = {, }1(U) + ξ{, }0(U0) for an
arbitrary real constant ξ. Both {, }1 and {, }0 are Poisson Brackets and the Lie-
Poisson bracket with a shifted argument is also a Poisson bracket (see Arnol’d and
Givental [1990], Trofimov and Fomenko [1994]). The two three-wave brackets are
therefore compatible.

The Recursion Relation. Having obtained the Lie-Poisson structure and the
compatibility of the two Poisson brackets the recursion relation for the three-wave
equations are found. Equate the two Poisson brackets and write

〈

U0,

[

δf

δU
,

(

δkj+1

δU

)]〉

=

〈

U,

[

δf

δU
,

(

δkj

δU

)]〉

. (8.3)

For this relation to hold the Lie brackets,

[(

δkj+1

δU

)

, U0

]

=

[(

δkj

δU

)

, U

]

, (8.4)

must also be equal. This is exactly the recursion relation obtained using the Lax
approach. For the three-wave system it is invertible, and a complete set of (δk/δU)j
is constructed.
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The Lax Equations. To demonstrate the connection with the Lax approach let
D,P,Q ∈ su(3)∗ or let D,P,Q ∈ su(2, 1)∗. Write

λD = [P,D] , (8.5)

dD

dt
= [Q,D] . (8.6)

Compatibility of these two equations leads to

dP

dt
+ [P,Q] = 0 . (8.7)

Let

P = ξA + U and Q(N) =
N
∑

j=0

Qjξ
N−j,

where A,U,Qj ∈ su(3) or A,U,Qj ∈ su(2, 1). Define A to be A = diag(β1, β2, β3)
with

∑3
k=1 βk = 0. The Qj are general elements of the Lie algebra. As in (7.3), U

maps C 3 into su(3)∗ or su(2, 1)∗. With this definition for P , (8.7) becomes

dU

dt
+ ξ[A,Q(N)] + [U,Q(N)] = 0 . (8.8)

Now using the series for Q(N), the coefficients of powers of ξ yield

dU

dt
+ [U,QN ] = 0 , (8.9)

...

[A,Qj ] + [U,Qj−1] = 0 , (8.10)

...

[A,Q0] = 0 . (8.11)

The first equation is the integrable three-wave system. The second is the recur-
sion relation. The final equation constrains the Qj so that Q0 ∈ ker adA. Letting
Qj = (δk/δU)j and A = U0 this is exactly the recursion relation obtained using the
method of Poisson pairs. The recursion relation implies that [U,Q1] = −[A,Q2], so
the three-wave equations are also written

dU

dt
= [A,Q2] . (8.12)

Now we compute the Qj directly from the recursion relation with

Q0 = diag(β0
1 , β0

2 , β0
3).

We will find that the β0
j are directly related to the αj and the γj . Carrying out the

recursion (8.9)–(8.11) explicitly for the three-wave equations with N = 1 it is found
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that

Q1 =





















v1
β0

2 − β0
1

β2 − β1
q1

β0
3 − β0

1

β3 − β1
q2

−
m2

m1

β0
2 − β0

1

β2 − β1
q̄1 v2

β0
3 − β0

2

β3 − β2
q3

−
m3

m1

β0
3 − β0

1

β3 − β1
q̄2 −

m3

m2

β0
3 − β0

2

β3 − β2
q̄3 v3





















. (8.13)

This is written more compactly as

(Q1)ij =
β0

i − β0
j

βi − βj
Uij ,

for i 6= j.
By direct comparison with Q1 in (7.4) we find that α1 = (β0

2 − β0
1)/(β2 − β1),

α2 = (β0
3 − β0

1)/(β3 − β1), α3 = (β0
3 − β0

2)/(β3 − β2).
At the next iteration

(Q2)ik =
3
∑

j=1

ΓijkUijUjk +
1

βi − βk

(

UijQ1jk − Q1ijUjk

)

,

where

Γijk =
1

βi − βk

(

β0
i − β0

j

βi − βj

−
β0

j − β0
k

βj − βk

)

.

Note that Γijk is invariant under all permutations of its indices so we write Γ = Γijk

and

Q2 = Γ

















0 −
m3

m2
q2q̄3 q1q3

−
m3

m1
q̄2q3 0 −

m2

m1
q̄1q2

m3

m1
q̄1q̄3 −

m2

m1
q1q̄2 0

















+













0 α12q1 α13q2

−α12
m2

m1
q1 0 α23q3

−α13
m3

m1
q2 −α23

m3

m2
q3 0













. (8.14)

where

α12 =
α1(u1 − u2) + (v2 − v1)

β1 − β2

α13 =
α2(u1 − u3) + (v3 − v1)

β1 − β3
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and

α23 =
α3(u2 − u3) + (v3 − v2)

β2 − β3

Note that [U,Q2] = 0, terminating the recursion.
With these definitions, dU/dt = [A,Q2] yields

dq1

dt
= −

m3

m2
(β1 − β2)Γq2q̄3 + [α1(u1 − u2) + (v2 − v1)]q1 , (8.15)

dq2

dt
= −(β3 − β1)Γq1q3 + [α2(u1 − u3) + (v3 − v1)]q2 , (8.16)

dq3

dt
= −

m2

m1
(β2 − β3)Γq2q̄1 + [α3(u2 − u3) + (v3 − v2)]q3 , (8.17)

which are the three-wave equations in (7.6)–(7.8) since (β1 − β2)Γ = (α2 − α3),
(β3 − β1)Γ = (α3 − α1), and (β2 − β3)Γ = (α1 − α2). Here again there is freedom
to choose the uj and vj from the definition of U and Q1 so that the linear terms
correspond with the linear terms of the three-wave equations.

Conservation Laws and Hamiltonians. The Qj are gradients of Hamiltonian
functions, and Qj = −δHj/δU , where the Hamiltonians

Hj+1 = −Tr(UQj)/(j + 1) .

Here, (j +1) is the highest power of qk in Hj+1. The cubic Hamiltonian defined here
is proportional to the one associated with the scaled canonical structure from above.
The quadratic Hamiltonian, H2, is associated with the Lie-Poisson structure.

These conserved quantities are found in a number of ways. The method of
Poisson pairs produces invariants and their involutivity. The so called master

conservation law is obtained by showing that the equation

〈

U,
dD

dt

〉

=
〈

U, [Q(1),D]
〉

, (8.18)

reduces to

d

dt
〈D,U〉 = ξ 〈D, [U,Q0]〉 . (8.19)

Then using the recursion relation and in this case D = Q(2), one finds that

d

dt
〈U,D〉 = 0.

In this way the Hamiltonians

H2 = −1
2〈Q1, U〉 , H ′

3 = −1
3〈Q2, U〉 , (8.20)

are obtained, where H ′
3 = −2i(m3/m1)ΓH3 if qk → iqk.

26



9 Discussion

Equations (8.5) and (8.6) provide alternate methods for solving the three-wave equa-
tions. They are used to construct the Lax pair of (8.7), which are linear equations
for the evolution of an associated eigenfunction. Recall that as D evolves, its deter-
minant and the values of Trace(Dk) remain invariant. Since the coefficients of the
spectral curve, namely

Γ = Det(D − yId) = 0 , (9.1)

involve only these quantities, Γ is also invariant.
By constructing the Baker-Akheizer functions of the associated linear spectral

problem or by constructing new coordinates using D, algebraic-geometric methods
can be applied to integrate the system in terms of theta functions on three-sheeted
Riemann surfaces, where the genus of the resulting surface depends on the number
of degrees of freedom present in the solution.

Finally, recall that (8.7) is the Lax equation for P . If P and Q = Q(1) are linear
in ξ then (8.7) contains the three-wave equations, as shown above; (8.7) is then
the so called λ-representation for the three-wave equations (see Manakov [1976],
Novikov [1994]).

The three-wave system exhibits a rich Hamiltonian structure that has only been
partially discussed here. Note for instance that this system can be expressed in terms
of the R-matrix representation. Also note that the λ-representation for the three-
wave equations is a reduction of the loop algebra associated with su(3) or su(2, 1).
A more complete treatment of the general structure of integrable equations of this
type is found for instance in Arnol’d and Givental [1990], Trofimov and Fomenko
[1994], Arnol’d and Novikov, eds. [1994].

The family of n-wave interactions is connected to the groups SU(n) and SU(p, q).
The structures described above for the three-wave example also follow for these
higher-dimensional groups. Here integrability of the n-wave interaction on C n is
connected with the fact that there are a series of U(1) subgroups in SU(n) and
SU(p, q) that reduce the equations on C n to equations on surfaces in R3 . In Kum-
mer [1990] the resonant Hamiltonian system with n-frequencies was analyzed using
the reduction procedure discussed here for the three-wave system. Using n − 1 in-
dependent S1 symmetries the n-wave system is ultimately reduced to quadratures.

Solutions of the three-wave system analyzed here are also traveling wave or
stationary solutions of an integrable partial differential equation (for solution of the
partial differential equation, see Zakharov and Manakov [1973, 1979], Ablowitz and
Haberman [1975], Kaup [1976, 1981], Newell [1985], Ablowitz and Clarkson [1991]).
In this sense the integrable structure outlined above generalizes to the structure of
the partial differential equation. More generally, each integrable system of ordinary
differential equations is associated with a hierarchy of evolution equations through
(8.5)–(8.6) by letting λ → ∂/∂x, d/dt → ∂/∂t and associating D, P , and Q with an
appropriate group. For instance, the three-wave system is realized as an integrable
PDE and the ODE system (1.1) gives traveling wave solutions. Further, the three-
wave system is closely connected to the rigid body. The Euler equations on the
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real subspace formed by taking su
∗(3) → so

∗(3) will then have a related real partial
differential equation for which the Euler equations are stationary or traveling wave
solutions.
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