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ABSTRACT

In adversarial machine learning, there was a common belief that robustness and
accuracy hurt each other. The belief was challenged by recent studies where we
can maintain the robustness and improve the accuracy. However, the other direc-
tion, we can keep the accuracy and improve the robustness, is conceptually and
practically more interesting, since robust accuracy should be lower than standard
accuracy for any model. In this paper, we show this direction is also promising.
Firstly, we find even over-parameterized deep networks may still have insufficient
model capacity, because adversarial training has an overwhelming smoothing ef-
fect. Secondly, given limited model capacity, we argue adversarial data should
have unequal importance: geometrically speaking, a natural data point closer
to/farther from the class boundary is less/more robust, and the corresponding ad-
versarial data point should be assigned with larger/smaller weight. Finally, to
implement the idea, we propose geometry-aware instance-reweighted adversar-
ial training, where the weights are based on how difficult it is to attack a natural
data point. Experiments show that our proposal boosts the robustness of standard
adversarial training; combining two directions, we improve both robustness and
accuracy of standard adversarial training.

1 INTRODUCTION

Crafted adversarial data can easily fool the standard-trained deep models by adding human-
imperceptible noise to the natural data, which leads to the security issue in applications such as
medicine, finance, and autonomous driving (Szegedy et al., 2014; Nguyen et al., 2015). To mitigate
this issue, many adversarial training methods employ the most adversarial data maximizing the
loss for updating the current model such as standard adversarial training (AT) (Madry et al., 2018),
TRADES (Zhang et al., 2019), robust self-training (RST) (Carmon et al., 2019), and MART (Wang
et al., 2020b). The adversarial training methods seek to train an adversarially robust deep model
whose predictions are locally invariant to a small neighborhood of its inputs (Papernot et al., 2016).
By leveraging adversarial data to smooth the small neighborhood, the adversarial training methods
acquire adversarial robustness against adversarial data but often lead to the undesirable degradation
of standard accuracy on natural data (Madry et al., 2018; Zhang et al., 2019).

Thus, there have been debates on whether there exists a trade-off between robustness and accuracy.
For example, some argued an inevitable trade-off: Tsipras et al. (2019) showed fundamentally dif-
ferent representations learned by a standard-trained model and an adversarial-trained model; Zhang
et al. (2019) and Wang et al. (2020a) proposed adversarial training methods that can trade off stan-
dard accuracy for adversarial robustness. On the other hand, some argued that there is no such the
trade-off: Raghunathan et al. (2020) showed infinite data could eliminate this trade-off; Yang et al.
(2020) showed benchmark image datasets are class-separated.
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Figure 1: The illustration of GAIRAT. GAIRAT explicitly gives larger weights on the losses of
adversarial data (larger red), whose natural counterparts are closer to the decision boundary (lighter
blue). GAIRAT explicitly gives smaller weights on the losses of adversarial data (smaller red),
whose natural counterparts are farther away from the decision boundary (darker blue). The examples
of two toy datasets and the CIFAR-10 dataset refer to Figure 3.

Recently, emerging adversarial training methods have empirically challenged this trade-off. For ex-
ample, Zhang et al. (2020b) proposed the friendly adversarial training method (FAT), employing
friendly adversarial data minimizing the loss given that some wrongly-predicted adversarial data
have been found. Yang et al. (2020) introduced dropout (Srivastava et al., 2014) into existing AT,
RST, and TRADES methods. Both methods can improve the accuracy while maintaining the ro-
bustness. However, the other direction—whether we can improve the robustness while keeping the
accuracy—remains unsolved and is more interesting.

In this paper, we show this direction is also achievable. Firstly, we show over-parameterized deep
networks may still have insufficient model capacity, because adversarial training has an overwhelm-
ing smoothing effect. Fitting adversarial data is demanding for a tremendous model capacity: It
requires a large number of trainable parameters or long-enough training epochs to reach near-zero
error on the adversarial training data (see Figure 2). The over-parameterized models that fit natu-
ral data entirely in the standard training (Zhang et al., 2017) are still far from enough for fitting
adversarial data. Compared with standard training fitting the natural data points, adversarial train-
ing smooths the neighborhoods of natural data, so that adversarial data consume significantly more
model capacity than natural data. Thus, adversarial training methods should carefully utilize the lim-
ited model capacity to fit the neighborhoods of the important data that aid to fine-tune the decision
boundary. Therefore, it may be unwise to give equal weights to all adversarial data.

Secondly, data along with their adversarial variants are not equally important. Some data are geo-
metrically far away from the class boundary. They are relatively guarded. Their adversarial variants
are hard to be misclassified. On the other hand, some data are close to the class boundary. They
are relatively attackable. Their adversarial variants are easily misclassified (see Figure 3). As the
adversarial training progresses, the adversarially robust model engenders an increasing number of
guarded training data and a decreasing number of attackable training data. Given limited model
capacity, treating all data equally may cause the vast number of adversarial variants of the guarded
data to overwhelm the model, leading to the undesirable robust overfitting (Rice et al., 2020). Thus,
it may be pessimistic to treat all data equally in adversarial training.

To ameliorate this pessimism, we propose a heuristic method, i.e., geometry-aware instance-
reweighted adversarial training (GAIRAT). As shown in Figure 1, GAIRAT treats data differently.
Specifically, for updating the current model, GAIRAT gives larger/smaller weight to the loss of an
adversarial variant of attackable/guarded data point which is more/less important in fine-tuning the
decision boundary. An attackable/guarded data point has a small/large geometric distance, i.e., its
distance from the decision boundary. We approximate its geometric distance by the least number of
iterations κ that projected gradient descent method (Madry et al., 2018) requires to generate a mis-
classified adversarial variant (see the details in Section 3.3). GAIRAT explicitly assigns instance-
dependent weight to the loss of its adversarial variant based on the least iteration number κ.

Our contributions are as follows. (a) In adversarial training, we identify the pessimism in treating
all data equally, which is due to the insufficient model capacity and the unequal nature of different
data (in Section 3.1). (b) We propose a new adversarial training method, i.e., GAIRAT (its learning
objective in Section 3.2 and its realization in Section 3.3). GAIRAT is a general method: Besides
standard AT (Madry et al., 2018), the existing adversarial training methods such as FAT (Zhang et al.,
2020b) and TRADES (Zhang et al., 2019) can be modified to GAIR-FAT and GAIR-TRADES (in
Appendices B.1 and B.2, respectively). (c) Empirically, our GAIRAT can relieve the issue of robust
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Figure 2: We plot standard training error (Natural) and adversarial training error (PGD-10) over
the training epochs of the standard AT on CIFAR-10 dataset. Left panel: AT on different sizes of
network. The red line represents standard test accuracy by standard training (ST). Right panel: AT
on ResNet-18 under different perturbation bounds ǫtrain.

overfitting (Rice et al., 2020), meanwhile leading to the improved robustness with zero or little degra-
dation of accuracy (in Section 4.1 and Appendix C.1). Besides, we use Wide ResNets (Zagoruyko &
Komodakis, 2016) to corroborate the efficacy of our geometry-aware instance-reweighted methods:
Our GAIRAT significantly boosts the robustness of standard AT; combined with FAT, our GAIR-
FAT improves both the robustness and accuracy of standard AT (in Section 4.2). Consequently, we
conjecture no inevitable trade-off between robustness and accuracy.

2 ADVERSARIAL TRAINING

In this section, we review adversarial training methods (Madry et al., 2018; Zhang et al., 2020b).

2.1 LEARNING OBJECTIVE

Let (X , d∞) denote the input feature space X with the infinity distance metric dinf(x, x
′) = ‖x −

x′‖∞, and Bǫ[x] = {x
′ ∈ X | dinf(x, x

′) ≤ ǫ} be the closed ball of radius ǫ > 0 centered at x in X .
Dataset S = {(xi, yi)}

n
i=1, where xi ∈ X and yi ∈ Y = {0, 1, ..., C − 1}.

The objective function of standard adversarial training (AT) (Madry et al., 2018) is

min
fθ∈F

1

n

n
∑

i=1

ℓ(fθ(x̃i), yi), (1)

where

x̃i = argmaxx̃∈Bǫ[xi] ℓ(fθ(x̃), yi), (2)

where x̃ is the most adversarial data within the ǫ-ball centered at x, fθ(·) : X → R
C is a score

function, and the loss function ℓ : RC×Y → R is a composition of a base loss ℓB : ∆C−1×Y → R

(e.g., the cross-entropy loss) and an inverse link function ℓL : RC → ∆C−1 (e.g., the soft-max
activation), in which ∆C−1 is the corresponding probability simplex—in other words, ℓ(fθ(·), y) =
ℓB(ℓL(fθ(·)), y). AT employs the most adversarial data generated according to Eq. (2) for updating
the current model.

The objective function of friendly adversarial training (FAT) (Zhang et al., 2020b) is

x̃i = argmin
x̃∈Bǫ[xi]

ℓ(fθ(x̃), yi) s.t. ℓ(fθ(x̃), yi)−miny∈Y ℓ(fθ(x̃), y) ≥ ρ. (3)

Note that the outer minimization remains the same as Eq. (1), and the operator argmax is replaced
by argmin. ρ is a margin of loss values (i.e., the misclassification confidence). The constraint of
Eq. (3) firstly ensures x̃ is misclassified, and secondly ensures for x̃ the wrong prediction is better
than the desired prediction yi by at least ρ in terms of the loss value. Among all such x̃ satisfying the
constraint, Eq. (3) selects the one minimizing ℓ(fθ(x̃), yi) by a violation of the value ρ. There are no
constraints on x̃i if x̃i is correctly classified. FAT employs the friendly adversarial data generated
according to Eq. (3) for updating the current model.
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Figure 3: More attackable data (lighter red and blue) are closer to the class boundary; more guarded
data (darker red and blue) are farther away from the class boundary. Left panel: Two toy examples.
Right panel: The model’s output distribution of two randomly selected classes from the CIFAR-10
dataset. The degree of robustness (denoted by the color gradient) of a data point is calculated based
on the least number of iterations κ that PGD needs to find its misclassified adversarial variant.

2.2 REALIZATIONS

AT and FAT’s objective functions imply the optimization of adversarially robust networks, with one
step generating adversarial data and one step minimizing loss on the generated adversarial data w.r.t.
the model parameters θ.

The projected gradient descent method (PGD) (Madry et al., 2018) is the most common approxima-

tion method for searching adversarial data. Given a starting point x(0) ∈ X and step size α > 0,
PGD works as follows:

x(t+1) = ΠB[x(0)]

(

x(t) + α sign(∇x(t)ℓ(fθ(x
(t)), y))

)

, t ∈ N (4)

until a certain stopping criterion is satisfied. ℓ is the loss function; x(0) refers to natural data or
natural data perturbed by a small Gaussian or uniformly random noise; y is the corresponding label

for natural data; x(t) is adversarial data at step t; and ΠBǫ[x0](·) is the projection function that

projects the adversarial data back into the ǫ-ball centered at x(0) if necessary.

There are different stopping criteria between AT and FAT. AT employs a fixed number of iterations
K, namely, the PGD-K algorithm (Madry et al., 2018), which is commonly used in many adversarial
training methods such as CAT (Cai et al., 2018), DAT (Wang et al., 2019), TRADES (Zhang et al.,
2019), and MART (Wang et al., 2020b). On the other hand, FAT employs the misclassification-aware
criterion. For example, Zhang et al. (2020b) proposed the early-stopped PGD-K-τ algorithm (τ ≤
K; K is the fixed and maximally allowed iteration number): Once the PGD-K-τ finds the current
model misclassifying the adversarial data, it stops the iterations immediately (τ = 0) or slides a
few more steps (τ > 0). This misclassification-aware criterion is used in the emerging adversarial
training methods such as MMA (Ding et al., 2020), FAT (Zhang et al., 2020b), ATES (Sitawarin
et al., 2020), and Customized AT (Cheng et al., 2020).

AT can enhance the robustness against adversarial data but, unfortunately, degrades the standard
accuracy on the natural data significantly (Madry et al., 2018). On the other hand, FAT has better
standard accuracy with near-zero or little degradation of robustness (Zhang et al., 2020b).

Nevertheless, both AT and FAT treat the generated adversarial data equally for updating the model
parameters, which is not necessary and sometimes even pessimistic. In the next sections, we in-
troduce our method GAIRAT, which is compatible with existing methods such as AT, FAT, and
TRADES. Consequently, GAIRAT can significantly enhance robustness with little or even zero
degradation of standard accuracy.

3 GEOMETRY-AWARE INSTANCE-REWEIGHTED ADVERSARIAL TRAINING

In this section, we propose geometry-aware instance-reweighted adversarial training (GAIRAT) and
its learning objective as well as its algorithmic realization.
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3.1 MOTIVATIONS OF GAIRAT

Model capacity is often insufficient in adversarial training. In the standard training, the over-
parameterized networks, e.g., ResNet-18 and even larger ResNet-50, have more than enough model
capacity, which can easily fit the natural training data entirely (Zhang et al., 2017). However, the left
panel of Figure 2 shows that the model capacity of those over-parameterized networks is not enough
for fitting the adversarial data. Under the computational budget of 100 epochs, the networks hardly
reach zero error on the adversarial training data. Besides, adversarial training error only decreases by
a small constant factor with the significant increase of the model’s parameters. Even worse, a slightly
larger perturbation bound ǫtrain significantly uncovers this insufficiency of the model capacity (right
panel): Adversarial training error significantly increases with slightly larger ǫtrain. Surprisingly, the
standard training error on natural data hardly reaches zero with ǫtrain = 16/255.

Adversarial training methods employ the adversarial data to reduce the sensitivity of the model’s
output w.r.t. small changes of the natural data (Papernot et al., 2016). During the training process,
adversarial data are generated on the fly and are adaptively changed based on the current model
to smooth the natural data’s local neighborhoods. The volume of this surrounding is exponentially

(|1 + ǫtrain|
|X |) large w.r.t. the input dimension |X |, even if ǫtrain is small. Thus, this smooth-

ness consumes significant model capacity. In adversarial training, we should carefully leverage the
limited model capacity by fitting the important data and by ignoring the unimportant data.

More attackable/guarded data are closer to/farther away from the class boundary. We can
measure the importance of the data by their robustness against adversarial attacks. Figure 3 shows
that the robustness (more attackable or more guarded) of the data is closely related to their geometric
distance from the decision boundary. From the geometry perspective, more attackable data are
closer to the class boundary whose adversarial variants are more important to fine-tune the decision
boundary for enhancing robustness.

Appendix A contains experimental details of Figures 2 and 3 and more motivation figures.

3.2 LEARNING OBJECTIVE OF GAIRAT

Let ω(x, y) be the geometry-aware weight assignment function on the loss of adversarial variant x̃.
The inner optimization for generating x̃ still follows Eq. (2) or Eq. (3). The outer minimization is

min
fθ∈F

1

n

n
∑

i=1

ω(xi, yi)ℓ(fθ(x̃i), yi). (5)

The constraint firstly ensures that yi = argmaxi fθ(xi) and secondly ensures that ω(xi, yi) is a
non-increasing function w.r.t. the geometric distance, i.e., the distance from data xi to the decision
boundary, in which ω(xi, yi) ≥ 0 and 1

n

∑n

i=1 ω(xi, yi) = 1.

There are no constraints when yi 6= argmaxi fθ(xi) : for those x significantly far away from the
decision boundary, we may discard them (outliers); for those x close to the decision boundary, we
may assign them large weights. In this paper, we do not consider outliers, and therefore we assign
large weight to the losses of adversarial data, whose natural counterparts are misclassified. Figure 1
provides an illustrative schematic of the learning objective of GAIRAT.

A burn-in period may be introduced, i.e., during the initial period of the training epochs, ω(xi, yi) =
1 regardless of the geometric distance of input (xi, yi), because the geometric distance is less infor-
mative initially, when the classifier is not properly learned.

3.3 REALIZATION OF GAIRAT

The learning objective Eq. (5) implies the optimization of an adversarially robust network, with
one step generating adversarial data and then reweighting loss on them according to the geometric
distance of their natural counterparts, and one step minimizing the reweighted loss w.r.t. the model
parameters θ.

We approximate the geometric distance of a data point (x, y) by the least iteration numbers κ(x, y)
that the PGD method needs to generate a adversarial variant x̃ to fool the current network, given the
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Algorithm 1 Geometry-aware projected gradient descent (GA-PGD)

Input: data x ∈ X , label y ∈ Y , model f , loss function ℓ, maximum PGD step K, perturbation
bound ǫ, step size α
Output: adversarial data x̃ and geometry value κ(x, y)
x̃← x; κ(x, y)← 0
while K > 0 do

if argmaxi f(x̃) = y then
κ(x, y)← κ(x, y) + 1

end if
x̃← ΠB[x,ǫ]

(

α sign(∇x̃ℓ(f(x̃), y)) + x̃
)

K ← K − 1
end while

Algorithm 2 Geometry-aware instance-dependent adversarial training (GAIRAT)

Input: network fθ, training dataset S = {(xi, yi)}
n
i=1, learning rate η, number of epochs T ,

batch size m, number of batches M
Output: adversarially robust network fθ
for epoch = 1, . . . , T do

for mini-batch = 1, . . . , M do
Sample a mini-batch {(xi, yi)}

m
i=1 from S

for i = 1, . . . , m (in parallel) do
Obtain adversarial data x̃i of xi and geometry value κ(xi, yi) by Algorithm 1
Calculate ω(xi, yi) according to geometry value κ(xi, yi) by Eq. 6

end for

θ ← θ − η∇θ

{

∑m

i=1
ω(xi,yi)∑

m
j=1 ω(xj ,yj)

ℓ(fθ(x̃i), yi)

}

end for
end for

maximally allowed iteration number K and step size α. Thus, the geometric distance is approxi-
mated by κ (precisely by κ×α). Thus, the value of the weight function ω should be non-increasing
w.r.t. κ. We name κ(x, y) the geometry value of data (x, y).

How to calculate the optimal ω is still an open question; therefore, we heuristically design different
non-increasing functions ω. We give one example here and discuss more examples in Appendix C.3
and Section 4.1.

w(x, y) =
(1 + tanh(λ+ 5× (1− 2× κ(x, y)/K)))

2
, (6)

where κ/K ∈ [0, 1], K ∈ N
+, and λ ∈ R. If λ = +∞, GAIRAT recovers the standard AT (Madry

et al., 2018), assigning equal weights to the losses of adversarial data.

Algorithm 1 is a geometry-aware PGD method (GA-PGD), which returns both the most adversarial
data and the geometry value of its natural counterpart. Algorithm 2 is geometry-aware instance-
dependent adversarial training (GAIRAT). GAIRAT leverages Algorithms 1 for obtaining the adver-
sarial data and the geometry value. For each mini-batch, GAIRAT reweighs the loss of adversarial
data (x̃i, yi) according to the geometry value of their natural counterparts (xi, yi), and then updates
the model parameters by minimizing the sum of the reweighted loss.

GAIRAT is a general method. Indeed, FAT (Zhang et al., 2020b) and TRADES (Zhang et al., 2019)
can be modified to GAIR-FAT and GAIR-TRADES (see Appendices B.1 and B.2, respectively).

Comparisons with SVM. The abstract concept of GAIRAT has appeared previously. For exam-
ple, in the support vector machine (SVM), support vectors near the decision boundary are partic-
ularly useful in influencing the decision boundary (Hearst et al., 1998). For learning models, the
magnitude of the loss function (e.g., the hinge loss and the logistic loss) can naturally capture differ-
ent data’s geometric distance from the decision boundary. For updating the model, the loss function
treats data differently by incurring large losses on important attackable (close to the decision bound-
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ary) or misclassified data and incurring zero or very small losses on unimportant guarded (far away
from the decision boundary) data.

However, in adversarial training, it is critical to explicitly assign different weights on top of losses
on different adversarial data due to the blocking effect: The model trained on the adversarial data
that maximize the loss learns to prevent generating large-loss adversarial data. This blocking ef-
fect makes the magnitude of the loss less capable of distinguishing important adversarial data from
unimportant ones for updating the model parameters, compared with the role of loss on measur-
ing the natural data’s importance in standard training. Our GAIRAT breaks this blocking effect by
explicitly extracting data’s geometric information to distinguish the different importance.

Comparisons with AdaBoost and focal loss. The idea of instance-dependent weighting has been
studied in the literature. Besides robust estimator (e.g., M-estimator (Boos & Stefanski, 2013))
for learning under outliers (e.g., label-noised data), hard data mining is another branch where our
GAIRAT belongs. Boosting algorithms such as AdaBoost (Freund & Schapire, 1997) select harder
examples to train subsequent classifiers. Focal loss (Lin et al., 2017) is specially designed loss func-
tion for mining hard data and misclassified data. However, the previous hard data mining methods
leverage the data’s losses for measuring the hardness; by comparison, our GAIRAT measures the
hardness by how difficulty the natural data are attacked (i.e., geometry value κ). This new measure-
ment κ sheds new lights on measuring the data’s hardness (Zhu et al., 2021).

Comparisons with related adversarial training methods. Some existing adversarial training
methods also “treat adversarial data differently”, but in different ways to our GAIRAT. For example,
CAT (Cai et al., 2018), MMA (Ding et al., 2020), and DAT (Wang et al., 2019) methods gener-
ate the differently adversarial data for updating model over the training process. CAT utilized the
adversarial data with different PGD iterations K. DAT utilized the adversarial data with differ-
ent convergence qualities. MMA leveraged adversarial data with instance-dependent perturbation
bounds ǫ. Different from those existing methods, our GAIRAT treat adversarial data differently by
explicitly assigning different weights on their losses, which can break the blocking effect.

Note that the learning objective of MART (Wang et al., 2020b) also explicitly assigns weights,
not directly on the adversarial loss but KL divergence loss (see details in Section C.7). The KL
divergence loss helps to strengthen the smoothness within the norm ball of natural data, which is
also used in VAT (Miyato et al., 2016) and TRADES (Zhang et al., 2019). Differently from MART,
our GAIRAT explicitly assigns weights on the adversarial loss. Therefore, we can easily modify
MART to GAIR-MART (see experimental comparisons in Section C.7). Besides, MART assigns
weights based on the model’s prediction confidence on the natural data; GAIRAT assigns weights
based on how easy the natural data can be attacked (geometry value κ).

Comparisons with the geometric studies of DNN. Researchers in adversarial robustness em-
ployed the first-order or second-order derivatives w.r.t. input data to explore the DNN’s geometric
properties (Fawzi et al., 2017; Kanbak et al., 2018; Fawzi et al., 2018; Qin et al., 2019; Moosavi-
Dezfooli et al., 2019). Instead, we have a complementary but different argument: Data points them-
selves are geometrically different regardless of DNN. The geometry value κ in adversarial training
(AT) is an approximated measurement of data’s geometric properties due to the AT’s smoothing
effect (Zhu et al., 2021).

4 EXPERIMENTS

In this section, we empirically justify the efficacy of GAIRAT. Section 4.1 shows that GAIRAT
can relieve the undesirable robust overfitting (Rice et al., 2020) of the minimax-based adversarial
training (Madry et al., 2018). Note that some concurrent studies (Chen et al., 2021a;b) provided
various adversarial training strategies, which can also mitigate the issue of robust overfitting. In
Section 4.2, we benchmark our GAIRAT and GAIR-FAT using Wide ResNets and compare them
with AT and FAT.

In our experiments, we consider ||x̃−x||∞ ≤ ǫ with the same ǫ in both training and evaluations. All
images of CIFAR-10 (Krizhevsky, 2009) and SVHN (Netzer et al., 2011) are normalized into [0, 1].
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Figure 4: Comparisons of AT (ω1, red lines) and GAIRAT (ω2, blue lines and ω3, yellow lines) using
ResNet-18 on the CIFAR-10 dataset. Upper-left panel shows different weight assignment functions
ω w.r.t. the geometry value κ. Bottom-left panel reports the training statistic of the standard AT and
calculates the median (dark red circle) and mean (light red cross) of geometry values of all training
data at each epoch. Upper-middle and upper-right panels report standard training/test errors and
robust training/test errors, respectively. Bottom-middle and bottom-right panels report the loss
flatness w.r.t. friendly adversarial test data and most adversarial test data, respectively.

4.1 GAIRAT RELIEVES ROBUST OVERFITTING

In Figure 4, we conduct the standard AT (all red lines) using ResNet-18 (He et al., 2016) on CIFAR-
10 dataset. For generating the most adversarial data for updating the model, the perturbation bound
ǫ = 8/255; the PGD steps number K = 10 with step size α = 2/255, which keeps the same as Rice
et al. (2020). We train ResNet-18 using SGD with 0.9 momentum for 100 epochs with the initial
learning rate of 0.1 divided by 10 at Epoch 30 and 60, respectively. At each training epoch, we
collect the training statistics, i.e., the geometry value κ(x, y) of each training data, standard/robust
training and test error, the flatness of loss w.r.t. adversarial test data. The detailed descriptions of
those statistics and the evaluations are in the Appendix C.1.

Bottom-left panel of Figure 4 shows geometry value κ of training data of standard AT. Over the
training progression, there is an increasing number of guarded training data with a sudden leap
when the learning rate decays to 0.01 at Epoch 30. After Epoch 30, the model steadily engenders
a increasing number of guarded data whose adversarial variants are correctly classified. Learning
from those correctly classified adversarial data (large portion) will reinforce the existing knowledge
and spare little focus on wrongly predicted adversarial data (small portion), thus leading to the robust
overfitting. The robust overfitting is manifested by red (dashed and solid) lines in upper-middle and
upper-right and bottom-middle and bottom-right panels.

To avoid the large portion of guarded data overwhelming the learning from the rare attackable data,
our GAIRAT explicitly give small weights to the losses of adversarial variants of the guarded data.
Blue (ω2) and yellow (ω3) lines in upper-left panel give two types of weight assignment functions
that assign instance-dependent weight on the loss based on the geometry value κ. In GAIRAT, the
model is forced to give enough focus on those rare attackable data.

In GAIRAT, the initial 30 epochs is burn-in period, and we introduce the instance-dependent weight
assignment ω from Epoch 31 onward (both blue and yellow lines in Figure 4). The rest of hyper-
parameters keeps the same as AT (red lines). From the upper-right panel, GAIRAT (both yellow
and blue lines) achieves smaller error on adversarial test data and larger error on training adversarial
data, compared with standard AT (red lines). Therefore, our GAIRAT can relieve the issue of the
robust overfitting.

8



Published as a conference paper at ICLR 2021

Besides, Appendix C contains more experiments such as different learning rate schedules, dif-
ferent choices of weight assignment functions ω, different lengths of burn-in period, a different
dataset (SVHN) and different networks (Small CNN and VGG), which all justify the efficacy of our
GAIRAT. Notably, in Appendix C.6, we show the effects of GAIR-FAT on improving FAT.

4.2 PERFORMANCE EVALUATION ON WIDE RESNETS

Table 1: Test accuracy of WRN-32-10 on CIFAR-10 dataset

Best checkpoint Last checkpoint
Defense

Natural Diff. PGD-20 Diff. PGD+ Diff. Natural Diff. PGD-20 Diff. PGD+ Diff.

AT 86.92 ± 0.24 - 51.96 ± 0.21 - 51.28 ± 0.23 - 86.62 ± 0.22 - 46.73 ± 0.08 - 46.08 ± 0.07 -

FAT 89.16 ± 0.15 +2.24 51.24 ± 0.14 −0.72 46.14 ± 0.19 −5.14 88.18 ± 0.19 +1.56 46.79 ± 0.34 +0.06 45.80 ± 0.16 −0.28
GAIRAT 85.75 ± 0.23 −1.17 57.81 ± 0.54 +5.85 55.61 ± 0.61 +4.33 85.49 ± 0.25 −1.13 53.76 ± 0.49 +7.03 50.32 ± 0.48 +4.24

GAIR-FAT 88.59 ± 0.12 +1.67 56.21 ± 0.52 +4.25 53.50 ± 0.60 +2.22 88.44 ± 0.10 +1.82 50.64 ± 0.56 +3.91 47.51 ± 0.51 +1.43

We employ the large-capacity network, i.e., Wide ResNet (Zagoruyko & Komodakis, 2016), on the
CIFAR-10 dataset. In Table 1, we compare the performance of the standard AT (Madry et al., 2018),
FAT (Zhang et al., 2020b), GAIRAT and GAIR-FAT. We use WRN-32-10 that keeps the same as
Madry et al. (2018). We compare different methods on the best checkpoint model (suggested by
Rice et al. (2020)) and the last checkpoint model (used by Madry et al. (2018)), respectively. Note
that results in Zhang et al. (2020b) only compare the last checkpoint between AT and FAT; instead,
we also include the best checkpoint comparisons. We evaluate the robust models based on the
three evaluation metrics, i.e., standard test accuracy on natural data (Natural), robust test accuracy
on adversarial data generated by PGD-20 and PGD+. PGD+ is PGD with five random starts, and
each start has 40 steps with step size 0.01, which keeps the same as Carmon et al. (2019) (PGD+
has 40 × 5 = 200 iterations for each test data). We run AT, FAT, GAIRAT, and GAIR-FAT five
repeated trials with different random seeds. Table 1 reports the medians and standard deviations of
the results. Besides, we treat the results of AT as the baseline and report the difference (Diff.) of the
test accuracies. The detailed training settings and evaluations are in Appendix C.8. Besides, we also
compare TRADES and GAIR-TRADES using WRN-34-10, which is in the Appendix C.9.

Compared with standard AT, our GAIRAT significantly boosts adversarial robustness with little
degradation of accuracy, which challenges the inherent trade-off. Besides, FAT also challenges the
inherent trade-off instead by improving accuracy with little degradation of robustness. Combin-
ing two directions, i.e., GAIR-FAT, we can improve both robustness and accuracy of standard AT.
Therefore, Table 1 affirmatively confirms the efficacy of our geometry-aware instance-reweighted
methods in significantly improving adversarial training.

5 CONCLUSION AND FUTURE WORK

This paper has proposed a novel adversarial training method, i.e., geometry-aware instance-
reweighted adversarial training (GAIRAT). GAIRAT gives more (less) weights to loss of the ad-
versarial data whose natural counterparts are closer to (farther away from) the decision boundary.
Under the limited model capacity and the inherent inequality of the data, GAIRAT sheds new lights
on improving the adversarial training.

GAIRAT training under the PGD attacks can defend PGD attacks very well, but indeed, it cannot
perform equally well on all existing attacks (Chen et al., 2021a). From the philosophical perspective,
we cannot expect defenses under one specific attack can defend all existing attacks, which echoes
the previous finding that “it is essential to include adversarial data produced by all known attacks, as
the defensive training is non-adaptive (Papernot et al., 2016).” Incorporating all attacks in GAIRAT
yet preserving the efficiency is an interesting future direction. Besides, it still an open question to
design the optimal weight assignment function ω in Eq. 5 or to design a proper network structure
suitable to adversarial training. Furthermore, there is still a large room to apply adversarial training
techniques into other domains such as pre-training (Hendrycks et al., 2019; Chen et al., 2020; Jiang
et al., 2020; Salman et al., 2020), noisy labels (Zhu et al., 2021) and so on.
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Figure 5: We plot standard training error (the left two panels) and adversarial training error (the
right two panels) over the training epochs of the standard AT on CIFAR-10 dataset. Top two panels:
standard AT on different sizes of network. Bottom two panels: standard AT on ResNet-18 under
different perturbation bound ǫtrain.

A MOTIVATIONS OF GAIRAT

We show that model capacity is often insufficient in adversarial training, especially when ǫtrain is
large; therefore, the model capacity should be carefully preserved for fitting important data.

In this section, we give experimental details of Figure 2 and provide complementary experiments
in Figures 5 and 6. In the left panel of Figure 2 and top two panels of Figure 5, we use standard
AT to train different sizes of network under the perturbation bound ǫtrain = 8/255 on CIFAR-
10 dataset. In the right panel of Figure 2 and two bottom panels of Figure 5, we fix the size of
network and use ResNet-18; we conduct standard AT under different values of perturbation bound
ǫtrain ∈ [1/255, 16/255]. The solid lines show the standard training error on natural data and the
dash lines show the robust training error on adversarial training data.

Training details We train all the different networks for 100 epochs using SGD with 0.9 momen-
tum. The initial learning rate is 0.1, reduced to 0.01, 0.001 at Epoch 30, and 60, respectively. The
weight decay is 0.0005. For generating the most adversarial data for updating the model, we use
the PGD-10 attack. The PGD steps number K = 10 and the step size α = ǫ/4. There is a random
start, i.e., uniformly random perturbations ([−ǫtrain,+ǫtrain]) added to natural data before PGD per-
turbations for generating PGD-10 training data. We report the standard training error on the natural
training data and the robust training error on the adversarial training data that are generated by the
PGD-10 attack.

We also conduct the experiments on the SVHN dataset in Figure 6. The training setting keeps
the same as that of CIFAR-10 experiments except using 0.01 as the initial learning rate, reduced
to 0.001, 0.0001 at Epoch 30, and 60, respectively. We find standard AT always fails when the
perturbation bound is larger than ǫ = 16/255 for the SVHN dataset due to the severe cross-over
mixture issue (Zhang et al., 2020b); therefore, we do not report its results.
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Figure 6: We plot standard training error (the left two panels) and adversarial training error (the right
two panels) over the training epochs of the standard AT on SVHN dataset. Top two panels: AT on
different sizes of network. Bottom two panels: AT on ResNet-18 under different perturbation bound
ǫtrain.

Next, we show that more attackable (more important) data are closer to the decision boundary; more
guarded (less important) data are farther away from the decision boundary.

In Figures 7 and 8, we plot 2-d visualizations of the output distributions of a robust ResNet-18 on
CIFAR-10 dataset. We take the robust ResNet-18 at the checkpoint of Epoch 30 (red line in Figure 9)
as our base model here. For each class in the CIFAR-10 dataset, we randomly sample 1000 training
datapoints for visualization. For each data point, we compute its the least number of iterations κ that
PGD requires to find its misclassified adversarial variant. For PGD, we set the perturbation bound
ǫ = 0.031, the step size α = 0.31/4, and the maximum PGD steps K = 10. Then, each data
point has its unique robustness attribution, i.e., value κ. We take those data as the input of the robust
ResNet and output 10-dimensional logits, and then, we use principal components analysis (PCA)
to project 10-dimensional logits into 2-dimension for visualization. The color gradient denotes the
degree of the robustness of each data point. The more attackable data have lighter colors (red or
blue), and the more guarded data has darker colors (red or blue).

From Figures 7 and 8, we find that the attackable data in general are geometrically close to the
decision boundary while the guarded data in general are geometrically far away from the decision
boundary. It is also very interesting to observe that not all classes are well separated. For example,
Cat-Dog is less separable than Cat-Ship in second row of Figure 8.
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Figure 7: Part A 2-d visualizations of the model’s output distribution of natural training data from
two separated classes from CIFAR-10 dataset. The degree of the robustness (denoted by the color
gradient) of a datum is calculated based on the least number of iterations κ that PGD requires to
find its misclassified adversarial variant. The light blue and light red points represent attackable data
which are close to the class boundary; the dark blue and dark red points represent the guarded data
which are far away from the decision boundary. (Top colorbars corresponds to the value κ)
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Figure 8: Part B - 2-d visualizations of the model’s output distribution on CIFAR-10 dataset.
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B ALGORITHMS

B.1 GEOMETRY-AWARE INSTANCE-REWEIGHTED FRIENDLY ADVERSARIAL TRAINING

(GAIR-FAT)

Algorithm 3 Geometry-aware early stopped PGD-K-τ

Input: data x ∈ X , label y ∈ Y , model f , loss function ℓ, maximum PGD step K, step τ ,
perturbation bound ǫ, step size α
Output: friendly adversarial data x̃ and geometry value κ(x, y)
x̃← x; κ(x, y)← 0
while K > 0 do

if argmaxi f(x̃) 6= y and τ = 0 then
break

else if argmaxi f(x̃) 6= y then
τ ← τ − 1

else
κ(x, y)← κ(x, y) + 1

end if
x̃← ΠB[x,ǫ]

(

α sign(∇x̃ℓ(f(x̃), y)) + x̃
)

K ← K − 1
end while

GAIRAT is a general method, and the friendly adversarial training (Zhang et al., 2020b) can be
easily modified to a geometry-aware instance-reweighted version, i.e. GAIR-FAT.

GAIR-FAT utilizes Algorithm 3 to generate friendly adversarial data (x̃, y) and the corresponding
geometry value κ(x, y), and then utilizes Algorithm 2 to update the model parameters.
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B.2 GEOMETRY-AWARE INSTANCE-REWEIGHTED TRADES (GAIR-TRADES)

Algorithm 4 Geometry-aware PGD for TRADES

Input: data x ∈ X , label y ∈ Y , model f , loss function ℓKL, maximum PGD step K, perturbation
bound ǫ, step size α
Output: adversarial data x̃ and geometry value κ(x, y)
x̃← x+ ξN (0, I); κ(x, y)← 0
while K > 0 do

if argmaxi f(x̃) = y then
κ(x, y)← κ(x, y) + 1

end if
x̃← ΠB[x,ǫ]

(

α sign(∇x̃ℓKL(f(x̃), f(x)) + x̃
)

K ← K − 1
end while

Algorithm 5 Geometry-aware instance-reweighted TRADES (GAIR-TRADES)

Input: network fθ, training dataset S = {(xi, yi)}
n
i=1, learning rate η, number of epochs T ,

batch size m, number of batches M
Output: adversarially robust network fθ
for epoch = 1, . . . , T do

for mini-batch = 1, . . . , M do
Sample a mini-batch {(xi, yi)}

m
i=1 from S

for i = 1, . . . , m (in parallel) do
Obtain adversarial data x̃i of xi and geometry value κ(xi, yi) by Algorithm 4
Calculate ω(xi, yi) according to geometry value κ(xi, yi) by Eq. (6)

end for
Calculate the normalized ωi =

ω(xi,yi)∑
m
j=1 ω(xj ,yj)

for each data

θ ← θ − η∇θ

∑m

i=1

{

ωiℓCE(fθ(xi), yi) + βℓKL(fθ(x̃i), fθ(xi))

}

end for
end for

We modify TRADES (Zhang et al., 2019) to a GAIRAT version, i.e. GAIR-TRADES (Algorithms 4
and 5). Different from GAIRAT and GAIR-FAT, GAIR-TRADES employs Algorithm 4 to generate
adversarial data (x̃, y) and the corresponding geometry value κ(x, y), and then utilizes both natural
data and their adversarial variants to update the model parameters (Algorithm 5). Note that TRADES
utilizes virtual adversarial data (Miyato et al., 2016) for updating the current model. The gener-
ated virtual adversarial data do not require any label information; therefore, their supervision signals
heavily rely on their natural counterparts. Thus, in GAIR-TRADES, the instance-reweighting func-
tion ω applies to the loss of their natural data.

In Algorithm 4, N (0, I) generates a random unit vector. ξ is a small constant. ℓKL is Kullback-
Leibler loss. In Algorithm 5, β > 0 is a regularization parameter for TRADES. ℓCE is cross-entropy
loss. ℓKL is Kullback-Leibler loss, which keeps the same as Zhang et al. (2019).
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Figure 9: Illustration of the reasons for the issue of robust overfitting.

C EXTENSIVE EXPERIMENTS

C.1 GAIRAT RELIEVES ROBUST OVERFITTING

In this section, we give the detailed descriptions of Figure 4 and provide more analysis and comple-
mentary experiments using the SVHN dataset in Figure 10.

In Figure 4, red lines (solid and dashed lines) refer to standard adversarial training (AT) (Madry et al.,
2018). Blue and yellow lines (solid and dashed) refer to our geometry-aware instance-reweighted
adversarial training (GAIRAT). Blue lines represent that GAIRAT utilizes the decreasing ω for as-
signing instance-dependent weights (corresponding to the blue line in the bottom-left panel); yel-
low lines represent that GAIRAT utilizes the non-increasing piece-wise ω for assigning instance-
dependent weights (corresponding to the yellow line in the bottom-left panel). In the upper-left
panel of Figure 4, we calculate the mean and median of geometry values κ(x, y) of all 50K training
data at each epoch. Geometry value κ(x, y) of data (x, y) refers to the least number of PGD steps
that PGD methods need to generate a misclassified adversarial variant. Note that when the natural
data is misclassified without any adversarial perturbations, the geometry value κ(x, y) = 0. The
bottom-left panel calculates the instance-dependent weight ω for the loss of adversarial data based
on the geometry value κ.

In the upper-middle panel of Figure 4, the solid lines represent the standard training error on the
natural training data; the dashed lines represent the standard test error on the natural test data.

In the upper-right panel of Figure 4, the solid lines represent the robust training error on the adver-
sarial training data; the dashed lines represent the robust test error on the adversarial test data. The
adversarial training/test data are generated by PGD-20 attack with random start. Random start refers
to the uniformly random perturbation of [−ǫ, ǫ] added to the natural data before PGD perturbations.
The step size α = 2/255, which is the same as Wang et al. (2019).

In the bottom-middle and bottom-right panels of Figure 4, we calculate the flatness of the adver-
sarial loss ℓ(fθ(x̃), x̃)) w.r.t. the adversarial data x̃. In the bottom-middle panel, adversarial data
refer to the friendly adversarial test data that are generated by early-stopped PGD-20-0 (Zhang et al.,
2020b). The maximum PGD step number is 20; τ = 0 means the immediate stop once the wrongly
predicted adversarial test data are found. We use friendly adversarial test data to approximate the
points on decision boundary of the robust model fθ. The flatness of the decision boundary is ap-
proximated by average of ||∇˜̃xℓ|| across all 10K adversarial test data. We give the flatness value at
each training epoch (higher flatness value refers to higher curved decision boundary, see Figure 9).
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Figure 10: Comparisons of AT (ω1, red lines) and GAIRAT (ω2, blue lines and ω3, yellow lines)
using ResNet-18 on SVHN dataset. Upper-left panel shows different instance-dependent weight
assignment functions ω w.r.t. the geometry value κ. Bottom-left panel reports the standard AT
training statistic and calculates the median (dark red circle) and mean (light red cross) of geometry
values of all training data at each epoch. Upper-middle and upper-right panels report natural
training/test errors and robust training/test errors, respectively. Bottom-middle and bottom-right
panels report the loss flatness w.r.t. friendly adversarial test data and most adversarial test data,
respectively.

For completeness, the bottom-right panel uses the most adversarial test data that are generated by
PGD-20 (Madry et al., 2018).

The magnitude of the norm of gradients, i.e., ||∇x̃ℓ||, is a reasonable metric for measuring the mag-
nitude of curvatures of the decision boundary. Moosavi-Dezfooli et al. (2019) show the magnitude
of the norm of gradients upper bound the largest eigenvalues of the hessian matrix of loss w.r.t. input
x, thus measuring the curvature of the decision boundary. Besides, Moosavi-Dezfooli et al. (2019)
even show that the low curvatures can lead to the enhanced robustness, which echoes our results in
Figure 4.

The flatness values (red lines) increases abruptly at smaller learning rates (0.01, 0.001) at Epoch 30
and Epoch 60. It shows that when we begin to use adversarial data to fine-tune the decision boundary
of the robust model, the decision boundary becomes more tortuous around the adversarial data (see
Figure 9). This leads to the severe overfitting issue.

Similar to Figure 4, we compare GAIRAT and AT using the SVHN dataset, which can be found
in Figure 10. Experiments on the SVHN dataset corroborate the reasons for issue of the robust
overfitting and justify the efficacy of our GAIRAT. The training and evaluation settings keep the
same as Figure 4 except the initial rate of 0.01 divided by 10 at Epoch 30 and 60 respectively.

C.2 DIFFERENT LEARNING RATE SCHEDULES

In Figure 11, we compare our GAIRAT and AT using different learning rate schedules. Under
the different learning rate schedules, our GAIRAT can relieve the undesirable issue of the robust
overfitting, thus enhancing the adversarial robustness. To make the fair comparisons with Rice et al.
(2020), we use the pre-activation ResNet-18 (He et al., 2016). We conduct standard adversarial
training (AT) using SGD with 0.9 momentum for 200 epochs on CIFAR-10 dataset. The different
learning rate schedules are in the top panel in Figure 11. The perturbation bound ǫ = 8/255, the
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Figure 11: The training results of standard AT and GAIRAT using pre-activation ResNet-18 under
different learning rate schedules on CIFAR-10 dataset. The top panel reports the different learning
rate schedules. The four middle panels report the robust test error on adversarial data generated
by PGD-20. The four bottom panels report the standard test error on natural data. The red lines
represent AT’s results under different learning rate schedules. The brown, green, blue and orange
lines represent GAIRAT’s results of different learning rate schedules.

PGD steps number K = 10 and the step size α = 2/255. The training setting keeps the same
as Rice et al. (2020)1.

GAIRAT has the same training configurations (including all hyperparamter settings) including the
100 epochs burn-in period, after which, GAIRAT begins to introduce geometry-aware instance-
reweighted loss. We use the weight assignment function ω from Eq. (6) with λ = −1.

At each training epoch, we evaluate each checkpoint using CIFAR-10 test data. In the middle panels
of Figure 11, we report robust test error on the adversarial test data. The adversarial test data are
generated by PGD-20 attack with the perturbation bound ǫ = 8/255 and step size α = 2/255.
The PGD attack has a random start, i.e, the uniformly random perturbations of [−ǫ, ǫ] are added to
the natural data before PGD iterations, which keeps the same as Wang et al. (2019); Zhang et al.
(2020b). Note that different from Rice et al. (2020) using PGD-10, we use PGD-20 because under
the computational budget, PGD-20 is a more informative metric for the robustness evaluation. In
the bottom panels of Figure 11, we report the standard test error on the natural data.

Figure 11 shows that under different learning rate schedules, our GAIRAT can relieve the issue of
robust overfitting, thus enhancing the adversarial robustness with little degradation of accuracy.

C.3 DIFFERENT WEIGHT ASSIGNMENT FUNCTIONS ω

The weight assignment functions ω should be non-increasing w.r.t. the geometry value κ. In Fig-
ure 12, besides tanh-type Eq. (6) (blue line), we compare different types of weight assignment
functions. The purple lines represent a linearly decreasing function, i.e.,

w(x, y) = 1−
κ(x, y)

K + 1
. (7)

1Robust Overfitting’s GitHub
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Figure 12: Comparisons of GAIRAT with different weight assignment functions on CIFAR-10
dataset. When GAIRAT takes constant ω = 1 over the training epochs, GAIRAT recovers the
standard adversarial training (AT) (red lines).

The green lines represent a sigmoid-type decreasing function, i.e.,

w(x, y) = σ(λ+ 5× (1− 2× κ(x, y)/K)), (8)

where σ(x) = 1
1+e−x .

Figure 12 shows that compared with AT, GAIRAT with different weight assignment functions have
similar degradation of standard test accuracy on natural data, but GAIRAT with the tanh-type de-
creasing function (Eq. (6)) has the better robustness accuracy. Thus, we further explore the Eq. (6)
with different λ in Figure 13.
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Figure 13: Comparisons of GARAT using the tanh-type weight assignment function (Eq. (6)) with
different λ on CIFAR-10 dataset.

In Figure 13, when λ = +∞, GAIRAT recovers the standard AT, assigning equal weights to the
losses of the adversarial data. Smaller λ corresponds to the weight assignment function ω, assign-
ing relatively smaller weight to the loss of the adversarial data of the guarded data and assigning
relatively larger weight to the loss of the adversarial data of the attackable data, which enhance the
robustness more. With the same logic, larger λ corresponds to the weight assignment function ω,
assigning relatively larger weight to the loss of the adversarial data of the guarded data and assigning
relatively smaller weight to the loss of the adversarial data of the attackable data, which enhances the
robustness less. The guarded data need more PGD steps κ to fool the current model; the attackable
data need less PGD steps κ to fool the current model.

The results in Figure 13 justify the above logic. GAIRAT with smaller λ (lighter blue lines) has
better adversarial robustness with bigger degradation of standard test accuracy. On the other hand
GAIRAT with larger λ (darker blue lines) has relatively worse adversarial robustness with minor
degradation of standard test accuracy. Nevertheless, our GAIRAT (light and dark lines) has better
robustness than AT (red lines).

Training and evaluation details We training ResNet-18 using SGD with 0.9 momentum for 100
epochs. The initial learning rate is 0.1 divided by 10 at Epoch 30 and 60 respectively. The weight
decay=0.0005. The perturbation bound ǫ = 0.031; the PGD step size α = 0.007, and PGD step
numbers K = 10. For evaluations, we obtain standard test accuracy for natural test data and robust
test accuracy for adversarial test data. The adversarial test data are generated by PGD-20 attack with

22



Published as a conference paper at ICLR 2021

the same perturbation bound ǫ = 0.031 and the step size α = 0.031/4, which keeps the same as
Wang et al. (2019). All PGD generation have a random start, i.e, the uniformly random perturbation
of [−ǫ, ǫ] added to the natural data before PGD iterations.

Note that the robustness reflected by PGD-20 test data is quite high. However, when we use other
attacks such as C&W attack (Carlini & Wagner, 2017) for evaluation, both blue and red lines will
degrade the robustness to around 40%. We believe this degradation is due to the mismatch be-
tween PGD-adversarial training and C&W attacks, which is the common deflect of the empirical
defense (Tsuzuku et al., 2018; Wong & Kolter, 2018; Cohen et al., 2019; Balunovic & Vechev,
2020; Zhang et al., 2020a). We leave this for future work.
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Figure 14: Comparisons of GARAT using the tanh-type weight assignment function (Eq. (6)) with
different λ on SVHN dataset.

In Figure 14, we also conduct experiments of GAIRAT using Eq. (6) with different λ and AT using
ResNet-18 on SVHN dataset. The training and evaluation settings keep the same as Figure 13 except
the initial rate of 0.01 divided by 10 at Epoch 30 and 60 respectively.

Interestingly, AT (red lines) on SVHN dataset has not only the issue of robust overfitting, but also
the issue of natural overfitting: The standard test accuracy has slight degradation over the training
epochs. By contrast, our GAIRAT (blue lines) can relieve the undesirable robust overfitting, thus
enhancing both robustness and accuracy.

C.4 DIFFERENT LENGTHS OF BURN-IN PERIOD
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Figure 15: Comparisons of GAIRAT (blue lines) with different lengths of the burn-in period on
CIFAR-10 dataset. The longer GAIRAT has the burn-in period, the more alike GAIRAT becomes
standard AT (red lines). AT can be seen as GAIRAT with 100 epochs burn-in period. Darker blue
lines represent shorter lengths of burn-in period; lighter blue lines represent longer lengths of burn-in
period.

In Figure 15, we conduct experiments of GAIRAT under different lengths of the burn-in period using
ResNet-18 on CIFAR-10 dataset. The training and evaluations details are the same as Appendix C.3
except the different lengths of burn-in period in the training.
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Figure 15 shows that compared with AT (red lines), GAIRAT with a shorter length of burn-in period
(darker blue lines) can significantly enhance robustness but suffers a little degradation of accuracy.
On the other hand, GAIRAT with a longer length of burn-in period (lighter blue lines) slightly
enhance robustness with zero degradation of accuracy.

C.5 DIFFERENT NETWORKS - SMALL CNN AND VGG-13
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Figure 16: Comparisons of different networks (VGG-13, Small CNN and ResNet-18) which
GAIRAT and AT use on CIFAR-10 dataset.

In Figure 16, besides ResNet-18, we apply our GAIRAT to Small CNN (6 convolutional layers and
2 fully-connected layers) on CIFAR-10 dataset. Training and evaluation settings keeps the same as
the Appendix C.3; we use 30 epochs burn-in period and Eq. (6) as the weight assignment function.

Figure 16 shows that larger network ResNet-18 has better performance than Small CNN in terms of
both robustness and accuracy. Interestingly, Small CNN has less severe issue of the robust overfit-
ting. Nevertheless, our GAIRAT are still quite effective in relieving the robust overfitting and thus
enhancing robustness in the smaller network.

In Figure 16, we also compare our GAIRAT with AT using VGG-13 (Simonyan & Zisserman,
2015) on CIFAR-10 dataset. Under the same training and evaluation settings as Small CNN, results
of VGG-13 once again demonstrate the efficacy of our GAIRAT.
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C.6 GEOMETRY-AWARE INSTANCE DEPENDENT FAT (GAIR-FAT)

In this section, we show that GAIR-FAT can enhance friendly adversarial training (FAT). Our
geometry-aware instance-reweighted method is a general method. Besides AT, we can easily mod-
ify friendly adversarial training (FAT) (Zhang et al., 2020b) to GAIR-FAT (See Algorithm 3 in the
Appendix B.1).

In Figure 17, we compare FAT and GAIR-FAT using ResNet-18 on CIFAR-10 dataset. The training
and evaluation settings keeps the same as Appendix C.3 except that GAIR-FAT and FAT has an
extra hyperparameter τ . In Figures 17, the τ begins from 0 and increases by 3 at Epoch 40 and
70 respectively. The burn-in period is 70 epochs. In Figure 17, we use Eq. (6) with different λ as
GAIR-FAT’s weight assignment function.

Different from AT, FAT has slower progress in enhancing the adversarial robustness over the training
epochs, so FAT can naturally resist undesirable robust overfitting. However, once the robust test
accuracy reaches plateau, FAT still suffers a slight robust overfitting issue (red line in the right panel).
By contrast, when we introduce our instance dependent loss from Epoch 70, GAIR-FAT (light and
dark blue lines) can get further enhanced robustness with near-zero degradation of accuracy.
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Figure 17: We compare FAT and GAIR-FAT using ResNet-18 on CIFAR-10 dataset using tanh-type
weight assignment function with different λ.
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Figure 18: Comparisons of GAIR-FAT and FAT under different schedules of dynamical τ using
ResNet-18 on CIFAR-10 dataset. (τ : 0-1-2) refers to τ starting from 0 and increasing by 1 at Epoch
40 and 70, respectively. (τ : 0-2-4) refers to τ starting from 0 and increasing by 2 at Epoch 40
and 70, respectively. τ : 0-3-6) refers to τ starting from 0 and increasing by 3 at Epoch 40 and 70,
respectively.

Note that different from the FAT used by Zhang et al. (2020b) increasing τ from 0 to 2 over the
training epochs, we increase the τ from 0 to 6. As shown in Figure 18, we find out FAT with smaller
τ (e.g., 1-3) does not suffer the issue of the robust overfitting, since the FAT with smaller τ has the
slower progress in increasing the robustness over the training epochs. This slow progress leads to
the slow increase of the portion of guarded data, which is less likely to overwhelm the learning from
the attackable data. Thus, our geometry-aware instance dependent loss applied on FAT with smaller
τ does not offer extra benefits, and it does not have damage as well.
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C.7 GEOMETRY-AWARE INSTANCE DEPENDENT MART (GAIR-MART)
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Figure 19: We compare MMA, MART and GAIR-MART with different weight assginment func-
tions using ResNet-18 on CIFAR-10.

In this section, we compare our method with MMA (Ding et al., 2020) and MART (Wang et al.,
2020b). To be specific, we easily modify MART to a GAIRAT version, i.e., GAIR-MART. The
learning objective of MART is Eq. (9); the learning objective of our GAIR-MART is Eq. (10).

The learning objective of MART is

ℓmargin(p(x̃, θ), y) + βℓKL(p(x̃, θ), p(x, θ)) · (1− py(x, θ)); (9)

our learning objective of of GAIR-MART is

ℓGAIRmargin
(p(x̃, θ), y) + βℓKL(p(x̃, θ), p(x, θ)) · (1− py(x, θ)), (10)

where ℓmargin = − log(py(x̃, θ)) − log(1 − max
k 6=y

pk(x̃, θ)) and pk(x, θ) is probability (softmax

on logits) of x belonging to class k. To be specific, the first term − log(py(x̃, θ)) is commonly
used CE loss and the second term − log(1 − max

k 6=y
pk(x̃, θ)) is a margin term used to improve the

decision margin of the classifier. More detailed analysis about the learning objective can be found
in (Wang et al., 2020b). In Eq. (9) and Eq. (10), x is natural training data, x̃ is adversarial train-
ing data generated by CE loss, and β > 0 is a regularization parameter for MART. In Eq. (10),
ℓGAIRmargin

= − log(py(x̃, θ)) · ω− log(1−max
k 6=y

pk(x̃, θ)) and ω refers to our weight assignment

function.

For MMA and MART, the training settings keep the same as the 2 and 3. For fair comparisons,
GAIR-MART keeps the same training configurations as MART except that we use the weight as-
signment function ω (Eq.(6)) to introduce geometry-aware instance-reweighted loss from Epoch 75
onward. We train ResNet-18 on CIFAR-10 dataset for 120 epochs. For MMA, the learning rate
is 0.3 from Iteration 0 to 20000, 0.09 from Iteration 20000 to 30000, 0.03 from Iteration 30000 to
40000, and 0.009 after Iteration 40000, where the Iteration refers to training with one mini-batch of
data; For MART and GAIR-MART, the learning rate is 0.01 divided by 10 at Epoch 75, 90, and 100
respectively. For evaluations, we obtain standard test accuracy for natural test data and robust test
accuracy for PGD-20 adversarial test data with the same settings as Appendix C.3.

Figure 19 shows GAIR-MART performs better than MART and MMA. The results demonstrate
the efficacy of our GAIRAT method on improving robustness without the degradation of standard
accuracy.

Reweighing KL loss The learning objective of MART explicitly assigns weights, not directly on
the adversarial loss but KL divergence loss. We ask what if you replace their reweighting scheme
(1− py(x, θ)) with our ω. The learning objective is

ℓmargin(p(x̃, θ), y) + βℓKL(p(x̃, θ), p(x, θ)) · ω. (11)

Figure 20 reports the results: It does not have much effect on adding the geometry-aware instance-
dependent weight to the regularization part, i.e., KL divergence loss .

2MMA’s GitHub
3MART’s GitHub
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Figure 20: Comparison of MART and GAIR-MART training ResNet-18 with Eq. (11) on CIFAR-10
dataset.

C.8 PERFORMANCE EVALUATION ON WIDE RESNET (WRN-32-10)

In Table 1, we compare our GAIRAT, GAIR-FAT with standard AT and FAT. CIFAR-10 dataset
is normalized into [0,1]: Each pixel is scaled by 1/255. We perform the standard CIFAR-10 data
augmentation: a random 4 pixel crop followed by a random horizontal flip. In AT, we train WRN-
32-10 for 120 epochs using SGD with 0.9 momentum. The initial learning rate is 0.1 reduced to
0.01, 0.001 and 0.0005 at epoch 60, 90 and 110. The weight decay is 0.0002. For generating the
adversarial data for updating the model, the perturbation bound ǫtrain = 0.031, the PGD step is
fixed to 10, and the step size is fixed to 0.007. The training settings come from FAT’s Github. 4

In GAIRAT, we choose 60 epochs burn-in period and then use Eq. (6) with λ = 0 as the weight
assignment function; the rest keeps the same as AT. The hyperparameter τ of FAT and begins from 0
and increases by 3 at Epoch 40 and 70 respectively; the rest keeps the same as AT. In GAIR-FAT, we
choose 60 epochs burn-in period and then use Eq. (6) with λ = 0 as the weight assignment function;
the rest keeps the same as FAT.

As suggested by results of the experiments in Section 4.1, the robust test accuracy usually gets
significantly boosted when the learning rate is firstly reduced to 0.01. Thus, we save the model
checkpoints at Epochs 59-100 for evaluations, among which, the best checkpoint is selected based
on the PGD-20 attack since PGD+ is extremely computationally expensive. We also save the last
checkpoint at Epoch 120 for evaluations. We run AT, FAT, GAIRAT and GAIR-FAT with 5 repeated
times with different random seeds.

As for the evaluations, we test the checkpoint using three metrics: standard test accuracy on natural
data (Natural), robust test accuracy on adversarial data generated by PGD-20 and PGD+. PGD-
20 follows the same setting of the PGD-20 used by Wang et al. (2019)5. PGD+ is the same as
PGours used by Carmon et al. (2019)6. The adversarial attacks have the same perturbation bound
ǫtest = 0.031. For PGD-20, the step number is 20, and the step size α = ǫtest/4. There is a
random start, i.e., uniformly random perturbations ([−ǫtest,+ǫtest]) added to natural data before
PGD perturbations. For PGD+, the step number is 40, and the step size α = 0.01. There are 5
random starts for each natural test data. Therefore, for each natural test data, we have 40× 5 = 200
PGD iterations for the robustness evaluation.

In Table 1, the best checkpoint is chosen among the model checkpoints at Epochs 59-100 (selected
based on the robust accuracy on PGD-20 test data). In practice, we can use a hold-out validation set
to determine the best checkpoint, since (Rice et al., 2020) found the validation curve over epochs
matches the test curves over epochs. The last checkpoint is the model checkpoint at Epoch 120. Our
experiments find that GAIRAT reaches the best robustness at Epoch 90 (three trails) and 92 (two
trails), and AT reaches the best robustness at Epoch 60 (five trails). FAT reaches the best robustness
at Epoch 60 (four trails) and 61 (one trail). GAIR-FAT reaches the best robustness at around Epoch
90 (five trails). We report the median test accuracy and its standard deviation over 5 repeated trails.

PGD attacks with different iterations In Table 1, each defense method has five trails with five
different random seeds; therefore, each defense method has ten models (five last checkpoints and
five best checkpoints). In Figure 21, for each defense, we randomly choose one last-checkpoint and

4FAT’s GitHub
5DAT’s GitHub
6RST’s GitHub
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Figure 21: Comparison of PGD attacks with different PGD iterations on CIFAR-10 dataset.

one best-checkpoint and evaluate them using PGD-10, PGD-20, PGD-40, PGD-60, PGD-80, and
PGD-100. All the PGD attacks use the same ǫtest = 0.031 and the step size α = (2.5 · ǫtest)/100.
We ensure that we can reach the boundary of the ǫ-ball from any starting point within it and still
allow for movement on the boundary, which is suggested by Madry et al. (2018). The results show
the PGD attacks have converged with more iterations.

C.9 PERFORMANCE EVALUATION ON WIDE RESNET (GAIR-TRADES)

Table 2: Test accuracy of TRADES and GAIR-TRADES (WRN-34-10) on CIFAR-10 dataset

Best checkpoint Last checkpoint
Defense

Natural PGD-20 PGD+ Natural PGD-20 PGD+

TRADES (β = 6) 84.88 ± 0.35 56.43 ± 0.24 54.33 ± 0.38 85.66 ± 0.33 53.31 ± 0.25 50.11 ± 0.25
GAIR-TRADES (β = 6) 86.99 ± 0.31 63.32 ± 0.50 56.77 ± 0.87 86.86 ± 0.26 60.65 ± 1.00 52.70 ± 0.93

In Table 2, we compare our GAIR-TRADES with TRADES. CIFAR-10 dataset normalization and
augmentations keep the same as Appendix C.8. Instead, we use WRN-34-10, which keeps the same
as Zhang et al. (2020b). We train WRN-34-10 for 100 epochs using SGD with 0.9 momentum. The
initial learning rate is 0.1 reduced to 0.01 and 0.01 at epoch 75 and 90. The weight decay is 0.0002.
For generating the adversarial data for updating the model, the perturbation bound ǫtrain = 0.031,
the PGD step is fixed to 10, and the step size is fixed to 0.007. Since TRADES has a trade-off
parameter β, for fair comparison, our GAIR-TRADES uses the same β = 6. In GAIR-TRADES,
we choose 75 epochs burn-in period and then use Eq. (6) with λ = −1 as the weight assignment
function. We run TRADES and GAIR-TRADES five repeated trails with different random seeds.

The evaluations are the same as Appendix C.8 except the step size α = 0.003 for PGD-20 attack,
which keeps the same as Zhang et al. (2020b)7.

In Table 2, the best checkpoint is chosen among the model checkpoints at Epochs 75-100 (w.r.t. the
PGD-20 robustness). The last checkpoint is evaluated based on the model checkpoint at Epoch 100.
Our experiments find that GAIR-TRADES reaches the best robustness at Epoch 90 (three trails), 96
(one trail) and 98 (one trail), and TRADES reaches the best robustness at Epoch 76 (three trail), 77
(one trails) and 79 (one trail). We report the median test accuracy and its standard deviation over 5
repeated trails.

Table 2 shows that our GAIR-TRADES can have both improved accuracy and robustness.

C.10 BENCHMARKING ROBUSTNESS WITH ADDITIONAL UNLABELED (U) DATA

In this section, we verify the efficacy of our GAIRAT method by utilizing additional 500K U data
pre-processed by Carmon et al. (2019) for CIFAR-10 dataset.

Carmon et al. (2019) scratched additional U data from 80 Million Tiny Images (Torralba et al.,
2008); then, they used standard training to obtain a classifier to give pseudo labels to those U data.

7TRADES’s GitHub
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Among those U data, they selected 500K U data (with pseudo labels). Combining 50K labeled
CIFAR-10’s training data and pseudo-labeled 500K U data, they propose a robust training method
named RST which utilized the learning objective function of TRADES, i.e.,

ℓCE(fθ(x), y) + βℓKL(fθ(x̃), fθ(x)), (12)

where x̃ is generated by PGD-10 attack with CE loss.

Based on the RST method, we introduce our instance-reweighting mechanism, i.e., our GAIR-RST.
To be specific, we change the learning objective function to

ℓCE(fθ(x), y) + β {ωℓKL(fθ(x̃), fθ(x)) + (1− ω)ℓKL(fθ(x̃CW ), fθ(x))} , (13)

where the x̃CW refers to the adversarial data generated by C&W attack (Carlini & Wagner, 2017)
and ω is the as Eq. (6).

Table 3: Evaluations using standard WRN-28-10

Method/Paper Natural AA

Gowal et al. (2020) 89.48 62.60

Wu et al. (2020) 88.25 60.04

GAIR-RST (Ours) 89.36 59.64

Carmon et al. (2019) 89.69 59.53

Sehwag et al. (2020) 88.98 57.14

Wang et al. (2020b) 87.50 56.29

Hendrycks et al. (2019) 87.11 54.92

The results of other methods are reported at AA’s GitHub

In Table 3, we compare the performance of our GAIR-RST with other methods that use WRN-28-
10 under auto attacks (AA) (Croce & Hein, 2020). All the methods utilized the same set of U data
which are from RST’s GitHub8 and the results are reported on the leaderboard of AA’s GitHub9.
Our GAIR-RST use the same training settings (e.g., learning rate schedule, ǫtrain = 0.031) as RST.
The evaluations are on the full set of the AA in (Croce & Hein, 2020) with ǫtest = 0.031, which
keeps the same as training.

The results show our geometry-aware instance-reweighted method can facilitate a competitive model
by utilizing additional U data.

8RST’s GitHub
9AA’s GitHub
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