
Geometry-Aware Fruit Grasping Estimation for
Robotic Harvesting in Orchards

Hanwen Kang†
Department of

Areospace and Mechanical
Monash University

Melboure, Australian

Xing Wang†
Department of

Areospace and Mechanical
Monash University

Melboure, Australian

Chao Chen
Department of

Areospace and Mechanical
Monash University

Melboure, Australian

Abstract—Field robotic harvesting is a promising technique
in recent development of agricultural industry. It is vital for
robots to recognise and localise fruits before the harvesting in
natural orchards. However, the workspace of harvesting robots
in orchards is complex: many fruits are occluded by branches
and leaves. It is important to estimate a proper grasping pose
for each fruit before performing the manipulation. In this study,
a geometry-aware network, A3N, is proposed to perform end-
to-end instance segmentation and grasping estimation using
both color and geometry sensory data from a RGB-D camera.
Besides, workspace geometry modelling is applied to assist the
robotic manipulation. Moreover, we implement a global-to-local
scanning strategy, which enables robots to accurately recognise
and retrieve fruits in field environments with two consumer-level
RGB-D cameras. We also evaluate the accuracy and robustness
of proposed network comprehensively in experiments. The ex-
perimental results show that A3N achieves 0.873 on instance
segmentation accuracy, with an average computation time of 35
ms. The average accuracy of grasping estimation is 0.61 cm
and 4.8◦ in centre and orientation, respectively. Overall, the
robotic system that utilizes the global-to-local scanning and A3N,
achieves success rate of harvesting ranging from 70% - 85% in
field harvesting experiments.

I. INTRODUCTION

With the continuously increasing cost of the labor force,
robotic fruit retrieving in orchards has become a promising
technology in the near future [1], [2]. However, robotic fruit
harvesting in common orchards’ environments is more chal-
lenging than the traditional crop harvesting [3], [4], because
most of the orchards’ environments are highly unstructured
and complex. Therefore, most recent robotic fruit retrieving
systems detach fruits from plants by applying an end-effector
on the high Degree-of-Freedom (DoF) robotic arms [5], [6]. In
general, a fruit picking cycle includes four steps: perception,
approaching, detachment, and collection. Perception by vision
techniques is key to the success of robotic fruit harvesting, as
robots need to see fruits before further processing [7]. After
that, robots need to find a proper grasping orientation and a
collision-free path to approach and detach fruits from trees.
In the past several years, many methods have been developed
for visual perception. Both traditional and deep-learning based
methods are used to detect, segment, and localise fruits using
the sensor data, such as RGB images[8], [9], point clouds
[10], etc. Most of the studies do not consider estimating
approaching orientation of fruits. If the workspace is clear

and fruits are not blocked by obstacles, it is not challenging
to detach these fruits off trees. However, in many cases, the
fruits are surrounded by tangled branches and leaves, as shown
in Figure 1(a) and (b). It is highly possible that the end-effector
would fail to grasp fruits. A forced pulling back action of the
end-effector may cause damage to both the robotic arm and
trees. Meanwhile, in practice, the collision between robotic’
bodies and environments may cause unexpected moving of
target fruits, thus leading to a failure of harvesting cycle. Up
to date, only a few studies [11], [12], [13], [14], [15] have
tried to solve this problem to improve the success rate of
the harvesting. Besides, these works focus on fruit grasping
estimation in structured environments, such as greenhouses
and laboratories, and cannot be generalized to complex field
environments [16], [17].

Fig. 1. (a) Target apple surrounded by leaves and branches, (b) attempt to
grasp the target apple with soft end-effector.

Motivated by the object pose estimation using multi-source
data of RGB image and point cloud [18], a new geometry-
aware deep-learning network model, Apple 3D Network
(A3N), is proposed in this work. A3N is designed to perform
end-to-end detection, instance segmentation, and grasping
estimation of fruits using the raw RGB image and point
clouds from an RGB-D camera. To be specific, A3N takes
advantage of the deep-learning detector to search Region of
Interest (ROI) from RGB images. Then, a PointNet model is
utilised to perform the bounding boxes regression on point
clouds of each fruit, which predicts a proper angle for robotic
arm approaching using point clouds. Based on an estimated
grasping pose of each fruit, the robot can plan a proper path
to approach and detach fruit accurately and safely. To provide
the robot with more information about surrounding obstacles,

ar
X

iv
:2

11
2.

04
36

3v
1 

 [
cs

.R
O

] 
 8

 D
ec

 2
02

1



OctoMap [19] is used to construct the occupancy map of the
workspace. Finally, the A3N is evaluated with the field data
and our developed robotic retrieving system. To summarize,
we make the following contributions in this research:

• A novel end-to-end geometry-aware network A3N includ-
ing a region proposal and a grasping estimation network
is proposed to perform fruit segmentation and grasping
pose estimation, respectively.

• A framework including fruit detection, grasping pose
estimation, and workspace modeling is proposed, which
can be directly used for accurate and robust robotic
harvesting in orchards.

• A global-to-local strategy is implemented, allowing accu-
rate vision sensing in orchards when depth sensors have
limited accuracy. Extensive quantitative evaluations are
also included to validate the proposed method.

The rest of the paper is organised as follows. Section II
reviews the related works. Sections III introduces the design
of the robotic system and the visual processing approach,
respectively. Experimental methods and results are presented
in Section IV. In Section V, conclusion and future work are
included.

II. RELATED WORKS

Fruit detection is an essential step in robotic harvesting
[20]. Traditional fruit detection uses handcrafted features, such
as gradients and textures, to perform segmentation or detec-
tion [21]. However, the performance of traditional method
is limited in field environments [22]. Comparatively, deep-
learning method shows superior performance in accuracy and
generalization [9]. Deep-learning based fruit detection includes
two-stage [23] and one-stage methods [8]. Two-stage detec-
tion networks first search ROIs of objects, then perform the
classification and location regression on ROIs [24]. While one-
stage detection networks directly perform the region proposal,
classification, and regression in one step [25]. Deep-learning
based fruit detection has been widely studied in many scenes.
Yu et al. (2019) applied mask-RCNN to detect strawberries
in greenhouses, an average precision of 95.78 % was reported
[26]. Tian et al. (2019) applied YOLO-V3 to monitor apples’
maturity and growing stage in the orchard environments [27].
Kang et al.(2019) presented a one-stage panoptic segmentation
network to perform vision sensing in orchard conditions; an
accuracy of 0.87 was reported [28].

Grasping estimation by the vision system can provide
critical information for the manipulation [29]. It has been
widely studied in many robotic and computer vision tasks.
Traditional grasping estimation utilize point cloud alignment
methods, such as ICP [30], which match objects’ shapes
with templates. These methods suffer the performance de-
generation when there are significant variances of the shape.
Grasping estimation using deep-learning method has drawn
tremendous attention recently. It uses the deep-learning al-
gorithm to estimate a grasping pose with 2D and 3D data
[31]. Grasping estimation using 2D images recasts the task
as an image detection or classification problem [32]. While

grasping estimation using 2D images can apply 3D data, such
as points[33], [34], voxel[35], and meshes. However, only
a few studies focus on grasping estimation in the robotic
harvesting. Most of these existing works try to solve the
grasping estimation of fruits in greenhouses [14], [12], [36]
or in factory lines [11]. Without proper vision information,
the success rate of harvesting can be severely affected when
robots work in fields [37]. Besides, some work [13], [17] has
studied grasping estimation on fruits in fields while ignoring
the collision objects around the fruits, which cannot ensure
the safety and accuracy of the manipulation. With the help
of visual perception, robotic harvesting is implemented by
manipulators toward the human-like robotic harvesting [38].
Birrell et al. [39] applied a 6-DoF arm and an end-effector
with force monitoring, achieving 82% accuracy in clarifying
vegetables. Ge et al. [40] developed a dedicated manipulator
to harvest strawberries in the greenhouse. A Mask-RCNN
based vision system was used to localise fruits and model
structured obstacles within the workspace; a 74.1% success
rate of harvesting on ripe strawberry was reported. Sepulveda
et al. [41] applied a dual-arm system to harvest eggplant in
the laboratory. One arm can remove occlusions, while another
arm can pick fruits simultaneously. Even though these works
used information from visual perception to harvest fruits and
avoid collision between robots and environments during the
operation, they did not consider vision perception and robotic
operations in unstructured environments, which are the most
common workspace for robotic operation in fruit orchards.
Therefore, a vision perception algorithm that can perform
grasping estimation and workspace modelling is urgent to the
success of the robotic harvesting system in fields.

III. MATERIAL AND METHODOLOGY

A. Data Collection

The data were collected in apple orchards located in Mel-
bourne, Australia, using a Realsense D435 camera. The time
of data collection was between 10:00 am to 4:00 pm. The
distance between cameras and trees was from 0.4 to 1.2 meters.
In total, 768 RGB-D images and another 1132 color images
were taken in orchards. The ground truth of the detection
and segmentation were labelled using the software LabelMe.
The ground truth of grasping poses was labelled using our
dedicated developed software.

B. Geometry-aware Grasping Estimation

A3N includes two modules: a region proposal network to
process 2D images and a grasping estimation network to
process point cloud, as shown in Figure 2. Region proposal
network applies a 2D detector to perform detection and
instance segmentation of objects. Then a modified PointNet is
used to perform grasping estimation using point cloud within
the instance segmented and surround area of each object. The
grasping poses of each fruit are returned as the output for
manipulation.



Fig. 2. Working framework of the proposed A3N: Region Proposal Network
receives and processes the RGB image, Grasping Estimation Network receives
and processes the depth image filtered by generated masks.

1) Region Proposal Network: RGB images have many
dense features on objects’ appearances compared to sparse 3D
data. A3N takes advantage of 2D deep-learning methods, using
a YOLACT model [42], to perform instance segmentation
in a one-stage detector without explicit feature localisation
step. Figure 3 shows the architecture of the model. YOLACT
performs instance segmentation in two parallel tasks; one is
to produce image-sized semantic masks in FCN [43] way,
another is to predict parameters to segment those semantic
masks into the instance level explicitly. YOLACT network
includes three branches: a backbone network, a detection
branch, and an instance segmentation branch. We use ResNet-
50 [44] as the default backbone network, and the base image
size is 416 × 416. The feature maps of C3, C4, and C5
levels in backbone network are output for further processing.
The detection branch has two components: Feature Pyramid
Network (FPN), and detection head. FPN uses PANet [45]
to fuse multi-scale feature maps from the backbone. PANet
receives feature maps from C3, C4, and C5 levels of the
backbone and each level applies a detection head to predict
detection. Each detection head has 1+4+c+k channels, which
are parameter numbers of confidence score, box localisation,
classification, and mask assembly, respectively.

Mask Assembly: The instance segmentation branch gener-
ates prototype masks using feature maps in size of the C3 level.
The input feature maps can from the backbone network or
PANet. The prototype masks are identical to semantic feature
maps in FCN, whose last layer has k channels. The instance
masks are assembled using matrix multiplication of prototype
masks (size is h × w × k) and mask coefficients (size is
n×k). Then the results are processed by sigmoid activation to
produce final masks. The final masks are cropped into instance
masks using the information of objects’ bounding boxes from
detection head.

2) Grasping Estimation Network: From the previous step,
a set of bounding boxes and instance masks of objects in
image space are obtained. A grasping estimation network is
then applied to estimate the grasping pose of each fruit using
the PointNet-based network.

PointNet architecture: Point set has two essential charac-
ters: order and transform invariance, which means the proper-
ties of a point cloud will not change with alteraction of point

order or the object’s pose. For the first property, PointNet uses
a symmetric function to extract a feature vector invariant to
point order. For the second property, PointNet uses Spatial
Transform Net (STN) [46] to predict an affine transformation
matrix on input raw points directly. Moreover, PointNet uses
shared Multi-layer Perception (MLP) to aggregate geometry
features in local and global scales. PointNet has enormous
advantages in computation complexity as it enables 2D net-
work architecture in 3D data learning without scarifies of data
resolution.

Geometry-aware Grasping Estimation: A modified Point-
Net is used to estimate the grasping pose of each fruit, as
shown in Figure 4. The modified model has two subnets to
receive points of both objects and non-objects. Each subnet
has five blocks: one STN followed by a convolution layer
(MLP) to convert points set (n× 3) into a feature vector with
the size of n× 1× 64, where n is the number of points in the
set. Then another STN is used to estimate a proper transform
in feature space followed by another two convolution layers,
which outputs a feature vector with the size of n × 1 × m
(m is set as 256). Lastly, a symmetric function, maximum
pooling, is used on the first dimension of the feature vector,
producing a feature vector in size of 1 × 1 ×m. The output
two feature vector is resized into m × 1 and concatenated
into a 2m× 1 feature vector, named the global feature vector.
After that, three fully connected layers is used to generate the
grasping pose bounding box of each fruit.

Grasping Pose Representation: We use Euler-angle to
represent the orientation of the grasping poses. To ensure the
safety of the robot system, the value of predicted angle into
the region of [π4 ,−

π
4 ]. To ensure the convergence of network

training, we align a local coordinate at the centre of each points
set. Network estimates offsets on the X-,Y-,Z- axis to obtain
the real location of objects’ centre.

Point Cloud processing: 3D points set of instance masks
can be computed using a camera projection matrix. The intrin-
sic and extrinsic matrices of the RGB camera are calibrated
before implementation. The computed points are divided into
two sets: object’s point and non-object’s points, based on the
instance masks. For the non-object points, the points within
the range of 0.3 m from the centre of objects are retained.
Then, a voxel-sampling algorithm is applied to re-sample the
points into a given resolution.

3) Network Training: We train YOLACT and grasping
estimation network separately. Three losses are utilized to train
YOLACT: classification loss Lcls, boxes regression loss Lbox,
and mask loss Lmask. Classification and box regression losses
use binary cross-entropy as only two classes are involved,
while mask loss uses L2 losses. The weight of the Lcls, Lbox,
and Lmask are 1.0, 1.0, and 2.5, respectively. The training of
the grasping estimation network includes box regression loss
Lbox and grasping pose regression loss Lori. Both Lbox and
Lori use smooth-L1 (Huber) loss. The weight of the Lbox and
Lori are 1.0 and 2.0, respectively.



Fig. 3. Architecture of the 2D region proposal network, which can extract ROI from RGB images. We base this architecture off of ResNet-50 + FPN (PANet)

Fig. 4. Working framework of the grasping estimation network: both objects’
and non-objects’ points are utilized in the separate subnet

C. Robotic Manipulations

The harvesting robot mainly includes a mobile base, an
industry robotic arm (UR5), a vision system, and a soft end-
effector, as shown in Figure 5. The vision system includes
two Intel RealSense RGB-D cameras: one at the base while
the other is on the end-effector. Both cameras are connected
to the central computer, an NVIDIA Jetson-TX2. The con-
trol framework is implemented on Robotic Operation System
(ROS) melodic.

Global-to-local strategy: The harvesting system equipped
with two RGB-D cameras on the base and the end-effector
respectively, as shown in Figure 5. Recent studies [47], [48]
show that the accuracy of consumer RGB-D cameras, such as
Realsense D435, will significantly degenerate when distance
exceeds 1 meter. However, the field of view for the camera
will be largely limited if the distance is too close. Therefore, a
global-to-local sensing strategy is implemented here. The base

camera is first used to scan the global fruits and initialise a
raw workspace model for manipulation planning. Manipulator
is then moved to each target fruit in consequence. Eye-on-
hand camera is utilized to update the accurate local model. In
such manner, workspace model and fruit poses are gradually
refined, ensuring the accuracy and efficiency of harvesting.

Workspace modelling: Workspace modelling is an essential
step for robotic operations in field environments as the colli-
sions existed in environments can heavily affect the operation
of the manipulation. Octomap [19], which uses octree to
subdivide the occupancy into voxel in given size hierarchically,
is applied to turn collision points into occupancy grid (reso-
lution set as 5cm). During the operation, joint state messages
from the robot arm are used to register each frame of point
cloud into the map. With a global-to-local sensing strategy, an
Octomap with fine details is presented at last for manipulation
planning.

Manipulation: MoveIt! framework [49] is used to plan and
execute manipulation. In our case, Fruit poses are first mapped
into configuring space using the inverse kinematic algorithm,
Trac-IK [50]. The planning pipeline of MoveIt!, which uses the
RRT algorithm in OMPL [51], receives the latest workspace
model and current robot state to plan a collision-free path
to the pose goal. Lastly, time-optimal trajectory generation is
applied to smooth the trajectory. The trajectory is implemented
using the Universal ROS driver. The system will repeat the
aforementioned steps until all fruits are retrieved in the current
workspace.

IV. EXPERIMENT AND DISCUSSION

A. Evaluation Methods

We use the F1-score and intersection of Union (IoU) to
evaluate the performance of the A3N on detection and instance



Fig. 5. The robotic harvesting system integration with both base camera and eye-on-hand. Working framework of the global-to-local sensing strategy: the
A3N performs global sensing first to obtain the position of targets and construct the scene of the workspace, which guides eye-on-hand local sensing to refine
the detection and execute the grasping.

segmentation, respectively [28]. IoU measures the ratio of the
intersection area between the prediction and ground truth. The
IoU of detection and segmentation are donated as IoUdet and
IoUseg , respectively. The detected objects with a confidence
score and IoUdet larger than 0.5 are considered as the true
positive. The performance of the grasping estimation network
is evaluated using Root Mean Squared Error (RMSE) on both
the centre position (cm) and angles (◦).

B. Evaluation on Instance Segmentation
This section reports the instance segmentation accuracy and

detection performance of region proposal network of A3N .
We also evaluate different network configurations and compare
them with other detectors.

Implementation details: All models are trained using data
collected from the orchards. The network’s backbone adopts
pre-trained weights from ImageNet. In the training, we first
froze backbone weights, trained the rest of the model for 80
epochs, then trained the whole network for another 40 epochs.
Adam-optimiser is applied with a learning rate of 10−3. The
decay rate of optimiser and batch-norm layers are set as 0.95
and 0.9, respectively. We use batch size of 24 on one GPU
(11GB) in first 80 epochs and 12 on the rest of epochs. Each
model is trained for three times, the weights with the highest
validation accuracy is utilized in evaluation.

Comparison on Configurations: We evaluate the perfor-
mance of the alternative network configuration of the region
proposal network. Firstly, we train networks with ResNet-
50 (R50), ResNet-101 (R101), and MobileNet-v2 (MN) as
the backbone. Then, we compare the instance segmentation
accuracy of network using features from C3 or PANet, re-
spectively. Also, we evaluate the performance of the network
with different input image resolutions. Lastly, we compare the
accuracy of instance segmentation by using different mask
coefficients in the detection head. The experimental results
are shown in Tables I and II.

Comparison with other models: We compare the region
proposal network of A3N with YOLO-V4 [52] and mask-

TABLE I
COMPARISON OF THE PERFORMANCE ON DIFFERENT CONFIGURATIONS OF

THE REGION PROPOSAL DETECTOR OF A3N

Model Backbone Time F1 IoUmask

A3N-416 R50-C3 35 0.890 0.842
A3N-416 MN-PANet 24 0.873 0.851
A3N-416 R50-PANet 35 0.890 0.873
A3N-480 R50-PANet 53 0.903 0.884
A3N-640 R50-PANet 76 0.897 0.886
A3N-416 R101-PANet 47 0.907 0.882
A3N-480 R101-PANet 75 0.923 0.891
A3N-640 R101-PANet 97 0.923 0.893

TABLE II
PERFORMANCE OF INSTANCE SEGMENTATION UNDER VARIOUS k VALUES

k IoUmask Time
8 0.863 34ms
16 0.868 34ms
32 0.873 35ms
64 0.872 37ms

128 0.870 40ms

RCNN [53]. Compared to the YOLO-V4, our region pro-
posal network, applies depth-wise convolution layers instead
of standard convolution layers in PANet. We also optimize
some other details of the network model accordingly - for
example, the layer configuration in PANet and detection head.
Besides, we compare the model with Mask-RCNN, which
has SOTA accuracy on instance segmentation. Both YOLO-
V4 and Mask-RCNN are trained on collected data by using
COCO pre-trained weights. While the training parameters of
each model are slightly adjusted based on results. The results
are shown in Table III.

The performance evaluations of alternative network config-
uration are shown in Tables I and II. Firstly, results suggest
that prototype masks generation using features from PANet can
significantly improve the accuracy of instance segmentation.
This is because PANet can fuse robust semantic features
of deeper levels into the lower level, and achieve better



TABLE III
COMPARISON OF PERFORMANCE AMONG A3N, YOLO-V4 AND MASK-RCNN WITH DIFFERENT ARCHITECTURES.

Model Backbone Time Time(TX2) F1 IoUmask

YOLO-V4-416 CSPD53-PANet 78 592 0.864 N/A
YOLO-V4-480 CSPD53-PANet 106 827 0.886 N/A

Mask-RCNN-640 R50-FPN 122 920 0.857 0.887
Mask-RCNN-640 R101-FPN 157 1285 0.877 0.895

A3N-416 MN-PANet 24 174 0.873 0.851
A3N-416∗ R50-PANet 35 282 0.890 0.873
A3N-480 R101-PANet 75 598 0.923 0.891
A3N-640 R101-PANet 97 782 0.923 0.893

performance. We also trained the network using different
image sizes and backbones. Results suggest that network per-
formance would increase with raising of image size or using
a backbone with higher accuracy, while the inference speed
is inevitably reduced, as expected. Lastly, we compare the
network accuracy on the segmentation with different number
of mask coefficients. Results suggest that the region proposal
network achieves the best accuracy on instance segmentation
when k is 32.

As shown in Table III, region proposal network of A3N
offers competitive accuracy on instance segmentation com-
pared to the Mask-RCNN. The accuracy of A3N-640-R101-
PANet achieves 0.893 on IoUmask, which achieves equal
performance compared to the Mask-RCNN. However, our
model is mush faster in computational speed compared to the
Mask-RCNN. From experiments, we observed two common
reasons that lead to instance segmentation errors. The first
reason is due to the mask leakage, which always occurs when
fruits are close to each other, as shown in Figures 6(a)(b). In
this case, the network may fail to accurately segment boundary
of each fruit. The second reason is the error of bounding box
localisation, as shown in Figure 6 (c). Two apples are included
in one bounding box, leading to the failure of the segmentation
of each fruit. These two defects are more likely to occur when
the sensing distance is larger. Therefore, an additive perception
of fruits at a close distance can largely improve segmentation
accuracy in our case.

Fig. 6. (a) Inaccuracy of instance segmentation results: (b) mask leakage and
(c) inaccurate object localisation.

Computational Speed: The inference time of networks is
tested on an NVIDIA Jetson-TX2 and an NVIDIA RTX-2060
super. Table III shows that A3N is faster than Mask-RCNN and
YOLO-V4. Combining with network performance, our model
similar or even better performance compared to the SOTA

network but with faster speed in application of fruit detection
and segmentation. Jetson TX2 is an embedded computer that
widely applied in robotic applications. Our A3N-R50-PANet
is 4.9× faster compared to the Mask-RCNN on Jetson-TX2
with competitive accuracy.

C. Evaluation on Grasping Estimation

Fig. 7. Planning scenes which include obstacles and grasping poses of the
detected targets generated by the A3N and OctoMap. Red dots represented
the targets and green arrow represents the suggested grasping orientation.

Fig. 8. RMSE for both centre (cm) and pose estimation (◦) under different
scanning distances. Note all the distances have an error range of ± 5cm.

Accuracy Test: We evaluate the accuracy of A3N in fruits
grasping estimation first. The instances of grasping estimation
and reconstructed workspace are shown in Figure 7. The ac-
curacy of grasping estimation is measured by RMSE between



predicted pose with ground truth. The experimental results are
shown in Figure 8. Based on the collected test dataset, we
further analyze the grasping estimation performance according
to the different distances that these images were taken. It
can be seen that the centre and angular error of estimation
are significantly reduced with a closer perception distance.
Results also indicate that centre estimation achieves acceptable
prediction accuracy within 0.8 m distance, while the grasping
pose estimation can achieves accurate results when distance
is about 0.4 m. With the increase of distance, the quality and
number of points decrease dramatically. Meanwhile, sensory
data always include defects (as shown in Figure 9), which also
affect the accuracy of estimation. From experiments, A3N can
estimate fruit poses in fine accuracy in most cases.

Fig. 9. Illustration of data corruption in sensory data in field environments.

Influence of segmentation: We report the influence of
instance segmentation quality on grasping estimation in Table
IV. From the results, it can be seen that higher instance seg-
mentation accuracy can improve grasping estimation results.
The grasping estimation by using instance segmentation of
Mask-RCNN achieves the highest accuracy with smaller vari-
ances. However, grasping estimation using A3N-416-PANet
(the second row of Table IV) also achieves competitive results
with 4.2× faster speed. Therefore, we use the A3N-416-PANet
as the region proposal network to compensate for the accuracy
and the speed.

Robustness Test: To evaluate the robustness of proposed
algorithm, we test A3N accuracy under various input cor-
ruptions, as shown in Table V. From the results, grasping
estimation has higher robustness on fruit centre prediction than
grasping pose estimation. At the distance of 0.8 meter, A3N
could still achieve high accuracy on fruit centre estimation
when there are 40% point missing or 40% outliers points.
This can make sure that robotic arm moves accurately to a
close position to perform another precise perception. Grasping
pose estimation at 0.4 meter shows the high robustness to the
missing points or outliers, which enables robot to detach fruits
in a proper orientation.

D. Evaluation of A3N in Harvesting

This experiment evaluates the implementation performance
of A3N in operation. The developed retrieving robotic system

Fig. 10. (a) Workspace of Fankhauser apple farm in Melbourne, (b) local
sensing with A3N to refine the detection and workspace reconstruction, (c)
grasping of target apple with a compliant end-effector.

is tested in apple orchard in Melbourne, as shown in Figure 10.
There are other errors existing due to the system integration,
such as the calibration error between eye (camera) and arm,
manipulation error, or sensing error due to depth camera, etc.
Therefore, it is difficult to independently evaluate the accuracy
of the vision system. In the test, we move the manipulator to
the estimated pose of fruits based on the perception results.
Then, we manually measure the error between the gripper
to the real pose of the fruits. We separately evaluate the
robotic system by only using global, local, and global-to-local
scanning. The results are shown in Table VI.

As shown in results, both centre and angular error of the
whole system are in the tolerance range of the gripper opera-
tion (maximum 3cm). By global scanning, the number of fruit
detected by perception is maximized within the view. With
following local perception, the accuracy of grasping estimation
of each fruits are significantly improved. The system with local
scanning alone requires multiple scans by manipulating to
different locations, which lowers the efficiency of the system.
Our robotic system achieves an average harvesting success rate
from 70 - 85% in operation, depending on the complexity of
workspace.

V. CONCLUSION AND FUTURE WORK

This work presents a geometry-aware detection network for
apple harvesting applications, including the region proposal
and grasping estimation networks. The former performs the
fruit detection and instance segmentation tasks, while the latter
predicts the 3D boundary box, centre of the fruit, and the
appropriate approaching angle for grasping. Fruit detection
and instance segmentation follow the work of YOLACT
that combines these two tasks within one step, while pose
estimation is developed and improved based on the PointNet.
With the proposed A3N network, an F1-score of 0.890 is
achieved for apple detection, an IoUseg of 0.873 is recorded
for instance apple segmentation. The global and local scanning
strategy achieves the RMSE of 0.61 cm for centre estimation
and 4.8 ◦ for angle estimation. Finally, a global-to-local
scanning strategy is proposed and experimentally validated,
which provides valuable guidance for the robot. An overall
harvesting rate of 70% - 85 % is achieved on various natural
orchard scenes.

There are still many challenges remaining for current field
robotic harvesting system. For example, the accuracy of RGB-
D camera is significantly effected by sunlight. Potential so-
lution such as Lidar, can be used to improve accuracy of



TABLE IV
COMPARISON OF INFERENCE TIME, RMSE OF CENTRE (CM) AND ANGULAR ESTIMATION (◦) AFFECTED BY THE QUALITY OF INSTANCE SEGMENTATION

GENERATED BY DIFFERENCE NETWORKS.

Model Time RMSEcentre RMSEangular

TX2 0.4m 0.8m 0.4m
A3N-416(MN) 207 1.35 ± 0.41 1.8 ± 0.73 6.6 ± 3.1
A3N-416(C3) 322 1.15 ± 0.37 1.7 ± 0.62 5.8 ± 2.5

A3N-416(PANet)∗ 322 0.61 ± 0.25 1.06 ± 0.4 4.8 ± 2.2
A3N-640(R101) 816 0.53 ± 0.22 0.97 ± 0.35 4.4 ± 1.8

Mask-RCNN(R101) 1357 0.51 ± 0.22 0.99 ± 0.38 4.3 ± 1.6

TABLE V
COMPARISON OF PERFORMANCE AMONG DIFFERENT INPUT CORRUPTIONS

Distance Missing Outlier
Centre raw (cm) 10% 20% 40% 10% 20% 40%
0.4 m 0.61 0.67 0.94 1.4 0.65 0.69 0.82
0.8 m 1.06 1.22 1.48 1.97 1.16 1.27 1.43

Angular raw (◦)
0.4 m 4.8 5.2 6.6 10.4 5.1 6.2 8.6
0.8 m 10.5 11.5 14.2 20.6 11.3 13.7 18.5

TABLE VI
COMPARISON AMONG AVERAGE EXPERIMENTAL RESULTS OF GLOBAL,

LOCAL, AND GLOBAL-TO-LOCAL SCANNING STRATEGY, WHILE NUMObs

REPRESENTS THE NUMBER OF OBJECTS DETECTED, SUC RATE
REPRESENTS THE SUCCESSFUL RATE OF APPLE HARVESTING.

Method NumObs RMSEori(◦) RMSEcentre(cm) Suc rate %
Global 16 13.7 3.9 56.3
Local 5 6.1 1.4 80

G-to-L 16 6.5 1.5 81.3

perception from source. Besides, the path planning of the arm
can also be improved to generate more humanoid behavior
in grasping. Such improvements are expected to significantly
improve the efficiency and success rate of robotic harvesting
in field.
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