
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 1

Geometry-aware Bases for Shape Approximation
Olga Sorkine, Daniel Cohen-Or, Member, IEEE, Dror Irony, and Sivan Toledo

Abstract— We introduce a new class of shape approx-

imation techniques for irregular triangular meshes. Our

method approximates the geometry of the mesh using a

linear combination of a small number of basis vectors. The

basis vectors are functions of the mesh connectivity and

of the mesh indices of a number of anchor vertices. There

is a fundamental difference between the bases generated

by our method and those generated by geometry-oblivious

methods, such as Laplacian-based spectral methods. In

the latter methods, the basis vectors are functions of the

connectivity alone. The basis vectors of our method, in

contrast, are geometry-aware, since they depend on both

the connectivity and on a binary tagging of vertices that

are “geometrically important” in the given mesh (e.g.,

extrema). We show that by defining the basis vectors to be

the solutions of certain least-squares problems, the recon-

struction problem reduces to solving a single sparse linear

least-squares problem. We also show that this problem can

be solved quickly using a state-of-the-art sparse-matrix

factorization algorithm. We show how to select the anchor

vertices to define a compact effective basis from which an

approximated shape can be reconstructed. Furthermore,

we develop an incremental update of the factorization of

the least-squares system. This allows a progressive scheme

where an initial approximation is incrementally refined by

a stream of anchor points. We show that the incremental

update and solving the factored system are fast enough to

allow an on-line refinement of the mesh geometry.

Index Terms— shape approximation, basis, mesh Lapla-

cian, linear least-squares

I. INTRODUCTION

S
HAPE approximation is an important problem in

computer graphics and CAGD. Reducing the amount

of data needed to represent a specific shape is often

necessary for modeling, efficient storage and transmis-

sion of 3D models. Irregular triangle meshes are the

predominant means of representing shapes, and in the

last decade there has been a vast amount of work on

mesh simplification techniques [1]. These techniques are

closely related, and can be regarded as descendants of

knot removal techniques developed for spline curves and

surfaces [2]. Other approximation techniques, suited for

All the authors are with the School of Computer Science, Tel Aviv

University, Tel Aviv 69978, Israel.

E-mail: {sorkine|dcor|irony|stoledo}@tau.ac.il

semi-regular connectivity, are based on wavelet repre-

sentations or subdivision surfaces [3]–[6].

Mesh simplification techniques aim to approximate a

given shape with as few vertices or triangles as possible,

while keeping the error of the approximation, in some

given metric, lower than a prescribed tolerance. A differ-

ent class of approximation techniques retains the original

connectivity of the given mesh and approximates only

its geometry [7]–[9]. Karni and Gotsman [7] introduce

a spectral method where the mesh is approximated by

reconstructing its geometry using a linear combination

of a number of basis vectors. The basis is derived

from the spectral decomposition of the Laplacian matrix

associated with the mesh connectivity [10]. Chou and

Meng [8] encode the geometry of the mesh using vector

quantization of the displacement coordinates. Based on

an analysis of the spectral basis of the Laplacian, Sorkine

et al. [9] introduce a method where the quantization

is applied to the geometry vector transformed by the

Laplacian operator.

Laplacian-based methods are attractive for mesh pro-

cessing, since they benefit from the powerful set of tools

from linear algebra and signal processing. The eigenvec-

tors of the mesh Laplacian matrix can be viewed as an

extension of the Fourier transform basis functions for the

irregular connectivity case, and the eigenvalues represent

the frequencies [7], [11]. The spectral basis is readily

defined on the given irregular mesh and does not require

altering the input representation. In addition to geometry-

compression applications [7], [12], spectral properties

have been studied for the design of fairing filters and

modeling tools [11], [13], mesh watermarking [14] and

spherical parameterization [15].

However, together with their appealing properties, one

must bear in mind that pure Laplacian-based methods are

geometry-oblivious, since the basis vectors are functions

of the connectivity alone. It is possible to use the

geometric Laplace-Beltrami operator (see, e.g., [16]),

however, its construction requires heavy use of the

mesh geometry, which is not practical for compression

applications. Our new geometry-aware methods derive

the basis both from the mesh connectivity and limited ge-

ometrical information. The basis vectors in our methods

are centered around selected “geometrically important”

anchor vertices. This allows a terse capturing of impor-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 2

Original model, 28747 vertices 35 basis vectors 160 basis vectors 960 basis vectors

Fig. 1. Reconstruction of mesh geometry using geometry-aware bases. A geometry-aware basis function is centered around a certain anchor

vertex of the mesh. The locations of the anchors used in reconstruction in the second left figure are marked by red spheres.

tant features of the surface and leads to compact and

efficient representation of the mesh geometry. Figure 2

illustrates the reconstruction using such basis vectors

on a 2D curve example. The bottom row shows the

meshes reconstructed using geometry-aware bases. The

locations of the anchors are marked by small dots. The

reconstructed mesh passes close to the original locations

of the anchor points, which enables good approximation

of such features as the tips of the bird’s wings and tail.

For comparison, reconstruction of this mesh using an

analogous number of spectral basis vectors misses out

the features. This behavior is evident in large as well as

in small scale.

It should be noted that explicit computation of the ba-

sis vectors is, generally speaking, too expensive for large

meshes. Geometry representation using the Laplacian

eigenbasis [7] requires finding a partial spectral decom-

position of a large symmetric matrix. This computation

is too expensive to be applied in practice to anything but

small meshes.

The method that we present here avoids explicit

computation of the underlying basis. Instead of directly

representing the geometry by the coefficients of the

linear combination of the basis vectors, we reduce the

reconstruction problem to solving a sparse linear least-

squares system, as explained in Section II. State-of-the-

art least-squares solvers make the solution efficient and

enable reconstruction of the mesh as a whole.

A. Overview

The proposed geometry-aware representation of a

shape is a linear combination of k basis functions, which

are vectors that assign a real value to each vertex of

the mesh. The basis functions are an implicit function

of the connectivity of the mesh and of the indices of

k vertices that we call anchors. Each basis function is

selected so that it fulfils the following conditions in the

least-squares sense: it attains the value 1 at one of the

anchors and 0 at the other anchors, and it is the smoothest

among all the functions that satisfy these requirements

(we also propose a slightly different definition for strictly

interpolatory anchors, but the principle is the same).

The smoothness of a function is defined in a discrete

manner using the connectivity of the mesh. Specifically,

we require that the position of a vertex deviates as little

as possible from the average of its neighbors in the mesh.

These definitions result in smooth basis functions that

are easy to combine into an approximation that attains

specific values at the anchors. Furthermore, a fast sparse

least-squares solver with updating capability allows us

to efficiently recover a representation of the shape from

the coefficients of the linear combination.

A number of recent papers have shown that the

connectivity of the mesh often encodes some useful in-

formation about the geometry of the shape that the mesh

represents [17], [18]. Isenburg et al. [17] reconstruct a

shape from the connectivity by a non-linear optimization

of a uniform edge-length criterion. In [18] it was shown

that augmenting the connectivity with a few well-placed

anchors significantly increases the geometric value of the

information encapsulated in the connectivity alone. The

least-squares system that is used to reconstruct the so-

called LS-mesh in [18] is essentially the same system

that arises from our basis vectors. In this paper, we fully

explore the application of geometry compression, both

theoretically and experimentally. Progressive compres-

sion is made possible thanks to the proposed algorithm

that quickly augments the existing representation with

new anchors without fully solving the least-squares re-

construction system again. We rigorously analyze the

underlying basis vectors, which provides a theoretical

framework for studying this type of approximation ap-

proaches.

The effectiveness of adding anchors with geometric

information was used earlier in [9] to reduce the low-

frequency error caused by quantization of the differential

coordinates of the mesh. There, a linear least-squares

system was solved to reconstruct the mesh geometry

from a quantized differential representation, and the

work focused on the analysis of the visual impact of

the quantization error. In our case, the mesh vertices

do not hold any geometric information – it is entirely

encapsulated in the basis functions.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 3

6 spectral basis vectors 45 spectral basis vectors

6 geometry-aware vectors 45 geometry-aware vectors

Fig. 2. Reconstruction of the swallow curve (simple closed path)

using different bases. The top row shows reconstruction using the

Laplacian eigenvectors, which are the discrete Fourier basis function

in this case. The bottom row displays reconstruction with geometry-

aware basis vectors. The reconstructed mesh is shown in black, while

the original mesh is tinted in blue. The geometry-aware bases better

approximate the features of the shape, on large as well as on small

scales.

The main contributions of this paper include efficient

algorithms for producing a geometric approximation of

a shape and for recovering the approximate shape from

the compact representation. Our algorithms are based on

several advanced computational linear algebra tools: the

ability to control the conditioning of the least-squares

problems that we solve, the ability to solve them quickly,

and the ability to quickly add anchors by updating a

sparse factorization of an augmented Laplacian matrix.

We also provide evidence that the new method compares

favorably with spectral methods, both in terms of com-

pression ratios for a given approximation error and in

terms of running times. The paper explores the theory

of augmenting the connectivity with geometric data, in

search for a better understanding of shapes in general

and approximation of irregular meshes in particular.

II. GEOMETRY-AWARE BASES

Most of the techniques for approximating and encod-

ing mesh geometries represent the geometry as a linear

combination of basis functions. In this section we present

the specific basis functions that we use and explain why

this basis is effective.

A mesh function is a real vector that assigns a value

to each vertex in the mesh. A basis function is simply a

mesh function, and a basis is a set of basis functions that

spans R
n, where n is the number of vertices in the mesh.

The coordinates of the vertices, say the x coordinates,

are a mesh function that expresses the location of the

vertices in R
3 as a linear combination of the functions

of the standard basis, whose functions assign 1 to one

vertex and 0 to all the others. The coordinates can also

be expressed as a linear combination of other basis

functions.

The bases that we use, like Laplacian-spectral bases,

can be constructed by solving a series of minimization

problems. This construction is perhaps not the most

natural one for Laplacian-spectral bases, but it is the most

natural for our bases. Let us describe this construction

for the well-known Laplacian-spectral bases first. The

combinatorial Laplacian of a mesh is the n × n sym-

metric positive semi-definite matrix L = D − A, where

A = (aij) is the adjacency matrix (aij = 1 if vertices i
and j are neighbors and aij = 0 otherwise) and D is the

diagonal matrix whose ith entry on the diagonal equals

the valency (degree) of vertex i.
Given the Laplacian L of the mesh, the first Laplacian-

spectral basis function u1 is the function that minimizes1

‖Lu1‖ subject to ‖u1‖ = 1. The next basis function u2

is the one that minimizes ‖Lu2‖ subject to ‖u2‖ = 1 and

to u2 ⊥ u1. In general, uk minimizes ‖Luk‖ subject to

‖uk‖ = 1 and to uk ⊥ span{u1, . . . ,uk−1}. The func-

tions uk are the eigenvectors of L sorted by the eigen-

values. The minimization problems above favor smooth

basis functions, because the transformation x 7→ Lx as-

signs to each vertex i the difference between xi and the

average of its neighbors, multiplied by the number of

neighbors. Therefore, u1 is the smoothest vector in R
n,

the constant vector, u2 is the smoothest mesh function

orthogonal to u1, and so on. The first function u1 is

always the same, while the shapes of the rest depend on

the topology of the mesh.

A. Relaxed geometry-aware bases

Our basis also solves a series of minimization prob-

lems, but they are chosen in a geometry-aware manner.

Given a set of k vertex indices 1 ≤ a1, a2, . . . , ak ≤ n,

the ith function vi in our basis minimizes

‖Lvi‖2 +





∑

j 6=i

ω2|(vi)aj
− 0|2 + ω2|(vi)ai

− 1|2


 .

1We use the following notation. Vectors are denoted by upright

bold letters, e.g., x, and their elements are denoted by italic letters,

e.g., xi. All the vectors in this paper are column-vectors and all the

norms are 2-norms.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 4

0 50 100 150 200 250 300
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
5 first vectors out of 5 anchor vectors

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
5 first vectors out of 20 anchor vectors

(a) (b)

Fig. 3. Geometry-aware basis functions on a 1D domain. The mesh

here is a simple closed path with 274 vertices. Plot (a) displays the

five basis functions corresponding to a set of five anchors; (b) shows

the first five basis functions out of a 20-anchor basis.

The interpretation of this minimization problem is the

following. The basis function vi minimizes the sum of

two terms. The first term is the non-smoothness in vi,

and the second is the deviation of vi from given values in

the k mesh locations a1, . . . , ak, which we call anchors.

These values are 1 at ai and 0 at aj , j 6= i. Therefore, vi

tries simultaneously to be smooth everywhere, to be large

at ai, and to vanish on all the other aj’s. The weight ω
controls the impact of the anchors. Our algorithms never

use basis functions other than the first k (the number of

anchors), so there is no point in characterizing them.

(Formally, all completions of this set of k functions to a

basis of R
n are equivalent for our algorithms.)

Figure 3 shows five geometry-aware basis functions

on a mesh consisting of a simple path. On this mesh,

the first Laplacian-spectral basis functions are simply

low-frequency sines and cosines. The geometry-aware

functions are also fairly smooth, but most of their

“energy” is concentrated near a single anchor. Basis

functions for larger k are less smooth, because the

anchors get closer to each other, forcing the functions

to attain values near 0 and near 1 within short intervals.

Intuitively, a few geometry-aware functions should allow

us to approximate smooth mesh functions whose extrema

are at or near the anchors more accurately than a few

geometry-oblivious Laplacian-spectral functions.

We express approximations of mesh functions using a

set of k anchors and the coefficients c = (c1, . . . , ck)
T

of the corresponding k geometry-aware functions

V = (v1, . . . ,vk). Given this representation of the ap-

proximation, we reconstruct the approximation x̃ in the

standard basis by solving a single least-squares mini-

mization problem,

x̃ = argmin
x

{

‖Lx‖2 +

k
∑

i=1

ω2|xai
− ci|2

}

=

=
k

∑

i=1

civi = V c

The equality follows from the linearity of the minimum-

norm solution to least-squares problems. The coefficient

matrix L̃ of this least-squares problem has n + k rows

and n columns. The significance of this expression is that

it shows that we can reconstruct x̃ from V without any

reference to the basis vectors V . Thus, assuming w.l.o.g.

that (a1, a2, . . . , ak) = (1, 2, . . . , k), we reconstruct x̃ by

simply finding the vector that minimizes the norm of

















L

ω Ik×k | 0























x1

...

xn






−



















|
0
|

ω c1

...

ω ck



















. (1)

Since L is typically very sparse, this least squares can

be solved very quickly even when n is large. It should

be noted that the reconstruction is not interpolatory at

the given values on the anchors – it only approximates

them in a least-squares sense.

There are at least three categories of constraints that

we can apply to the anchors. The method that we pre-

sented above charges a quadratic penalty for deviations

of x̃ from x at the anchors. We can use different weights

for these penalties and for the smoothness penalties.

Another option is to use box constraints, which require

that x̃ai
lies within a box centered around xai

[19]. The

algorithmic issues in this approach are more complex

than in the other approaches, so we have not pursued

it. The third approach is interpolatory; it requires that

x̃ai
= xai

. This is the limiting case of the two other

approaches. We explain this approach next.

B. An interpolatory scheme

We can create slightly different geometry-aware bases

by forcing the basis functions to attain prescribed values

at specific mesh locations. Given a set of k vertex indices

1 ≤ a1, . . . , ak ≤ n, the ith function wi in the basis

minimizes ‖Lwi‖ subject to (wi)ai
= 1 and (wi)aj

= 0
for j 6= i.

Given the indices of the k anchors and the coef-

ficients c of the basis functions (w1, . . . ,wk) = W ,

the approximation x̂ can be reconstructed as follows.

We use the equation xai
= ci to eliminate xai

from

the system. This effectively deletes column ai and row

n + ai from the coefficient matrix L̃ (where ω = 1) and

changes the right-hand side. After all these equations are

eliminated, the resulting coefficient matrix L̂ has n rows

and n − k columns. To reconstruct the unknown values

xj , j /∈ {ai}, we solve the least-squares problem

min
x

‖L̂x − (−L̃1:n,{ai}c)‖ .

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 5

Combining the minimizer with the known values

xai
= ci yields the approximation

x̂ =
k

∑

i=1

ciwi = Wc .

The coefficient matrix L̂ of this least-squares problem

is smaller and sparser than L̃, so in general it will

be even easier to solve the least-squares problem that

reconstructs x̂.

The main disadvantage of this basis, compared to the

relaxed basis {vi}, is that adding interpolatory anchors

is computationally more expensive than adding least-

squares anchors; we explain this issue below, in Sec-

tion III. When a large weight ω is used for the anchors

in the relaxed scheme, the solution effectively becomes

very close to interpolatory. See Figure 4 that visualizes

the influence of different ω’s.

C. Approximating mesh functions

So far we have seen the basis functions and how

to reconstruct an approximation given the indices of

the anchors and the coefficients of the basis functions.

We now turn to the question of how to generate the

coefficients c = (c1, . . . , ck)
T given a mesh function x

and a set a1, . . . , ak of anchors.

Perhaps the best way to define c is by requiring that

the approximation x̃ = V c or x̂ = Wc of a mesh

function x be as close as possible, in the 2-norm, to

x. That is, to require that c minimizes ‖V c − x‖ or

‖Wc− x‖ (depending on the basis used). Solving these

systems is potentially expensive. A naive way to compute

these optimal c’s is to compute V or W explicitly,

by solving the least-squares problems that define their

columns, and then to solve the dense n×k least-squares

problem. Note that to reconstruct x̃ = V c or x̂ = Wc,

we do not use an explicit representation of V or W .

For interpolatory geometry-aware bases, another nat-

ural way to choose c is by setting ci = xai
. This ensures

that x̂ coincides with x at the anchors. The 2-norm of

the error x̂ − x is likely to be higher than if we define

c so as to minimize the error, but now the error is

concentrated away from the anchors. It turns out that

setting ci = xai
works well even for relaxed geometry-

aware bases V . Employing large weights (ω → ∞) on

the relaxed anchors effectively makes the relaxed scheme

interpolatory, while maintaining the advantage of the

updating capability (see Section III). In practice, we set

ω = 10n.

III. THE PROGRESSIVE SCHEME

One of the best aspects of relaxed geometry-aware

bases is that we can quickly improve the approximation

as soon as the location of additional anchors becomes

known. This allows a client to display a rough approx-

imation as soon as the location of a few anchors is

received from a server or retrieved from storage.

When the locations of additional anchors become

known to the client, it can produce a more accurate

approximation by updating the system with the new

information. The following system is solved:

L̃newx = (01×n, ω c1, . . . , ω ck, ω ck+1, . . . , ω ck+m)T ,

where L̃new is the updated system matrix comprised of

the previous L̃, and additional rows for the new anchors

ak+1, . . . , ak+m; ck+1, . . . , ck+m denote the new coef-

ficients. The key to utilizing additional anchors is an

efficient updating scheme to a sparse factorization of L̃.

The system (1) can be solved using a sparse Cholesky

factorization of the normal equations, L̃T L̃ = RT R,

where R is sparse and upper triangular. The factorization

is done once, for an initial set of anchors. Suppose that

we now add an anchor ak+1. This adds a row to L̃,

and adds ω2 to the ak+1th diagonal element of L̃T L̃.

To reconstruct the new approximation, we need a new

Cholesky factorization of L̃T
newL̃new. Fortunately, we can

update the previous factorization in time proportional to

the number of nonzeros in R. Furthermore, the update

does not modify the nonzero structure of R, only the

numerical values of its entries.

We update R as follows. We essentially eliminate the

single nonzero in the new row in L̃ using a series of

Givens rotations that we perform on that row and on

rows of R. The first rotation is performed on row ak+1

of R and annihilates the ak+1th element in the new row.

This, however, introduces nonzeros to several elements in

the new row, elements with column indices greater than

ak+1. We then eliminate the nonzero element with the

smallest column index in the new row, say index i, using

a Givens rotation on row i of R. The Givens rotation

never modifies the nonzero structure of rows in R,

because the next row that we update is always the parent

in the elimination tree of L̃T L̃ of the previous row. Since

we update R using a series of orthogonal transformations

(the Givens rotations) and since the addition of a ω2 to

the diagonal of L̃T L̃ only improves its conditioning, the

updating process is always numerically stable.

Our incremental update method can be viewed as

a special case of the general algorithm proposed by

Davis and Hager [20]. Due to the specific structure of

the change in L̃, the update in our case is particularly

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 6

ω = 1.0 ω = 10.0 ω = 100.0 interpolatory reconstruction

ω = 1.0 ω = 10.0 ω = 100.0 interpolatory reconstruction

Fig. 4. The effect of different weights on the relaxed scheme. The first three columns display the reconstruction with the relaxed scheme

using the same set of anchors, with different weights. The rightmost column shows the reconstruction using the interpolatory scheme. Close-

up on the ear is shown in the bottom row; the red spheres denote the position of the anchor vertices in the original mesh. As the weight of

the anchors grows, the reconstruction approaches to being interpolatory.

efficient. More specifically, Davis and Hager show how

to update the Cholesky factor R when an arbitrary row

is added or removed from L̃. Our algorithm solves a

special case of this general update/downdate problem:

the case of adding a row with a single nonzero. In

the general case, the nonzero structure of R might

change, and so does its elimination tree. These changes

require a sophisticated algorithm to take care of sparsity.

Furthermore, since R can fill as a result of an update,

the cost of a series of updates can be hard to predict.

In contrast, in our case the nonzero structure of R
and the elimination tree do not change, so the path

in the elimination tree from the vertex ak+1 to the

root gives the sequence of elimination operations that

must be performed. This special case is considerably

simpler. Another difference between the algorithm of

Davis and Hager and ours is that we use orthogonal

Givens rotations to eliminate the new row in L̃, whereas

they use nonorthogonal operations. As a consequence,

our algorithm performs 4 floating-point operations per

nonzero in R that is modified, and their algorithm

performs only 2 per modified nonzero. Using fast Givens

rotation in our algorithm would bring the two algorithm

to the same cost per modified nonzero, but due to the

insignificance of the update costs, we did not implement

such an approach. In short, our algorithm is, essentially,

a special case of [20]. But in our case, much of the

machinery developed in [20] is not needed.

Since three-dimensional meshes typically have small

vertex separators, and due to the special structure of our

updates, we can provide a tighter bound on the cost

of an update operation than was given by Davis and

Hager. They show that the cost of an update operation

is proportional to the number of nonzeros in R that

are being modified. The same is true in our algorithm.

However, in our case we can argue that under a rea-

sonable assumption, the number of modified nonzeros

in R is proportional to n, the size of the mesh; in most

cases, n is much smaller than the number of nonzeros

in R. Suppose that a mesh can be embedded on the

surface of a body with bounded genus (that is, without

many holes). Then the mesh has excluded minors, which

implies that it has a O(
√

n) approximately-balanced

vertex separator [21]. Once separated, the same holds

for the parts. The separators form a tree, and the path in

the elimination tree from row ak+1 to the root is also a

path in this separator tree. The number of nonzeros in R
that is modified is at most the sum of the squared sizes

of the separators on this path, which is at most

(

c
√

n
)2

+
(

c
√

(2/3) n
)2

+
(

c
√

(2/3)2 n
)2

+ · · · <

< 1.8 c2 n ,

for some constant c that depends on the genus. Note that

for such meshes, the total number of nonzeros in R is

Θ(n log n), so the update only modifies a small fraction

of them. In particular, the update is much cheaper than

solving a single least-squares problem with the computed

factor R.

In the graphics literature, updating linear systems of

equations due to changes of boundary conditions was

also performed by James and Pai [22]. However, they

use the capacitance-matrix approach, where a change

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 7

of rank s in the original system matrix requires O(s3)
operations for update. This type of approach is not

efficient when it comes to incremental updates, since the

update has to be applied to the original factorization of

the first L̃. Thus, the cost would be cubic in the total

number of added anchors.

In general, updating a sparse factorization with arbi-

trary constraints can be both expensive and unstable. For

example, updating the factorization of the interpolatory

scheme is probably more difficult than updating R to

accommodate additional relaxed anchors. However, it is

easy to add relaxed anchors to a factorization of an

interpolatory basis. What is important is what kind of

constraint we add, not how the original factorization was

produced. Therefore, we only employ relaxed anchors

update, which is guaranteed to be stable.

IV. SELECTING ANCHORS

The norm of the approximation error ‖x − x̃‖ is

governed by two factors: the condition number of L̃
and the angle between x and span{v1, . . . ,vk}. The

first factor depends on the location of the anchors in

the topology of the mesh, and is independent of the

geometry of the shape. It is proven that L̃ is well-

conditioned if, loosely speaking, no vertex is too far (in

terms of mesh edges) from an anchor, i.e., if the anchors

are well-distributed across the mesh graph. Theoretical

bounds on the condition number of L̃, as well as a

practical algorithm for choosing an initial set of anchors

to condition L̃, can be found in [23]. The second factor

depends on the interaction between the the geometry of

the given shape and the basis functions v1, . . . ,vk.

We use an iterative greedy heuristic to reduce the

angle between x and span{v1, . . . ,vk}. Given a set of

anchors a1, . . . , ak−1, we compute an approximation x̃

of the given shape and find the vertex on which x̃ differs

most from x. That vertex becomes the next anchor, ak.

Since we try to approximate at least three mesh functions

using the same anchors (the mesh function in three space

dimensions), we actually select the vertex whose spacial

3D location in the approximated shape has the largest

geometric distance to its location in the original mesh.

The above incremental selection scheme is well suited

for progressive transmission of the mesh geometry: the

server sends the anchors to the client in the same order

in which they were chosen by the greedy algorithm.

V. RESULTS

We have tested our shape approximation method on

several 3D models. We report results only for the relaxed

geometry-aware bases due to lack of efficient updating

capability for the interpolatory scheme, as discussed in

Section III. To reconstruct an approximation from an

initial set of anchors, the client needs to compute the

sparse factorization of L̃ (the connectivity is supposed to

be already known) and to solve for the mesh functions

x, y and z. When more anchors become known, the fac-

torization is updated and we solve for x, y, z again. The

running times of these key ingredients are summarized

in Table I. The factorization is the most costly part, and

is computed only once; the update and solve times are

very small. We have used the direct solvers provided by

TAUCS [24]. All our experiments were carried out on a

2.4 GHz Pentium 4 machine.

The compressed representation consists of the indices

of the chosen anchors and the basis coefficients, which

are the locations of the anchor vertices in the original

model. The coefficients are uniformly quantized, and all

the data is encoded using an arithmetic encoder. How-

ever, since the locations and the indices of the anchors

are scattered across the mesh, entropy-encoding typically

does not further reduce the size of the representation.

Thus, roughly k log n bits are needed to represent the

indices of the k anchors and 3kq bits for the coefficients,

where q is the quantization level. Note that since our

scheme favors smooth reconstructions, the approximated

shapes do not suffer from “jaggies” effects that would

be caused by quantization of all the x, y, z coordinates.

We used q between 10 to 12 bits.

The results of approximations using varying numbers

of basis vectors are shown in Figures 1 and 6. One can

observe that the main features of the models, such as

extruding parts, are captured in the very early stages

of the progressive scheme (i.e. with a small number of

basis vectors). We have compared our results with the

method of Karni and Gotsman [7]. The spectral basis

of the mesh Laplacian [7] is a natural candidate for

comparison with our geometry-aware bases, since both

compression methods preserve the mesh connectivity,

unlike the compression schemes that require semi-regular

remeshing [3]–[6]. We have carried out such a compar-

ison; however, it is limited to small meshes only. As

discussed above, the spectral method requires computing

a partial eigendecomposition of the Laplacian, which

is time- and space-consuming. We used MATLAB’s

eigs function to find the first several eigenvectors of

some submeshes of the Camel model (see Figure 5).

Computation of the first 1000 eigenvectors of a mesh

with 3220 vertices took about 4 minutes on a 2.4 GHz

machine with 2 GB or RAM. The computation used

more than 1 GB of RAM, and indeed, on a similar

machine with only 1 GB of RAM, the computation

took about 20 minutes due to paging. Computing the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 8

TABLE I

RUNNING TIMES IN SECONDS OF THE DIFFERENT COMPONENTS OF SOLVING THE LINEAR LEAST-SQUARES SYSTEMS. Factor STANDS

FOR THE FACTORIZATION TIME OF THE NORMAL EQUATIONS MATRIX; Solve IS THE TIME OF SOLVING FOR A SINGLE MESH FUNCTION

BY BACK-SUBSTITUTION; Average update IS THE AVERAGE TIME SPENT ON UPDATING THE FACTORIZATION BY ONE RELAXED ANCHOR

(THE NUMBERS IN PARENTHESES DENOTE THE RANGE OF ANCHOR AMOUNTS OVER WHICH THE AVERAGE WAS COMPUTED). Worst-case

STANDS FOR THE LONGEST UPDATE TIME OBSERVED OVER THE UPDATES OF THE PREVIOUS COLUMN.

Model # vertices Factor Solve Average update (range) Worst-case

Camel hump 1334 0.031 0.002 0.00007 (1–1000) 0.0002
Camel mouth 3210 0.101 0.006 0.0002 (1–3000) 0.0003
Camel leg 3220 0.121 0.006 0.0002 (1–3000) 0.0004
Camel head 11381 0.503 0.029 0.0010 (1–10000) 0.0013

Pig 28747 1.558 0.065 0.0020 (1–28000) 0.0032
Camel 39074 2.096 0.073 0.0021 (1–39000) 0.0034
Feline 49864 2.750 0.110 0.0025 (1–49000) 0.0034
Max Planck 100086 7.713 0.240 0.0110 (1–100000) 0.0120
Igea 134345 11.826 0.444 0.0200 (1–130000) 0.0215

first 1000 eigenvectors of a mesh representing the entire

head of the camel, with 11,381 vertices, took about

21 minutes on the 2 GB RAM machine. On larger

meshes, the eigenvector computation simply failed due

to lack of memory. For example, we were not able

to compute more than about 5000 eigenvectors of the

11,381-vertex mesh, even on a machine with 2 GB RAM.

We note that MATLAB’s eigs function uses a state-of-

the-art sparse eigensolver called ARPACK [25], which is

implemented in Fortran. Thus, this performance is not

due to MATLAB’s interpreter and nor to a poor choice of

algorithm; it is essentially the inherent cost of computing

eigenvectors.

Figure 5 summarizes the comparison results for the

tested small meshes in the form of rate-distortion curves.

Typically, up to 10 - 20% of the n eigenbasis vectors are

needed for visually lossless reconstruction. As suggested

by Karni and Gotsman [7], we quantized the spectral

coefficients to 14 bits. Stronger quantization leads to

distortion of the reconstructed shape even when more

than 50% of the full basis is used, since quantization in

the transformed domain behaves differently than quan-

tization in the standard basis. The spectral coefficients

were compressed with an arithmetic encoder. The rate-

distortion curves report three error metrics as a function

of the file size of the compressed geometry: the max-

norm error, the L2 error measured by the Metro tool [26]

and a simple RMS of distance between the mesh vertices.

The graphs show that our method does a better job in

terms of the max-norm metric, which is perhaps not sur-

prising because the anchor selection scheme specifically

aims at minimizing this norm. As for the L2 and simple

RMS metrics, the two algorithms perform practically the

same. For the Camel hump mesh, which is fairly smooth

and featureless, the geometry-oblivious spectral method

performs only slightly better.

It should be mentioned that to alleviate the computa-

tion problem of the spectral basis, Karni and Gotsman [7]

propose to partition the mesh into patches, each of small

enough size to make its spectral decomposition feasible.

In their subsequent work, Karni and Gotsman [12] use

fixed bases, derived from 6-regular connectivity patches.

However, partitioning the mesh is prone to visible dis-

continuity artifacts along the boundaries between the

submeshes, similar to the blocking artifact in JPEG

encoding. We emphasize that our method is computation-

ally efficient while it achieves nearly equal performance

in terms of compression ratios.

VI. CONCLUSIONS AND DISCUSSION

We have presented a method to approximate the

geometry of a shape based on its connectivity and a

number of anchor vertices. The “tagging” of the anchors,

together with the connectivity, yield a geometry-aware

basis that spans a subspace which is close to the given

shape. The coefficients that approximate the shape in

that subspace are readily given by the spatial location of

the anchors. Reconstructing the approximated shape only

requires the solution of a sparse least-squares problem.

The technique is simple and easy to implement given the

required linear algebra building blocks. The complexities

of the geometry and the connectivity of the irregular

mesh are completely hidden by the linear algebra ob-

jects, the matrices and the vectors. The efficiency of

the technique stems from the existence of sophisticated

linear algebra tools, such as sparse-matrix factorizations,

updating techniques, and so on.

There are a number promising directions for future

work. One is the relationship between the triangle count

reduction and geometry encoding [27], [28]. The scheme

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 9

that we presented is not fully progressive, in the sense

that the mesh has always the full connectivity. It would

be desirable to find a way to incorporate geometry-aware

bases into progressive meshes [29], [30].

Another direction is to study the relation of our bases

to non-uniform B-spline bases. We can view these bases

along three axes: their orthogonality, their supports, and

their applicability to irregular 3D meshes. In this design

space, our method can be described as non-orthogonal,

globally-supported bases for irregular meshes. The po-

tential computational difficulties that are normally posed

by non-orthogonality and global support are avoided here

since we do not compute the basis vectors explicitly.

Our method can also be viewed as a family of regu-

larization methods for a discrete ill-posed problem [31].

Any lossy geometry-encoding method tries to describe

mesh functions with many degrees of freedom using

relatively little data. Therefore, any such method is by

definition ill-posed (many shapes have the same com-

pressed representation). In our case, the data consists of

the indices of the anchors and the values that the shape

attains there. To reconstruct a unique shape from this

data, one must add a side condition. The condition that

we attach is a smoothness condition, that we impose in

this irregular discrete case using the Laplacian matrix.

To improve smoothness even further and/or to make the

algorithmic challenges more manageable, we can relax

the equality constraints at the anchors and replace them

with either penalties or box constraints. This viewpoint

would lead to exactly the same algorithms that we have

developed in this paper.

The smoothness side condition that regularizes the

reconstruction is clearly unsuitable for models that are

not smooth. Our method is, however, suitable for models

with localized sharp features, as long as many anchors

are used in the vicinity of the sharp features. The repro-

duction of sharp features near anchors can be controlled

by the weights of smoothness constraints versus the

weights of location constraints.

We believe that this work contributes to a more

profound understanding of shapes represented by irreg-

ular meshes. There is a broad spectrum of techniques

to select a basis for effectively representing geometry,

ranging from splines and parametric free-form surfaces

to wavelet bases for image encoding. Recently, re-

searchers began proposing using over-complete bases.

This technique, known as basis pursuit [32], starts with

a large and redundant set of basis vectors, and uses an

optimization algorithm to try to find a combination of

very few basis vectors that well approximate a given

input vector (shape). This can sometimes lead to very

sparse representations, but the costs of generating the

basis vectors and finding a sparse representation are

considerable. In that context, our method can be seen

as a specific over-complete basis, and as a way to

generate a sparse representation without resorting to an

optimization or search algorithm.

ACKNOWLEDGMENT

We thank the editor and the reviewers for their

comments and suggestions on this work. Models are

courtesy of Cyberware, Stanford University and Max-

Planck-Institut für Informatik. This work was supported

in part by grants 572/00 and 8001/02 from the Israel

Science Foundation (founded by the Israel Academy of

Sciences and Humanities), by grant 2002261 from the

US-Israeli Binational Science Foundation, by the Israeli

Ministry of Science, by an IBM Faculty Partnership

Award and by the German Israel Foundation (GIF).

REFERENCES

[1] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney,

Level of Detail for 3D Graphics. Elsevier Science Inc., 2002.

[2] T. Lyche, “Knot removal for spline curves and surfaces,” in

Approximation Theory VII, E. W. Cheney, C. K. Chui, and L. L.

Schumaker, Eds. Academic Press, Boston, 1993, pp. 207–227.

[3] M. Lounsbery, T. D. DeRose, and J. Warren, “Multiresolution

analysis for surfaces of arbitrary topological type,” ACM Trans-

actions on Graphics, vol. 16, no. 1, pp. 34–73, January 1997.

[4] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progressive

geometry compression,” in Proceedings of ACM SSIGGRAPH

2000, 2000, pp. 271–278.

[5] L. Kobbelt, “Discrete fairing and variational subdivision for

freeform surface design,” The Visual Computer, vol. 16, no.

3-4, pp. 142–158, 2000.

[6] N. Litke, A. Levin, and P. Schröder, “Fitting subdivision sur-

faces,” in IEEE Visualization 2001, 2001, pp. 319–324.

[7] Z. Karni and C. Gotsman, “Spectral compression of mesh

geometry,” in Proceedings of ACM SIGGRAPH 2000, July

2000, pp. 279–286.

[8] P. H. Chou and T. H. Meng, “Vertex data compression through

vector quantization,” IEEE Transactions on Visualization and

Computer Graphics, vol. 8, no. 4, pp. 373–382, 2002.

[9] O. Sorkine, D. Cohen-Or, and S. Toledo, “High-pass quantiza-

tion for mesh encoding,” in Proceedings of ACM/Eurographics

Symposium on Geometry Processing, Aachen, Germany, 2003.

[10] M. Fiedler, “Algebraic connectivity of graphs,” Czech. Math.

Journal, vol. 23, pp. 298–305, 1973.

[11] G. Taubin, “A signal processing approach to fair surface de-

sign,” in Proceedings of SIGGRAPH 95, 1995, pp. 351–358.

[12] Z. Karni and C. Gotsman, “3D mesh compression using fixed

spectral bases,” in Graphics Interface 2001. Canadian Infor-

mation Processing Society, 2001, pp. 1–8.

[13] H. Zhang and E. Fiume, “Butterworth filtering and implicit

fairing of irregular meshes,” in Proceedings of Pacific Graphics

2003, 2003, pp. 502–506.

[14] R. Ohbuchi, A. Mukaiyama, and S. Takahashi, “A frequency-

domain approach to watermarking 3d shapes,” Computer

Graphics Forum, vol. 21, no. 3, pp. 373–382, 2002.

[15] C. Gotsman, X. Gu, and A. Sheffer, “Fundamentals of spherical

parameterization for 3D meshes,” in Proceedings of ACM

SIGGRAPH 2003, 2003, pp. 358–363.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 10

200 300 400 500 600 700 800 900 1000 1100 1200

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Camel hump (1334 vertices)

filesize (bytes)

Spectral L error
Geometry-aware L error
Spectral RMS error
Geometry-aware RMS error
Spectral L2 (Metro)
Geometry-aware L2 (Metro)

8

8

1000 1500 2000 2500 3000

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Camel leg (3220 vertices)

filesize (bytes)

Spectral L error
Geometry-aware L error
Spectral RMS error
Geometry-aware RMS error
Spectral L2 (Metro)
Geometry-aware L2 (Metro)

8

8

500 1000 1500 2000 2500 3000

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Camel mouth (3210 vertices)

filesize (bytes)

Spectral L error
Geometry-aware L error
Spectral RMS error
Geometry-aware RMS error
Spectral L2 (Metro)
Geometry-aware L2 (Metro)

8

8

Fig. 5. Rate-distortion curves for small parts of the Camel model. The graphs display different error measures: L∞ stands for maxi ‖pi − p̃i‖
where pi = (xi, yi, zi); RMS stands for the root-mean-square geometric distance between corresponding vertices in the original and

approximated models; L2 error was measured using the Metro tool. Our experiments show that the geometry-aware approximation method

is very close to the spectral method in its performance. The L∞ error of our method tends to be smaller, while the L2 error is practically

the same.

Original model, 39074 vertices 100 basis vectors, e=0.01 600 basis vectors, e=0.0022 1200 basis vectors, e=9.8·10−4 3600 basis vectors, e=2.07·10−4

0.5KB (0.10 bits/vertex) 3.3KB (0.69 bits/vertex) 6.7KB (1.40 bits/vertex) 19.8KB (4.15 bits/vertex)

Original model, 49864 vertices 100 basis vectors, e=0.0098 500 basis vectors, e=0.0034 4000 basis vectors, e=0.0012 9000 basis vectors, e=7.2·10−4

0.6KB (0.09 bits/vertex) 2.8KB (0.46 bits/vertex) 22.2KB (3.65 bits/vertex) 50.1KB (8.23 bits/vertex)

Original model, 100086 vertices 100 basis vectors, e=0.0078 1000 basis vectors, e=0.0027 3000 basis vectors, e=0.0013 10000 basis vectors, e=4.22·10−4

0.6KB (0.05 bits/vertex) 6.1KB (0.50 bits/vertex) 18.2KB (1.49 bits/vertex) 60.5KB (4.95 bits/vertex)

Fig. 6. Reconstruction of several models using an increasing number of geometry-aware basis vectors. The sizes of the encoded geometry

files are displayed below the models. The letter e denotes the L2 error value. Refer to Table I for the timings.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, AUGUST 2004 11

[16] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, “Implicit

fairing of irregular meshes using diffusion and curvature flow,”

in Proceedings of ACM SIGGRAPH 99, Aug.8–13 1999, pp.

317–324.

[17] M. Isenburg, S. Gumhold, and C. Gotsman, “Connectivity

shapes,” in Proceedings of IEEE Visualization 2001, 2001, pp.

135–142.

[18] O. Sorkine and D. Cohen-Or, “Least-squares meshes,” in Pro-

ceedings of Shape Modeling International. IEEE Computer

Society Press, 2004, pp. 191–199.

[19] M. Adlers, “Sparse least squares problems with box con-

straints,” Division of Numerical Analysis, Department of Math-

ematics, Linköpings Universitet, Linköping, Sweden, Linköping

Studies in Science and Technology (Theses) 689, 1988.

[20] T. A. Davis and W. W. Hager, “Modifying a sparse cholesky

factorization,” SIAM Journal on Matrix Analysis and Applica-

tions, vol. 20, no. 3, pp. 606–627, 1999.

[21] N. Alon, P. Seymour, and R. Thomas, “A separator theorem

for nonplanar graphs,” Journal of the American Mathematical

Society, vol. 3, pp. 801–808, 1990.

[22] D. L. James and D. K. Pai, “Artdefo: accurate real time

deformable objects,” in Proceedings of ACM SIGGRAPH 99,

1999, pp. 65–72.

[23] D. Chen, D. Cohen-Or, O. Sorkine, and S. Toledo, “Algebraic

analysis of high-pass quantization,” Tel Aviv University,” Tech-

nical Report, May 2004.

[24] S. Toledo, TAUCS: A Library of Sparse Linear Solvers, version

2.2, Tel-Aviv University, Available online at http://www.tau.ac.

il/∼stoledo/taucs/, Sept. 2003.

[25] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’

Guide: Solution of Large-Scale Eigenvalue Problems with Im-

plicitly Restarted Arnoldi Methods. Philadelphia: SIAM, 1998.

[26] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measur-

ing error on simplified surfaces,” Computer Graphics Forum,

vol. 17, no. 2, pp. 167–174, 1998.

[27] D. King and J. Rossignac, “Optimal bit allocation in compressed

3D models,” Computational Geometry, Theory and Applica-

tions, vol. 14, no. 1-3, pp. 91–118, 1999.

[28] P. Alliez and C. Gotsman, “Recent advances in compression of

3D meshes,” in Proceedings of the Symposium on Multiresolu-

tion in Geometric Modeling, september 2003.

[29] H. Hoppe, “Progressive meshes,” in Proceedings of ACM SIG-

GRAPH 96, August 1996, pp. 99–108.

[30] J. C. Xia and A. Varshney, “Dynamic view-dependent sim-

plification for polygonal models,” in Proceedings of IEEE

Visualization ’96, 1996, pp. 327–334.

[31] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems:

Numerical Aspects of Linear Inversion. Philadelphia: SIAM,

1997.

[32] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic

decomposition by basis pursuit,” SIAM Journal on Scientific

Computing, vol. 20, no. 1, pp. 33–61, 1999.

Olga Sorkine received the BSc degree in

mathematics and computer science from Tel

Aviv University in 2000. Currently, she is

a PhD student at the School of Computer

Science at Tel Aviv University. Her research

interests are in computer graphics and include

shape modeling, mesh processing and approx-

imation.

Daniel Cohen-Or is an Associate Professor at

the School of Computer Science at Tel Aviv

University. He received a BSc in both Mathe-

matics and Computer Science (1985), an MSc

in Computer Science (1986) from Ben-Gurion

University, and a PhD from the Department of

Computer Science (1991) at State University

of New York at Stony Brook. His current

research interests include rendering, visibility,

shape modeling and image synthesis.

Dror Irony is a PhD student in the School of

Computer Science at Tel Aviv University. He

received his BSc in mathematics and computer

science in 1996 and his MSc in computer

science in 2000, both from Tel Aviv Univer-

sity. Dror’s Master thesis dealt with a new

parallel communication-efficient dense linear

solver and some related theoretic and practical

results. His research today is focused in stable

direct algorithms for sparse and banded matrices. From 1996 until

2000, Dror worked for Motorola Communication Israel.

Sivan Toledo is an associate professor of

Computer Science at Tel Aviv University. He

received his BSc and MSc from Tel Aviv

University, both in 1991. He received his PhD

from MIT in 1995, and worked as a postdoc-

toral associate at the IBM TJ Watson Research

Center and at the Xerox Palo Alto Research

Center before joining Tel Aviv University in

1998.

