
Geometry-aware Feature Matching for Structure from Motion Applications

Rajvi Shah Vanshika Srivastava P J Narayanan

Center for Visual Information Technology, IIIT Hyderabad, India

{rajvi.shah@research., vanshika.srivastava@students., pjn@}iiit.ac.in

Abstract

We present a two-stage, geometry-aware approach for

matching SIFT-like features in a fast and reliable manner.

Our approach first uses a small sample of features to esti-

mate the epipolar geometry between the images and lever-

ages it for guided matching of the remaining features. This

simple and generalized two-stage matching approach pro-

duces denser feature correspondences while allowing us to

formulate an accelerated search strategy to gain signifi-

cant speedup over the traditional matching. The traditional

matching punitively rejects many true feature matches due

to a global ratio test. The adverse effect of this is partic-

ularly visible when matching image pairs with repetitive

structures. The geometry-aware approach prevents such

preemptive rejection using a selective ratio-test and works

effectively even on scenes with repetitive structures. We also

show that the proposed algorithm is easy to parallelize and

implement it on the GPU. We experimentally validate our

algorithm on publicly available datasets and compare the

results with state-of-the-art methods.

1. Introduction

Geometrically meaningful feature matching is crucial to

many stereo-vision and structure from motion (SFM) appli-

cations. Recent methods in 3D reconstruction [15, 2, 5] be-

gin with match-graph construction, which requires match-

ing SIFT-like features [11] across several unordered images

of a static scene. Typically, features between two images

are matched by computing L2 distances between the de-

scriptors of features in one image against that of the other

image and finding the closest feature as a candidate match.

However, L2 distance in descriptor space is not sufficiently

meaningful by itself to indicate a match. Due to spurious

detection and clutter, the closest feature may not be the true

match. Hence, it is common to verify the candidate match

by a ratio test. The ratio test compares the distance of a

query feature from its closest neighbor (candidate) to its

second closest neighbor in the target image. If the ratio of

distances is below a threshold then the candidate is declared

a match. The assumption is that features in an image are

randomly distributed in descriptor space. In the absence of

a true match, the candidate would be an arbitrary feature

and the best distance would not be significantly better than

the second-best distance; leading to a ratio close to 1 [11].

There are two main problems with this approach. First,

images captured by high-resolution cameras have tens of

thousands of features, making descriptor comparison for

several thousand such image pairs a daunting task for

SFM applications. Most large scale reconstruction methods

[2, 5, 19] either downsample the images or restrict the num-

ber of features considered for matching to cope with this

problem. Second, the assumption of randomly distributed

features does not hold true for images with repetitive struc-

tures such as windows, arches, pillars, etc. in architectural

images. The ratio test punitively rejects many correspon-

dences for features on such repeating elements due to simi-

lar appearance. Previous efforts that propose tailored solu-

tions to mitigate this problem involve extra processing steps

and make additional assumptions [10, 20, 17].

We propose a geometry-aware approach for fast and gen-

eralized feature matching that also works for images with

repetitive structures without any assumptions or complex

processing. Our algorithm first estimates the epipolar ge-

ometry between two images by reliably matching small sub-

sets of features from both images. This is followed by

an efficiently formulated geometry-aware correspondence

search, where each query feature is quickly compared only

against a small number of features that lie close to the cor-

responding epipolar line. This simple trick reduces the false

rejections on repetitive structures significantly by avoid-

ing the duplicates from comparison and recovers denser

matches as compared to global matching (see Figure 1).

We leverage the epipolar constraints to optimize several

steps of geometry-guided correspondence search to make

the proposed matching approach efficient. Our algorithm is

significantly faster than commonly used Kd-tree based fea-

ture matching [12, 3] and has only slightly worse runtime as

compared to the recently proposed cascade hashing based

approach [8] while producing many folds more correspon-

dences. We further show that the proposed algorithm is easy

to parallelize and implement it on a GPU. The GPU im-

plementation of our matching also performs faster than the

global matching on a GPU [1]. We validate our matching by

manually verifying the matches on four image pairs of dif-

ferent scene types. We also use our algorithm to construct

match-graphs for 3D reconstruction of three SFM datasets

and show that our matching leads to denser and complete

models as compared to the unguided feature matching.

2. Background and Related Work

In this section, we briefly revisit the feature matching

pipeline in the context of SFM. We also discuss the com-

monly used techniques for efficient feature matching and

overview prior efforts on matching and geometry estima-

tion in the presence of repetitive elements.

Feature Matching for SFM applications: Geometri-

cally consistent feature correspondences are established by

(i) finding feature matches by descriptor comparison and ra-

tio test; (ii) estimating fundamental matrix using robust esti-

mators; and (iii) removing the outlier matches using epipo-

lar constraint. If the end-goal is to reliably estimate the fun-

damental matrix, relatively few good feature matches would

suffice. However, for many SFM applications it is desirable

to find as many correspondences as possible so as to estab-

lish connections with newer images and to produce denser

point clouds. Since large scale reconstruction involves fea-

ture matching for thousands of image pairs, efficiency of

matching algorithm is also crucial.

Efficient Feature Matching: A brute-force approach ex-

haustively computes distances between all features, requir-

ing O(n2) comparisons, where n is the average number of

features in the image. Typical internet images of monu-

ments have tens of thousands of features, making brute-

force search impractical for matching thousands of image

pairs for SFM. Kd-tree based approximate near-neighbor

methods are most commonly used for SFM applications

[3, 12]. These methods use efficient data structures to store

features resulting in faster search. The average time com-

plexity for these methods is O(n log n). Recently, hash-

ing based approximate feature matching methods have also

been proposed for SFM [16, 8]. These methods convert

feature descriptors into compact binary codes and employ

fast search strategies to compare binarized features. LDA-

Hash [16] is a data-dependent algorithm; it uses linear dis-

criminant analysis (LDA) for feature binarization and re-

quires manual labeling for training. Recently proposed

cascade hashing algorithm (CascadeHash) [8] uses data-

independent, locality sensitive hashing (LSH) for binariza-

tion and has state-of-the-art runtime performance. We show

that our algorithm is significantly faster than Kd-tree based

methods and performs similarly to CascadeHash while pro-

ducing more matches. For high-dimensional data, Kd-tree

and hashing based approximate methods are difficult to par-

allelize due to the hierarchical nature of search; whereas our

algorithm can easily be distributed on parallel platforms like

GPUs for further speedup.

Repetitive Structures and SFM: Repetitive structures

pose several problems for geometry estimation and recon-

struction. The ratio test produces conservative matches only

for distinctive and non-repeated featured. For images with

severe repetition such as skyscrapers and urban buildings,

this can lead to insufficient reliable matches for geometry

estimation. In [10], this problem is handled for building

facades by first clustering similar features and then match-

ing clusters using fronto-parallel assumptions. [20, 17] in-

troduce a-contrario frameworks for robust RANSAC that

can deal with repetitive patterns while recovering underly-

ing geometry. The focus of these methods is on recovering

the correct geometry and not on establishing more corre-

spondences. Our method can use the estimated geometry

to establish further feature matches efficiently, crucial for

SFM. [13, 9, 18] focus on eliminating the aliasing prob-

lems that arise while reconstructing scenes with large du-

plicate structures such as domes, towers, etc. Aliasing oc-

curs when large number of incorrect matches on repeated

elements form consistent sets. [9, 13] jointly optimize the

correctness of a match and camera pose while using image

cues such as missing correspondences and time-stamps as

priors. [18] propose a graph-topological measure based on

local visibility structures to evaluate goodness of a feature

track. The focus of these approaches is on removing bad

tracks/matches while post-processing and not on directly

improving the feature matching. In this paper, we do not

attempt to solve the specific problems posed by repetitive

structures. Our approach is generalized and does not treat

repetition as a special case. Since we use geometry-guided

correspondence search, our approach can also handle im-

ages with repetitive structures.

3. Overview

Our Approach: Most matching methods perform a

global ratio test followed by epipolar verification, preemp-

tively rejecting many correspondences on repeating ele-

ments. We suggest that if epipolar constraints are used be-

fore the ratio test, many true matches on repetitive struc-

tures can be retained. Since estimating epipolar geometry

requires feature matches, there is a cyclic dependency. We

overcome this problem by a two-stage matching approach.

The first stage selects a small subset of features from both

images and performs Kd-tree based feature matching within

the subsets. The fundamental matrix estimated using the

matches from this stage is then used to perform an ef-

ficiently formulated guided correspondence search as ex-

plained in Section 4. For each query feature, only a small

subset of features that lie close to the epipolar line are con-

sidered as candidate matches. Distance comparison and ra-

tio test are performed only within this set.

Avoiding Preemptive Rejection: If repetition in the im-

age is not along the direction of camera motion, the du-

plicates of a true match are excluded from the candidate

matches as they don’t lie close to the epipolar line. Hence,

geometry-aware matching reduces the number of false neg-

atives significantly by avoiding duplicates from being con-

sidered for ratio test. Figure 1 shows this effect on an ex-

ample image pair. The corresponding features on repeating

arches are marked by red points and highlighted by circles.

The query feature (left image) and its corresponding epipo-

lar line (right image) are marked in green. The query feature

and its top two neighbors are shown above the target image

for both: global matching vs. geometry-aware matching. It

can be seen that the correspondence would only survive for

geometry-aware matching.

Effect on spurious matches: The constrained ratio test

would still be able to reject noisy matches since unlike

structured repetition, spurious features are randomly dis-

tributed. For a subset of features sampled along the epipolar

line, duplicate of a true correspondence would only be sam-

pled when the line is along the direction of repetition. How-

ever, an arbitrary non-distinctive spurious candidate match

is equally likely to encounter a similar feature in any ran-

domly drawn subset.

Computational Overhead: The time required for initial

matching and geometry estimation in first stage of our algo-

rithm is relatively small since fewer features are involved.

The second stage, i.e. geometry-guided matching, needs to

find the set of candidate matches for each query feature.

This requires computing distances of all feature points in

target image from the epipolar line for each query. More-

over, since the candidate set is different for each query, a

smaller but new Kd-tree needs to be created to find the two

closest points for each query. A naı̈ve solution would result

in significant computational overhead. In the next section,

we explain each step of our algorithm in detail and show

that the guided search can be optimized to reduce the com-

putational overhead by leveraging epipolar constraints.

4. Geometry-aware Feature Matching

Given an image pair to match, we first estimate the fun-

damental matrix by matching a small subset of features

and use it to perform a fast correspondence search for the

unmatched features. These correspondences can further

be verified and pruned using triplet verification or closure

check while forming feature tracks for SFM. We explain

these steps in detail in the following subsections.

(a) Query Image (b) Target Image

Figure 1: Global vs. geometry-aware matching for repetitive

structures: correct match is detected for both methods, but 2-NN

for global matching would fail the ratio test due to similarity.

4.1. Geometry Estimation

We select the top 20% SIFT features from the query im-

ages in decreasing order of their scales and match them us-

ing the Kd-tree based technique. Our preference of top-

scale features is based on the observations that top-scale

SIFTs match well and they match well with other top-scale

features [14, 19]. If at least 16 matches are found between

the feature subsets, then these matches are used to esti-

mate the fundamental matrix F between the images using

RANSAC [4] and the 8-point algorithm [6] taking into ac-

count degenerate cases. The estimated geometry is consid-

ered reliable only if at least > 2

3
of the initial matches are

inliers; the image pair is not processed further otherwise.

Once the F-matrix is computed, guided search is used to

match the remaining features as explained next.

4.2. Geometry Guided Matching

Given Is and It, two M× N input images, their corre-

sponding feature sets S and T are defined as,

S = {(x, y,v) | x ∈ [0,M], y ∈ [0,N],v ∈ R
k} (1)

T = {(x′, y′,v′) | x′ ∈ [0,M], y′ ∈ [0,N],v′ ∈ R
k} (2)

where (x, y), (x′, y′) denote the coordinates of features

in image space and v,v′ denote the corresponding k-

dimensional feature descriptors (k = 128 for SIFT).

Epipolar constraints: For a query feature point

pq = (xq yq 1) in feature set S of image Is the correspond-

ing epipolar line lq = (aq, bq, cq) in image It is given by

lq = F · pq. If p′q = (x′q y
′
q 1) denotes the corresponding

feature point in image It then as per the epipolar constraint

p′q · F · pq = 0, point p′q must lie on the epipolar line i.e.

p′q · lq = 0. Due to inaccuracies in estimation, it is practical

to relax the constraint to p′q · lq < ǫ. To find p′q, instead of

considering all features in set T, we limit our search to only

those features which are close to the epipolar line lq. We

define the set of candidate feature matches C as,

C = {p′ | dist(p′, lq) ≤ d} (3)

dist(p′, lq) =
aqx

′ + bqy
′ + cq

√

aq2 + bq
2

(4)

(a) Linear Search O(|T|) (b) Radial Search O(K log |T|) (c) Grid based Search O(1)

Figure 2: Illustration of the geometry-aware feature search strategy. Search for points within distance d from the epipolar

line (shown by red dots) can be approximated by radial search and more efficient grid based search. Red squares in (c) show

the center-most cell of the overlapping grids selected for each equidistant points along the epipolar line.

Linear search for candidates: In Figure 2 the candidate

feature matches (features in set C) are marked by red dots.

Finding these candidate matches using linear search would

require computing the distances of all features in T from

line lq using equation (4). This search has a time complexity

of O(|T|). Linear search can be approximated by a radial

search algorithm of logarithmic complexity.

Radial search for candidates: In this search, first a Kd-

tree of (x, y) coordinates of features in T is constructed.

Then K equidistant points (at distance d) on the epipolar

line lq are sampled and each of these points is queried into

the Kd-tree to retrieve feature points within radial distance

d from the sampled point [12]. In Figure 2b dark green

squares on the epipolar line mark the equidistant query

points and red circles indicate coverage of true candidate

matches when radial search is used. If line lq intersects im-

age It in points pA = (xA, yA) and pB = (xB, yB) then the

coordinates (xk, yk) of the equidistant points are given by,

xk =
k · xA + (K− k) · xB

K
, k = 0, 1, 2, · · · ,K (5)

yk =
k · yA + (K− k) · yB

K
, k = 0, 1, 2, · · · ,K (6)

where K =
√

(xB − xA)2 + (yB − yA)2/d. This search has

a complexity of O(K · log |T|) where K ≪ |T|.

Grid based Search for candidates: We further optimize

the candidate search to O(1) using a grid based approach.

We first divide the target image It into four overlapping

grids of cell size 2d×2d, depicted by the dotted lines in Fig-

ure 2c. The origins of these grids are respectively at (0, 0),
(0, d), (d, 0), and (d, d). We then bin all feature points of

T into cells of the overlapping grids based on their image

coordinates. Each feature point (x, y) would fall into four

cells, the coordinates of centers of these cells are given by,

xc1 =⌊
x

2d
⌋ · d + 2d, yc1 =⌊

y

2d
⌋ · d + 2d (7)

xc2 =⌊
x

2d
−

1

2
⌋ · d + 2d, yc2 =⌊

y

2d
⌋ · d + 2d (8)

xc3 =⌊
x

2d
⌋ · d + 2d, yc3 =⌊

y

2d
−

1

2
⌋ · d + 2d (9)

xc4 =⌊
x

2d
−

1

2
⌋ · d + 2d, yc4 =⌊

y

2d
−

1

2
⌋ · d + 2d (10)

Given a query point pq, we find its epipolar line lq and the

equidistant points (xk, yk) as per equations (5) and (6). For

each of the equidistant points on the epipolar line, we find

the four overlapping cells that contain this point and find its

Cartesian distance from centers of the four cells. We select

the cell with the shortest such distance for each point and ac-

cumulate all feature points binned into these cells to obtain

an approximate set of candidate matches C
′. Red squares

in Figure 2c indicate the coverage of true candidate matches

in set C by grid based approximate search. In practice, we

use the larger grid size (2d× 2d) to account for misses due

to the grid approximation. Since feature points are binned

only once per image, the time complexity for searching can-

didate matches is O(1) in grid based approach.

Finding the match: To finalize a match from the candi-

date set C′, a Kd-tree of descriptors in C
′ is constructed,

two features closest from the query are retrieved, and the

ratio test is performed. The number of candidate feature

matches |C′| is a small fraction of total points |T| (typically

200:1 in our experiments), reducing the size of the Kd-tree

notably. Geometry-aware search reduces the number of op-

erations required for two-image matching from (|S| log |T|)
to (|S| log |C′|), with |C′| log |C′| overhead of construct-

ing a small Kd-tree of size |C′| for each query feature.

Though the asymptotic complexity of our algorithm is still

O(n log n), we observe a significant speed up in practical

runtime since we deal with much smaller constants.

Avoiding redundant Kd-tree construction: To reduce

the overhead of redundant Kd-tree construction, we exploit

the dual nature of epipolar lines; i.e. for all points that lie on

line l in image It, their corresponding points must lie on the

dual line l′ in image Is. We use this property, to group the

query points in S whose epipolar lines intersect the bound-

aries of It in nearby points (within 2 pixels) and search for

matches group by group. Since all feature points in a group

have the same epipolar line and hence the same candidate

matches, we avoid redundant construction of the small Kd-

tree of size |C′| for all points in a group.

4.3. Verification of Feature Matches

The matches produced by our approach are mostly geo-

metrically consistent. However, the selective ratio test can

introduce a small number of false positives (< 10%). Ro-

bust estimators like RANSAC can easily deal with such a

small percentage of outliers. A bad initial estimate of fun-

damental matrix can sometimes lead to spurious correspon-

dences. Though we seldom experienced this in our experi-

ments, in practice this can be detected by re-estimating the

F-matrix using all matches and checking the inlier ratio.

If strictly true matches are required, triplet verification

or closure check can be performed while building feature

tracks for SFM applications. Feature tracks are formed

by finding connected-components in a graph where image-

feature pair is a node and edges indicate matches between

features. Triplet verification demands that if a feature A in

image IA is a match for a feature B in image IB then the

correspondence A ↔ B must be verified by some feature C

in a commonly connected image IC such that C ↔ B and

A ↔ C are also correspondences. This can be ensured by

finding triangles in each connected-component (track) and

pruning all nodes that are not part of any triangle. Closure

check is less strict and demands that each feature track be a

closed connected-component in the graph.

5. GPU Implementation

The proposed algorithm is well suited for parallel com-

putation on the GPU. We use high performance CUDA par-

allel primitives like sort and reduce from the Thrust [7] li-

brary and obtain a significant speedup over CPU. Exploiting

parallelism in Kd-tree based hierarchical search on high-

dimensional data is difficult. GPU flann [12] works only

for up to 3-dim data. On the contrary, exact near-neighbor

(ExNN) search can be performed efficiently by using par-

allel matrix multiplication for pairwise descriptor distance

computation on a GPU [1]. Hence, we use ExNN approach

to find initial matches between feature subsets on the GPU

and estimate F-matrix on the CPU. The guided-search steps

are made parallel by leveraging point/group independence

as follows.

Step 1. Grid computation and feature binning We

launch a grid of threads on the GPU with one thread pro-

cessing one feature each. Each thread computes the cell

centers and the cell indices for all features in T in paral-

lel. A fast parallel sort using cell indices as keys brings all

features belonging to the same cell together. Using a fast

parallel prefix scan yields the starting index into each cell

of the sorted array.

Step 2. Epipolar line based feature clustering In this

step also a grid of threads is launched where each thread

computes the epipolar line and its intersection with the im-

age boundaries for each feature in S. To cluster the features

in S based on their epipolar lines, we perform a parallel sort

of all the features using the coordinates of the line-image in-

tersection points as the keys. To assign sorted feature points

to clusters, we again launch a grid of threads where each

thread writes 0 or 1 to a stencil array if its epipolar line dif-

fers from the previous one by more than 2 pixels. We then

perform a fast parallel scan on this stencil array to provide

us with the individual cluster indices.

Step 3. Finding the set of candidate matches We use

one CUDA block per cluster of features in S to find its corre-

sponding set of candidate matches C′ in the target image T.

Each thread in the block takes one equidistant point on the

epipolar line, computes its corresponding cell indices and

retrieves the features binned into these cells in step 1. The

candidate matches corresponding to each cluster of query

features are stored in the GPU global memory.

Step 4. Finding the true match from candidates For ev-

ery query point, we need to find its two nearest points in

the respective candidates set derived in step 3. Each query

point is handled by one CUDA thread block and each thread

within the block computes the L2 distance between the

query feature and one feature from the candidate set in par-

allel. A parallel block-wise minimum and next-minimum is

computed and followed by a ratio test to declare a match.

6. Experiments and Results

We evaluate our algorithm by: (i) matching four images

of different scene types shown in Figure 3 and manually

verifying the matches; (ii) matching features for 3D recon-

struction of three SFM datasets. For 3D reconstruction, we

use Bundler [15] code and publicly available datasets: (i)

Tsinghua School1 (193 images), (ii) Barcelona Museum2

(191 images), (iii) Notre Dame3 subset (99 of 715 images).

We cannot evaluate our algorithm on the popular Oxford

dataset, as it only consists of different viewpoints of a pla-

nar (wall) scene where the F-matrix would degenerate.

1http://vision.ia.ac.cn/data/index.html
2http://www.inf.ethz.ch/personal/acohen/papers/datasets/barcelona.zip
3http://phototour.cs.washington.edu/datasets/

(a) Monument [|S| = 24K, |T| = 30K] (b) Indoor [|S| = 4K, |T| = 3K] (c) Plaza [|S| = 8K, |T| = 7K] (d) Desk [|S| = 16K, |T| = 5K]

Figure 3: Image pairs of different scene types with hand-verified feature matches

Num. Features Kd-tree CasHash Our Kd-tree CasHash Our-CPU Our-GPU SIFTGPU

Image Pair | S | | T | #match #TP #match #TP #match #TP sec. sec. sec. sec. sec.

Monument 24K 30K 189 184 386 376 1099 1083 2.87 0.81 0.91 0.046 –

Indoor 4K 3K 366 359 444 439 445 440 1.39 0.10 0.14 0.009 0.095

Plaza 8K 7K 234 229 314 306 469 458 0.69 0.13 0.19 0.011 0.127

Desk 16K 5K 120 114 114 109 537 468 1.59 0.21 0.29 0.018 0.148

Table 1: Number of matches (#match), number of correct matches (#TP) and matching time for image pairs shown in Figure 3.

Kd-tree CasHash Our Kd-tree CasHash Our (CPU)

Dataset #Images #Feat. (avg) #PTS #PTS3+ #PTS #PTS3+ #PTS #PTS3+ sec. sec. sec.

Notre Dame Paris 99 21K 85K 46K 82K 43K 109K 65K 6504 1408 3702

Tsinghua School 193 26K 178K 112K 180K 111K 204K 132K 27511 8660 8965

Barcelona Museum 191 18K 39K 12K 40K 11K 179K 77K 18282 3662 5120

Table 2: Comparison of the number of 3D points in final reconstruction and run-time for match-graph construction by various

methods for the three SFM datasets. #PTS shows the number of total 3D points and #PTS3+ shows the number of points

with feature track length 3 or higher. Our algorithm produces significantly denser point clouds.

In Table 1, we compare the performance of our algorithm

with Kd-tree based matching [3, 12] and cascade hashing

based matching [8] for the image pairs shown in Figure 3.

We compare the number of matches, both total (#match)

and true positives (#TP), as well as the run-time for all three

methods. The reported timings for pairwise matching also

include the time for Kd-tree construction, hash construction

and initial geometry estimation for the respective methods.

We also compare the time taken by the GPU implementa-

tion of our algorithm with global matching on GPU using

the publicly available SIFT GPU library [1].

For the global Kd-tree based matching, we limit the max-

imum number of points visited to 400 (common practice

in SFM) for fair comparison of timing. For CascadeHash,

we use 8-bit hash codes and 6 bucket groups, provided

as default in the authors’ code. All CPU experiments are

run on a single Intel 2.5GHz core with 4GB memory and

GPU experiments are run on a machine with Intel core-i7

(2.67GHz) CPU and Nvidia K40 GPU.

It can be seen that our geometry-aware method retrieves

more matches for image pairs of all scene categories. The

limitation of global ratio test based matching methods for

scenes with repetitive structures is strongly reflected in the

number of matches for the monument image pair. Figure 4

shows a side by side, visual comparison of geometry-aware

matches vs. global Kd-tree based matches for monument

and desk image pairs. Figure 5 depicts the effectiveness of

geometry-aware matching for repeating features on central

rose window of the Notre Dame Cathedral (the monument

image). The runtime of our algorithm for pairwise matching

is comparable to that of CascadeHash and it is significantly

better than global Kd-tree based matching. The GPU imple-

mentation of our algorithm also clearly outperforms global

matching on the GPU (SIFT GPU).

Figure 4: Feature matches for the desk image pair (top) and the monument image pair (bottom) using the global Kd-tree

based method (left) and the geometry-aware method (right). A significantly higher number of good matches are retained by

the geometry-aware approach for both pairs. Only bi-directional matches are shown for the sake of clarity.

Figure 5: Central rose window of the Notre Dame Cathedral with repetitive structures. Successfully matched features are

highlighted by blue circles for global Kd-tree based method (left), CascadeHash (center), and geometry-aware method (right).

(a) Kd-tree based Matching (b) Cascade hashing based Matching (c) Geometry-aware Matching

Figure 6: Point clouds for Barcelona Museum Reconstruction using match-graphs of different methods. While global meth-

ods recovers only partial structure, geometry-aware method (ours) performs significantly better.

Table 2 compares the match-graph construction time for

3D reconstructions of different datasets using the three fea-

ture matching methods. It also shows the number of 3D

points (#PTS) in the final reconstruction for each match-

ing method. In the absence of ground truth, we compare

the number of reconstructed 3D points with feature tracks

of length 3 or more (#PTS3+) as they are considered more

reliable. Our method clearly outperforms other methods

by producing significantly denser point clouds overall and

also when only the points with track length >= 3 are con-

sidered. Reconstruction of Barcelona Museum dataset us-

ing the match-graphs of Kd-tree matching and Cascade-

Hash could register only 119 and 136 images respectively,

whereas reconstruction using our matching could register

181 out of 191 total images. Consequently, the recovered

structure using our match-graph is also more complete as

compared to other match-graphs as shown in Figure 6.

The run-time for match-graph computation using our

method is significantly less than the Kd-tree based method

and only slightly worse than CascadeHash. However, since

we are able to find many times more correspondences, time

per matched point for our method is much less compared

to CascadeHash. Our GPU algorithm can further accelerate

the match-graph computation significantly; at ∼ 20ms per

image it can compute the match graph for a 100 image

dataset only in a couple of minutes.

Limitations: Our geometry-aware matching depends

on global methods for initial geometry estimation. For

scenes with severe repetition such as urban skyscrapers,

global matching can fail to find any reliable matches. As

a result, our method would not be able to find reliable

F-matrix to search further matches. Our method is based

on the assumptions of a rigid scene and epipolar relations

between the images. For scenes with large non-rigid

dynamic objects (such as humans, faces), our matching

would not produce meaningful correspondences.

7. Conclusions and Future Work

We proposed a simple and generalized geometry-aware

algorithm for fast and efficient feature matching of static

scenes and demonstrated its application for SFM recon-

struction. We showed that the geometry-guided search also

works well for images with repetitive structures and as a

direct result, we get significantly denser feature correspon-

dences and point clouds for architectural image datasets.

We also showed that the proposed method is easy to par-

allelize and outlined a GPU algorithm for the same. In fu-

ture, we would like to improve our method to handle severe

repetition and also extend it for planar scenes.

Acknowledgement We thank the IDH project of DST and

Google India PhD fellowship for financial support.

References

[1] http://cs.unc.edu/˜ccwu/siftgpu/.
[2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day. Com-

mun. ACM, 54(10), 2011.
[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. An optimal algorithm for approximate nearest

neighbor searching fixed dimensions. J. ACM, 45(6), 1998.
[4] M. A. Fischler and R. C. Bolles. Random sample consen-

sus: A paradigm for model fitting with applications to image

analysis and automated cartography. Commun. ACM, 24(6),

1981.
[5] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson,

R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazeb-

nik, and M. Pollefeys. Building rome on a cloudless day. In

Proceedings ECCV, 2010.
[6] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2003.
[7] J. Hoberock and N. Bell. Thrust: A parallel template library,

2010. Version 1.7.0.
[8] C. Jian, L. Cong, W. Jiaxiang, C. Hainan, and L. Hanqing.

Fast and accurate image matching with cascade hashing for

3d reconstruction. In Proceedings IEEE CVPR, 2014.
[9] N. Jiang, P. Tan, and L.-F. Cheong. Seeing double with-

out confusion: Structure-from-motion in highly ambiguous

scenes. In Proceedings IEEE CVPR, 2012.
[10] M. Kushnir and I. Shimshoni. Epipolar geometry estimation

for urban scenes with repetitive structures. In Proceedings

ACCV, 2012.
[11] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. Int. J. Comput. Vision, 60(2), 2004.
[12] M. Muja and D. G. Lowe. Scalable nearest neighbor algo-

rithms for high dimensional data. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 36, 2014.
[13] R. Roberts, S. N. Sinha, R. Szeliski, and D. Steedly. Struc-

ture from motion for scenes with large duplicate structures.

In Proceedings IEEE CVPR, 2011.
[14] R. Shah, A. Deshpande, and P. J. Narayanan. Multistage

sfm : Revisiting incremental structure from motion. In 3DV-

Conference, 2014.
[15] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-

ploring photo collections in 3d. ACM Trans. Graph., 25(3),

2006.
[16] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua.

LDAHash: Improved Matching with Smaller Descriptors.

IEEE Trans. Pattern Analysis and Machine Intelligence,

34(1), 2012.
[17] F. Sur, N. Noury, and M.-O. Berger. Image point correspon-

dences and repeated patterns. Rapport de recherche RR-

7693, INRIA, 2011.
[18] K. Wilson and N. Snavely. Network principles for sfm: dis-

ambiguating repeated structures with local context. In Pro-

ceedings of ICCV, 2013.
[19] C. Wu. Towards linear-time incremental structure from mo-

tion. In 3DV-Conference, 2013.
[20] W. Zhang and J. Kosecka. Generalized ransac framework for

relaxed correspondence problems. In Proceedings 3DPVT,

2006.

http://cs.unc.edu/~ccwu/siftgpu/

