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Abstract

This paper tackles the problem of novel view synthesis

from a single image. In particular, we target real-world

scenes with rich geometric structure, a challenging task

due to the large appearance variations of such scenes and

the lack of simple 3D models to represent them. Modern,

learning-based approaches mostly focus on appearance to

synthesize novel views and thus tend to generate predictions

that are inconsistent with the underlying scene structure.

By contrast, in this paper, we propose to exploit the 3D

geometry of the scene to synthesize a novel view. Specifi-

cally, we approximate a real-world scene by a fixed num-

ber of planes, and learn to predict a set of homographies

and their corresponding region masks to transform the in-

put image into a novel view. To this end, we develop a new

region-aware geometric transform network that performs

these multiple tasks in a common framework. Our results on

the outdoor KITTI and the indoor ScanNet datasets demon-

strate the effectiveness of our network in generating high-

quality synthetic views that respect the scene geometry, thus

outperforming the state-of-the-art methods.

1. Introduction

Human beings can easily hallucinate what a scene would

look like from a different viewpoint, or, for a dynamic

scene, in the near future. Automatically performing such

a novel view synthesis, however, remains a challenging task

for computer vision systems.

Over the past two decades, the most popular approach to

synthesizing new views has been to reconstruct an exact or

approximate 3D scene model from multiple views [30, 17,

18, 25, 2]. By contrast, view synthesis from a single im-

age, which can be applied to a broader range of problems,

has received much less attention. To overcome the lack of

depth information, early methods have proposed to lever-

age semantic-based priors [12] and geometric cues, such as

vanishing points [13], which, while effective, tend to be less

robust than their multi-view counterparts.

Inspired by the recent deep learning revolution in com-

puter vision, several works have proposed to exploit Deep
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Figure 1. Novel view synthesis from a single image. Given an

input image of the scene and a relative pose, we seek to predict a

new image of the scene observed from this new viewpoint. To this

end, and in contrast with state-of-the-art methods, we propose to

explicitly rely on 3D geometry within a deep learning paradigm.

As a consequence, and as evidenced by our results, our predictions

better respect the scene structure and are thus more realistic.

Convolutional Neural Networks (CNNs) to tackle the novel

view synthesis problem [6, 24, 29]. Whether predicting im-

age pixels directly [24], plane-sweep volumes [6], appear-

ance flow [29], or appearance flow, visibility and the in-

tensity of pixels that were not in the input view [20], these

methods, in essence, all aim to solely leverage appearance

to predict the flow of each pixel from the input view to the

novel view without exploiting the flow of the other pixels.

As such, as shown in Fig. 1, they tend to generate artefacts,

such as distorted local structures in the synthesized images.

In this paper, we propose to explicitly account for 3D ge-

ometry, and thus respect 3D scene structure, in the single-

image novel view synthesis process. To this end, we ap-

proximate the scene by a fixed number of planes, and learn

to predict corresponding homographies that, once applied to

the input image, generate a set of candidate images for the

novel view. We then learn to predict a selection map cor-

responding to each homography, which, after warping, is

used to combine the candidate images to generate the novel

view. In essence, our homography-based approach enforces
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geometric constraints on the flow field, thus modeling scene

structure. Our approach can be thought of as a divide-and-

conquer strategy that allows us to encode a 3D geometric

prior while learning the image transformation.

To achieve this, we develop a novel deep architecture

consisting of two subnetworks. The first one estimates

pixel-wise depth and normals in the input image, which, in

conjunction with the relative pose between the input and

novel views, are then used to estimate one homography

for each planar region in the scene. These homographies

then let us produce a set of warped input images. The sec-

ond subnetwork aims to predict a pixel-wise probability, or

selection map encoding to which homography each input

pixel should be associated. These maps are then warped

with the corresponding predicted homographies, and the

novel view is generated by combining the warped input im-

ages according to the warped selection maps. To account

for pixels not in the input view and potential blur arising

from the combination of multiple warped images, inspired

by [20], we further propose to refine the synthesized im-

age with an encoder-decoder network with skip connec-

tions. As evidenced by Fig. 1, our complete framework

yields realistic-looking novel views.

We demonstrate the effectiveness of our approach on the

challenging KITTI odometry dataset [9] and ScanNet [4],

depicting complex urban outdoor scenes and indoor scenes,

respectively. Thanks to our geometry-based reasoning, our

method not only outperforms the state-of-the-art appear-

ance flow technique of [29] quantitatively, but also yields

visually more realistic predictions.

2. Related Work
Over the years, two main classes of methods have been

proposed to address the novel view synthesis problem:

those that rely on geometry, and the more recent ones that

exploit deep learning. Below, we review the methods be-

longing to these two classes.

Geometry-based view synthesis. Originally, the most

popular approach to view synthesis consisted of explicitly

modeling 3D information, via either a detailed 3D model,

or an approximate representation of the 3D scene structure.

This idea was introduced in [18] more than two decades

ago, by relying on multi-view stereo and a warping strat-

egy. With the impressive progress of multi-view 3D re-

construction techniques [7], highly detailed models can be

obtained, and novel views generated by making use of the

target pose given as input. In complex scenes, however, this

process remains challenging due to, e.g., occlusions leading

to holes in the 3D models. In this context, [2] first recon-

structs a partial scene from multiple images, and then syn-

thesizes depth to fill in the missing pixels and correct the

unreliable regions. Instead of relying on dense reconstruc-

tion, [30] leverages sparse points obtained from structure-

from-motion in conjunction with segmented image regions,

each of which is assumed to be planar and associated to a

homography to warp the input image. While effective in

their context, these methods are inapplicable to the scenario

where a single image is available to synthesize a novel view.

Only little work has been done to leverage geometry for

single-image novel view synthesis. In particular, [13] mod-

els the scene as an axis-aligned box, and requires a user

to annotate the box coordinates, vanishing points and fore-

ground to be able to render the model from a different view-

point. In [12], the image is labeled into three geometric

classes, which defines an approximate scene structure that

can be rendered from a new viewpoint. These methods,

however, only model a very coarse structure of the scene,

and therefore cannot yield realistic novel views. By con-

trast, the recent work of [22] leverages a large collection

of 3D models to infer the one closest to an input image.

While effective for individual objects, this approach does

not translate well to complex, real-world scenes with rich

structures and dynamic motion, such as urban ones.

View synthesis from CNNs. With the advent of deep

learning in computer vision, CNNs have recently been

investigated to generate novel views. In particular, [6]

proposes to synthesize the novel image from neighboring

views. To this end, a plane-sweep volume, encoding a set of

possible image appearances, was used as input to a network

whose goal was to select the correct pixel appearance in the

volume. This framework, however, requires a large mem-

ory and was only evaluated for view interpolation. Simi-

larly, [15] tackles the view interpolation task from a pair of

images, but aims to learn to rectify the two images and pre-

dict pixels correspondences. The novel view is generated

by fusing the pixels of the image pair using the estimated

correspondence. In contrast to these methods, we focus on

single-image view synthesis.

In this context, [16] trains a variational auto-encoder to

decouple the image into hidden factors, constrained to cor-

respond to viewpoint and lighting conditions. While this

network can generate an image from a new viewpoint by

manipulating the hidden factors, it is mostly restricted to

small rotations. In [24], an encoder-decoder network is

trained to directly synthesize the pixels of the new view

from the input image and the relative pose. While this net-

work was shown to handle large rotations, the predicted im-

ages are typically blurry. Instead of directly synthesizing

the image, [29] proposes to predict the displacements of the

pixels from the input view to the new one, named the ap-

pearance flow. While this method yields sharper results,

by predicting the displacements in a pixel-wise manner, it

doesn’t account for the scene structure, and thus, as illus-

trated in Fig. 1, introduces unrealistic artefacts. The recent

work of [20] builds upon appearance flow by additionally

predicting a visibility map, whose goal is to reflect the vis-

ibility constraints arising from a 3D object shape. During
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Figure 2. Our region-aware geometric-transform network. To tackle the single-image novel view synthesis problem, we develop a

geometry-aware deep architecture consisting of two subnetworks. Given an input image, the first one predicts pixel-wise depth and normal

maps. These predictions are then used in conjunction with segmentation masks obtained from the image and the desired relative pose

to generate a fixed number of homographies, which are in turn employed to produce warped images. The second subnetwork predicts

pixel-wise selection maps that associate each input pixel with one homography. These maps are warped by their respective homographies,

and the novel view is obtained by combining the warped images according to the warped selection maps.

training, the ground-truth visibility maps are obtained by

making use of 3D CAD models of the objects of interest.

While this indeed exploits 3D geometry, at test time, the

synthesis process neither explicitly encodes notions of ge-

ometry nor preserves local geometric structures in the new

image. Furthermore, its use of 3D CAD models makes this

approach better-suited to single-object view synthesis than

to tackling complex real-world scenes.

By contrast, here, we explicitly leverage 3D geometry

during the synthesis of the novel view, by developing a deep

learning framework that exploits the notion of local homo-

graphies. As illustrated by Fig. 1, our geometry-aware deep

learning strategy yields realistic predictions that better re-

flect the scene structure.

Note that some work has focused on the specific case of

stereo view synthesis, that is, generating an image of one

view from that of the other in a stereo setup [26]. While

effective, this does not generalize to arbitrary novel views,

since not all 3D information can be explained by disparity.

Furthermore, view synthesis has been employed as super-

vision for depth estimation [8, 28]. However, novel views

generated from predicted depth maps are typically highly

incomplete, and, while suitable for depth estimation, not

realistic-looking. Here, we focus on synthesizing realistic

novel views with general pose variations.

3. Our Approach

Our goal is to explicitly leverage information about the

3D scene structure to perform single-image novel view syn-

thesis. To this end, we assume that the scene can be repre-

sented with multiple planes and learn to predict their respec-

tive homographies, which let us generate a set of candidate

images in the new view. We additionally learn to estimate

selection maps corresponding to the homographies, which

encode to which homography each input pixel should be

associated. Warping these maps and using them in conjunc-

tion with the candidate new view images lets us synthesize

the novel view. We then complete the regions that were un-

seen in the input view, and thus cannot be synthesized with

this strategy, using an encoder-decoder network similar to

the generator of [20]. Below, we first introduce our region-

aware geometric-transform network, and then discuss this

encoder-decoder refinement.

3.1. Regionaware Geometrictransform Network

To learn to predict a novel view from a single image

while exploiting the 3D geometry of the scene, we develop

the network shown in Fig. 2. This architecture consists of

two subnetworks. The bottom one first predicts pixel-wise

depth and normals from a single image in two independent

streams. These predictions are then used, together with re-

gion masks extracted from the input image and the relative

pose between the input view and the novel one, to compute

multiple homographies, which we employ to warp the input

image, thus generating candidate synthesized views. The

second subnetwork, at the top of Fig. 2, predicts selection

masks indicating, for each pixel, to which homography it

should be associated. We then compute the novel view by

assembling the candidate synthesized images according to

the warped selection masks. Below, we describe these dif-

ferent stages in more detail.

Depth and Normal Prediction. We use standard fully-

convolutional architectures to predict pixel-wise depth and

normal maps separately. The details of these architectures

are provided in the experiments section.

Generating Homographies. Since we represent the

scene as a set of m planar surfaces, a novel view can be

obtained by applying one homography to each surface. For
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one plane, a homography can be computed from its depth

and normal, given the desired relative pose, i.e., 3D rota-

tion and translation, and camera intrinsic parameters. To

model m different planes, we make use of a segmentation of

the input image into m regions, referred to as seed regions

and described in Section 3.1.2, to pool the above-mentioned

pixel-wise depth and normal estimates.

More specifically, let M be an h× w ×m binary tensor

encoding m segmentation masks obtained from the h × w
input image Is. Furthermore, let us denote by Mj the binary

mask corresponding to the jth segment. Assuming that each

segment is planar, we approximate its normal as

n̄j =

∑
x∈Ω

Mj(x) · n(x)∑
x∈Ω

Mj(x)
, (1)

where Ω denotes the set of all pixel locations, and n(x)
corresponds to the normal estimate at location x. We then

normalize n̄j to have unit norm.

A plane with normal n̄j can be defined by a vector

< n̄x
j , n̄

y
j , n̄

z
j , n̄

d
j >, such that any 3D point Q on the plane

satisfies n̄T
j Q + n̄d

j = 0. While our average normal esti-

mate provides us with the first 3 parameters, we still need to

compute n̄d
j . To this end, let us consider the center of region

j, with coordinates (cxj , c
y
j ). We approximate the depth at

the center location as

d̄j =

∑
x∈Ω

Mj(x) · d(x)∑
x∈Ω

Mj(x)
, (2)

where d(x) corresponds to the depth estimate at location

x. This allows us to increase robustness to noise in the

predicted depth map compared to directly using d(cxj , c
y
j ).

Given the matrix of camera intrinsic parameters K, the cor-

responding 3D point can be expressed as

Q = d̄jK
−1(cxj , c

y
j , 1)

T . (3)

By making use of the plane constraint, we can estimate the

last parameter n̄d
j as n̄d

j = −n̄T
j Q.

Finally, let ñj = n̄j/n̄
d
j . Given the relative rotation ma-

trix R and translation vector t between the input and novel

views, the homography for region j can be expressed as

Hj = K(R− tñT
j )K

−1.

This lets us compute a homography for every seed region.

Inverse Image Warping. Each resulting homography can

be applied to the pixels of the input (source) image. For

each source pixel xs, this can be written as

λx̃t
j = Hj x̃

s , (4)

with x̃s the pixel location in homogeneous coordinates, and

λ the corresponding scalar. While the result of this opera-

tion will indeed correspond to a location in the target im-

age (ignoring the fact that some will lie outside the image

Figure 3. Selection Network. Instead of using hard segmentation

masks to combine the candidate synthesized images, we train a

network to generate a set of soft selection masks. The network

structure follows that of the first 4 blocks of VGG16. We max-

pool the corresponding 4 feature maps according to the seed masks

and concatenate the resulting 4 feature vectors in a hypercolumn

feature. We then convolve this hypercolumn feature with the con-

catenated complete feature maps at low resolution, which yields

one global heatmap that we upsample to the original image size.

Note that we normalize the pooled features and complete feature

maps along the feature dimension.

range), these locations will not correspond to exact, integer

pixel coordinates. In our context of generating a novel view,

this would significantly complicate the task of obtaining the

intensity value at each target pixel, which would require

combining the intensities of nearby transformed locations,

whose number would vary for each target pixel.

To address this, instead of following a forward warping

strategy (from source image to target image), we rely on

an inverse warping (from target image to source image).

Specifically, for every target pixel location xt
i, we obtain

the corresponding source location by relying on the inverse

homography H−1

j as x̃s
i,j ∝ H−1

j x̃t
i. We then compute the

target intensity value at pixel xt
i by bilinear interpolation as

Îtj(x
t
i) =

∑

q∈oi
j

Is(1− |xs
i,j − xs

q,j |, 1− |ysi,j − ysq,j |) , (5)

where Is is the input source image, and oij denotes the 4-

pixel neighborhood of xs
i,j , which itself is predicted by the

inverse homography.

Selection Network. As discussed below, we generate the

novel view by assembling the m candidate target images

obtained as described above. To this end, we develop a se-

lection network to predict m planar region masks from the

input image and seed region masks (Section 3.1.2). More

precisely, for each seed region, we aim to predict a soft se-

lection map indicating the likelihood for every input pixel

to be associated to the corresponding homography.

Specifically, the structure of our selection network fol-

lows that of the first 4 convolutional blocks of VGG16 [23].
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As shown in Fig 3, each seed region mask is used to max-

pool the corresponding 4 feature maps. We then concate-

nate the resulting 4 features to form a hypercolumn [11]

feature, which we convolve with the concatenated complete

feature maps at the lower resolution. This yields a low-

resolution heat map, which we upsample to the original

image size. The resulting heat map indicates a notion of

similarity between the features at every pixel and the one

pooled over the seed region. This procedure is performed

individually for the m seed regions, but using shared net-

work parameters. Note that the resulting m selection maps

are defined in the input view, and we thus apply our inverse

warping procedure to compute them in the novel view.

Novel View Prediction. Given the selection maps {M̃j},
we first compute a normalized transformed mask for the
novel view as

M̂t
j (x

t
i) =

∑

q∈oi
j

M̃j(1− |xs
i,j − xs

q,j |, 1− |ysi,j − ysq,j |) + ǫ

m∑

k=1

∑

q∈oi
k

(M̃k(1− |xs
i,k

− xs
q,k

|)(1− |ysi, k − ys
q,k

|) + ǫ)

.

(6)

Note that the resulting transformed masks are not binary,

but rather provide weights to combine the m estimated tar-

get images. To account for the fact that some pixels will

be warped outside the input image with all m homogra-

phies, we make use of a small constant ǫ, which prevents

division by 0 in the normalization process and yields uni-

form weights for such pixels. In our experiments, we set

ǫ = 0.0001. We compute the novel view as

Ît(xt
i) =

m∑

j=1

Îtj(x
t
i) · M̂

t
j (x

t
i) . (7)

Note that some of the pixels in the output view will be

mapped outside the input image by all homographies. In

the simplest version of our approach, we fill in the intensity

of each such pixel by using the value at the nearest pixel in

the input image. In Section 3.2, we introduce a refinement

network that produces more realistic predictions.

3.1.1 Learning

The novel view predicted using Eq. 7 is a function of the

homographies, which themselves are functions of the nor-

mal and depth estimates, and of the selection masks, which

in turn depend on the depth and normal branch parameters

Wd,Wn, and selection network parameters Ws, respec-

tively. Altogether, the prediction can then be thought of as

a function of the parameters W = {Wd,Wn,Ws} given

an input image Is, and a relative pose P, encompassing the

3D rotation, translation and camera intrinsics, and the seg-

mentation seed region masks M .

All the operations described above are differentiable.

The least obvious cases are the bilinear interpolations of

Eqs. 5 and 6, and the use of the inverse homography. For

the former ones, we refer the reader to [14], who showed

that the (sub)-gradient of bilinear interpolation with respect

to W, could be efficiently computed. For the latter case,

we propose to exploit the Sherman-Morrison formula [21],

provided in the supplementary material, to avoid having to

explicitly compute the inverse of the homography.

In our context, this formula lets us express the inverse of

the homography analytically as follows. Let

H̃−1 = RT +
RTtñTRT

1− ñTRTt
. (8)

Then, we have H−1 = KH̃−1K−1. This formulation

makes it easy to compute the gradient of the inverse ho-

mography w.r.t. the estimated depth and normals, and thus

to train our model using backpropagation.

To this end, we make use of an ℓ1 loss between the true

target image and the estimated one. Given N training sam-

ples, learning can then be expressed as

min
W

1

N

N∑

i=1

‖Iti − Îti (I
s
i , Pi,Mi,W)‖1 , (9)

where Iti is the ground-truth novel view, and where, with a

slight abuse of notation, we denote the segmentation mask

for sample i as Mi. More details about optimization are

provided in Section 4.

3.1.2 Obtaining Seed Regions

Throughout our framework, we assume to be given m seg-

mentation masks as input, corresponding to the m planes we

use to represent the scene. To extract these masks, we make

use of the following simple, yet effective strategy. We first

over-segment the image into superpixels using SLIC [1].

For each superpixel, we then extract its RGB value and

center location as features and use K-means to cluster the

superpixels into m regions. This strategy has the advantage

over learning-based segmentation masks of generating com-

pact regions, which are better suited to estimating the corre-

sponding plane parameters. Furthermore, as evidenced by

our experiments, it allows us to obtain accurate synthesized

views that respect the scenes 3D structure.

3.2. Refinement Network

Our region-aware geometric-transformation network

produces a novel view image that preserves the local ge-

ometric structures of the scene. While geometric transfor-

mations can synthesize regions that appear both in the input

and novel views, it cannot handle the regions that are only

present in the novel view, i.e., that were hidden in the in-

put view. To address this, inspired by [20], we make use of

the encoder-decoder refinement network depicted by Fig. 4.

While the structure of this network is the same as in [20],

we make use of a different, simpler loss function to train it.
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Figure 4. Refinement Network. Our refinement network adopts

an encoder-decoder structure with skip connections. The blue

blocks denote convolutions with stride two followed by batch nor-

malization and leaky ReLU. The green blocks denote convolutions

with stride one followed by batch normalization and leaky ReLU.

The purple blocks denote deconvolutions followed by batch nor-

malization and ReLU.

Specifically, let Lp denote the mean pixel ℓ1 error. We

then define the loss of our refinement network as

Lt = Lp + λLf , (10)

where Lf is a feature ℓ1 loss. That is, it corresponds to an ℓ1
loss between features extracted from a fixed VGG-19 net-

work, pre-trained for classification on ImageNet. In particu-

lar, we concatenate features from the ‘conv1 2’, ‘conv2 2’,

‘conv3 2’, ‘conv4 2’ and ‘conv5 2’ layers of VGG-19. This

strategy has proven effective in [3] in the context of image-

to-image translation. In particular, it has the advantage

over [20] of not relying on a generative adversarial net-

work, which are known to be hard to train. As shown in our

results, this refinement network not only hallucinates the

missing parts of the synthesized images, but it also removes

the blur arising from combining multiple warped images.

4. Experiments
We evaluate our approach both quantitatively and

qualitatively on the challenging urban KITTI odometry

dataset [9], which depicts complex scenes with rich struc-

ture and dynamic objects, and on the large indoor scene

ScanNet dataset [4], which covers diverse scene types. We

compare our approach with the state-of-the-art single-image

view synthesis algorithm of [29] for real-world scenes1.

Furthermore, we also report the results of a depth-based

baseline consisting of using the predictions of our depth

stream warped to the new pose, followed by bicubic inter-

polation to obtain a complete image.

4.1. Experimental Setup

KITTI Dataset. For the comparison with [29] to be fair,

we adopt the same data splits as them. Namely, we use

the video sequences with index 0 to 8 as training set, and

9 to 10 as test set. We then generate our training and test

pair in the following way, similar to that of [29]: For each

image in a sequence, we randomly sample a frame number

for the input image and for the target image such that they

are separated by at most ±10 frames.

1Note that, as discussed in Section 2, the transformation-grounded net-

work of [20] focuses on single-object novel view synthesis.

Figure 5. Encoder-decoder network for depth or normal pre-

diction on KITTI. Both our depth and normal streams make use

of this architecture. However, they rely on different parameters.

ScanNet Dataset. We make use of the training, validation

and test splits provided with ScanNet. In particular, we

use 405 training sequences to learn our model and 312 se-

quences from the test set for testing. We form the input-

target pairs in the same manner as for KITTI. In total, we

use 30000 training pairs and 5000 test pairs.

We resize the images from both datasets to 224×224×3.
to match that of [29]. To obtain the segmentation masks, we

first oversegment each image into 400 SLIC [1] superpixels

and cluster them into m = 16 regions, as described in Sec-

tion 3.1.2. This represents a good trade-off between the ac-

curacy of our piece-wise planar representation on the train-

ing data and the memory consumption of our method. In

practice, this proved sufficient to yield realistic novel views.

4.2. Training Procedure

We train our model in a stage-wise manner: First, the

depth and normal branches, then the selection network

given fixed depth and normal branches, and finally the re-

finement network while rest of the framework is fixed. We

tried to then fine-tune the entire network end-to-end, but did

not observe any significant improvement.

Training the depth and normal networks. For the in-

door ScanNet dataset, we were able to directly use the net-

work of [5], which predicts both depth and normals. This

network was pre-trained on NYU-v2 [19], and we simply

fine-tuned it on our data. In particular, since ScanNet does

not provide ground-truth normals, we fit a plane to each

SLIC superpixel, and assigned the corresponding normal to

all its pixels. The fine-tuned network yields a relative depth

error of 0.236. We do not report the normal error, since the

ground-truth normals were obtained from the depth maps.

For KITTI, we were unfortunately unable to train an

equivalent model from scratch. Therefore, we relied on the

simpler encoder-decoder network of Fig. 5, which is more

compact and easier to train. To this end, we made use of the

ℓ1 loss for the inverse depth and of the negative inner prod-

uct as a normal loss. Note that KITTI only provides sparse

ground-truth depth maps. While this is sufficient to train

the depth branch, it does not allow us to generate ground-

truth normals as in ScanNet. To this end, we used the stereo

framework of [27] to generate dense depth maps, which we
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Input view App. Flow [29] Ours-Geo Ours-Full Ground-truth

Figure 6. Qualitative comparison of our approach with the appearance flow method of [29] on KITTI. While appearance flow yields

artifacts, our approach, which reasons about 3D geometry, yields more realistic results. This is noticeable, for instance, by looking at the

bottom right part of the first image and at the buildings in the other images.

Method ℓ1-KITTI ℓ1-ScanNet

App. flow [29] 0.471 -

Depth-branch 0.668 0.217

Ours-Geo 0.340 0.167

Ours-Full 0.345 0.176

Table 1. Quantitative evaluation on KITTI and ScanNet. We

compare our approach with the state-of-the-art method of [29] and

our baseline based on our depth estimates. Our approach signif-

icantly outperforms the baselines, thus achieving state-of-the-art

performance on these datasets.

used, in turn, to obtain normal maps using superpixels. The

final depth network yields a relative error of 0.274.

Note that we analyze the influence of the depth and nor-

mal prediction accuracy on our final novel view synthesis

results in our results section.

Training the selection network. The selection network

takes the predicted depth and normals, together with the im-

age, relative pose and seed regions, as input to synthesize

the novel view. Since we do not have ground-truth labels

for the selection maps, we therefore directly trained the se-

lection network using the mean pixel ℓ1 error as a loss.

Training the refinement network. The refinement net-

work aims to improve an initial synthesized view. We train

it using the loss of Eq. 10, with λ = 0.01.

We implemented our model in tensorflow and trained

it on two NVIDIA Tesla P100, each with 16GB memory.

We used mini-batches of size 10, and employed the ADAM

solver with a learning rate of 0.0001,and the default values

β1 = 0.9 and β2 = 0.999. We will make our code publicly

available upon acceptance of the paper.

4.3. Results

In Table 1, we compare our approach, both without

(Ours-Geo) and with (Ours-Full) refinement network, with

the state-of-the-art appearance flow technique of [29] on

KITTI and ScanNet, based on the mean pixel ℓ1 error met-

ric. Note that our approach outperforms the baseline that

uses our depth estimates, without explicitly modeling the

scene structure, by a large margin. This evidences the im-

portance of accounting for 3D scene structure. Our ap-

proach also significantly outperforms the state-of-the-art

appearance flow method on KITTI.2 This again shows the

benefits of modeling geometry, as done by our region-aware

geometric-transform network. Interestingly, the refinement

network tends to slightly degrade the novel view accuracy.

However, when looking at the qualitative comparison in

Figs. 1, 6 and 7, we can see that our complete model (Ours-

Full) yields more realistic novel views than both Ours-Geo

and appearance flow [29]. Note that, by not leveraging

structure, appearance flow yields to unrealistic artifacts. By

contrast, the results of our approach that exploits 3D geom-

etry look more natural. This, for instance, can be observed

2Note that, because the training code for appearance flow is not avail-

able, we had to re-implement it, and despite confirming that our imple-

mentation was correct using the KITTI dataset, we were unable to make

training converge on ScanNet.
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Figure 7. Qualitative results of our approach on ScanNet.

gtDep gtNor estDep estNor Seed SelMap ℓ1

✓ ✓ ✗ ✗ ✓ ✗ 0.357

✓ ✓ ✗ ✗ ✗ ✓ 0.329

✗ ✗ ✓ ✓ ✓ ✗ 0.373

✗ ✗ ✓ ✓ ✗ ✓ 0.340

Table 2. Influence of the quality of the depth and normal esti-

mates and of learning the selection maps on KITTI. From left

to right: gtDep and gtNor denote the ground-truth depth and nor-

mals, respectively; estDep and estNor denote the estimated depth

and normals, respectively; Seed and SelMap denote the hard-

segmentations corresponding to the seed region and the selection

maps obtained with our selection network, respectively.

by looking at the bottom-right corner of the first image in

Fig. 6, where we better model the shape of the object, and

at the buildings in the other images.

In Table 2, we analyze the influence of the quality of

the depth and normal estimates, and the effect of learning

the selection maps. In particular, we compare the error ob-

tained when using the ground-truth depth and normals in-

stead of the predicted ones, and when using the seed regions

as ’hard’ segmentation masks instead of the learnt selection

maps. In both cases, the best results are obtained by us-

ing the ground-truth depth and normals in conjunction with

our selection maps, followed by using the estimated depth

and normals with our selection maps. This shows (i) the

importance of learning the combination of the multiple syn-

thesized candidates; and (ii) that the results of our approach

will further improve as progress in single-image depth and

normal prediction is made. A similar table for ScanNet is

provided in the supplementary material.

Input image

Seed Region Selection Map Overlay Image

Figure 8. Sample seed regions and predicted selection maps in

the input view. From left to right: the seed region, predicted selec-

tion map and selection map overlaid on the input image, showing

that the corresponding region is close to planar. Red indicates a

high likelihood for a pixel to belong to the plane defined by the

seed region and blue to a low likelihood.

In Fig. 8, we illustrate what the selection network learns.

To this end, we show the initial seed region overlaid with

input image, and the likelihood of the pixels to be associ-

ated to this plane, predicted by the selection network. From

the examples, we can see that the selection network extends

the initial seed regions to larger planes of semantically and

visually coherent pixels, such as a larger tree regions.

5. Conclusion
We have introduced a geometry-aware deep learning

framework for novel view synthesis from a single image.

Our approach models the scene with a fixed number of

planes, and learns to predict homographies, which, in con-

junction with a predicted selection map and a desired rela-

tive pose, let us generate the novel view. Our experiments

on the challenging KIITI and ScanNet datasets have demon-

strated the benefits of our approach; by leveraging 3D ge-

ometry, our method yields predictions that better match the

scene structure, and thus outperforms the state-of-the-art

single-image novel view synthesis techniques. Training the

depth branch of our framework currently relies on ground-

truth depth maps. In the future, we will investigate the use

of weakly-supervised depth prediction methods [8, 10, 28]

that only exploit two views to perform this task.
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