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Abstract—Graphs have been widely used to model relationships among data. For large graphs, excessive edge crossings make the
display visually cluttered and thus difficult to explore. In this paper, we propose a novel geometry-based edge-clustering framework
that can group edges into bundles to reduce the overall edge crossings. Our method uses a control mesh to guide the edge-clustering
process; edge bundles can be formed by forcing all edges to pass through some control points on the mesh. The control mesh
can be generated at different levels of detail either manually or automatically based on underlying graph patterns. Users can further
interact with the edge-clustering results through several advanced visualization techniques such as color and opacity enhancement.
Compared with other edge-clustering methods, our approach is intuitive, flexible, and efficient. The experiments on some large graphs
demonstrate the effectiveness of our method.
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1 INTRODUCTION

Graphs have been widely used to model many problems such as cita-
tions in scientific papers, traffic between telecommunication switches,
and airline routes among cities. The scale of these problems keeps in-
creasing and the associated graphs can easily contain tens of thousands
of nodes and edges. Visual clutter caused by excessive edge crossings
has made traditional layouts no longer effective to convey information.
Thus, reducing visual clutter in graphs is a very important research
problem. An informative and clear graph layout is critical for clutter
reduction.

Many methods have been proposed to improve graph layout. These
methods can be classified into two major categories: adjust node po-
sitions and improve edge layout. Rearranging the nodes can decrease
edge crossings in graphs and thus reduce edge clutter. Node layout
methods, such as force-based model algorithm [17], can generate vi-
sually pleasing results for small or medium sized graphs according to
some aesthetic criteria. However, for dense graphs with a substan-
tial number of edges, rearranging the nodes usually cannot reduce the
edge crossings to a satisfactory level. In addition, nodes in some ap-
plications such as airline routes have semantic meanings and it may
not be appropriate to move their positions. Another promising ap-
proach to reduce visual clutter is to bundle edges. For example, a flow
map layout [18] is proposed for single-source graphs while Edge Bun-
dles [12] are designed for visualizing datasets containing both hier-
archical structures and adjacency relations. Their results demonstrate
the high potential of using edge clustering to improve the graph layout
and reduce visual clutter. However, these previous solutions are all de-
signed for special graphs such as source-sink style graphs and graphs
with known hierarchical structures. An efficient edge-clustering solu-
tion for general graphs is still missing.
In this paper, we follow the same line of research by bundling edges

to reduce visual clutter. Our goal is to design an edge-clustering frame-
work for general graphs. Our method is inspired by road maps, which
are visually pleasing and relatively uncluttered. There are some good
features of road maps. First, in road maps, the connection between
two nodes is no longer a straight line; it is turned into segments that
consist of cities and highways. Second, the road maps can be viewed
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at different levels of details (i.e., country level, city level, and county
level). Third, by studying the road map, some high-level patterns can
be detected. For example, the major highways usually indicate heavy
traffic along the highway direction. Therefore, we believe that turning
straight line graphs into road-map-style graphs may effectively reduce
clutter and help detect the underlying patterns in the data.
It is not easy to generate informative road-map-style graphs for gen-

eral straight line graphs. The major components of road maps are cities
and roads. We can consider cities as control points and roads as seg-
ments connecting cities. Then all paths must pass through certain cities
and roads. One major challenge is how to choose control points (i.e.,
cities in road maps) for general graphs. We find that a good control
point should be close to the point with high line density, which means
heavy traffic, and the edge connecting control points should be aligned
with the primary line direction, which means the major traffic direc-
tion. In addition, the influence of the control points should be localized
(i.e., only edges within a certain distance can pass through a control
point). Based on these intuitive observations, we design a geometry-
based edge-clustering framework for general graphs. The basic idea
is to select control points based on a control mesh that reflects the
underlying graph patterns. We first analyze the link distributions and
detect a primary direction for each local area. Then, we generate a
control mesh with edges piercing through the cluster of lines. The
control points will then be positioned on the mesh edges. By forc-
ing all links to pass through these control points, edge bundles can be
naturally formed. To further improve the layout, we introduce a local-
smoothing scheme to smooth all the zigzag curves. We then provide
some advanced visualization techniques to enhance the patterns after
edge clustering. Compared with previous methods, our method can
work on general graphs, and it is geometry-based so expensive opti-
mization is avoided. It is intuitive, allowing users to easily control
the final layout by adjusting the control mesh and the control points.
The control meshes can be easily constructed in a hierarchical way, so
users can examine the graphs at different levels of detail.
The major contributions of this paper are as follows:

• We propose a general edge-clustering framework based on con-
trol meshes to reduce visual clutter and enhance patterns in
graphs. Our framework is intuitive, flexible, and efficient.

• We present several schemes to generate control meshes that can
capture the underlying edge distribution patterns and lead to in-
formative graph layouts. A local-smoothing scheme is proposed
to further improve the layout quality.

• We introduce three advanced visualization and interaction tech-
niques (i.e., color and opacity enhancement, mesh adjustment,
and animation) which can significantly increase the effectiveness
of edge-clustered graphs.
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2 RELATEDWORK

Visual clutter in graphs has been extensively studied in the graph draw-
ing and information visualization fields. In this section, we only re-
view the papers that are closely related to our work (i.e., graph lay-
out). Thus, we omit other effective clutter reduction techniques such
as sampling, filtering, clustering, and animation because of the limited
space. An excellent survey on general clutter reduction techniques can
be found in [7].

Many efforts have been devoted to generate good graph lay-
outs [2, 15]. They can be divided into two major categories: node-
based techniques and edge-based techniques. Node-based techniques
focus on adjusting node positions to improve the overall graph lay-
outs while edge-based techniques try to reduce visual clutter by either
dispersing or clustering edges.

Node layout Rearranging the nodes can decrease the number of
edge crossings and thus reduce visual clutter. Force-based methods
are widely used in node layout algorithms. In force-based approaches,
graphs are considered as physical systems, in which nodes are mod-
eled as rigid bodies, and edges are modeled as elastic springs. Ac-
cording to different aesthetic criteria or specific requirements, appro-
priate energy models [4, 8, 20, 17] can be formulated. In general,
force-directed algorithms can successfully produce good results for
relatively small graphs, but they do not scale well with size. Large
graphs often make the energy function difficult to be optimized. To
improve the time performance, fast multilevel algorithms [1] and sim-
plified energy functions [16] are proposed. Recently, Frishman and
Tal [9] introduced a GPU-accelerated force-based model that can pro-
vide a promising speedup to generate high-quality layouts for large
graphs. To visualize large graphs at different level of details, a topo-
logical fisheye view technique [10] has been proposed to allow users
to interactively examine local areas of a graph in detail and still pre-
serve the display of the graph’s global structure. Compared with the
above node layout methods, our approach does not change node posi-
tions or merge nodes. For some applications such as communication
and transportation networks, node layout methods are not applicable
because the semantic meanings of the node positions prevent spatial
adjustment of nodes.

Edge dispersing For dense graphs with a large number of edges,
a good node layout cannot reduce the edge clutter to a satisfactory
level. Thus, various methods are proposed to further adjust edges.
One significant approach is to disperse edges away from a local area
so the underlying patterns can be revealed. Wong et al. [21] intro-
duced EdgeLens for interactively managing edge congestion in graphs.
Without changing node positions, they displaced edges in a local area
with a high degree of edge overlap to reveal hidden information in that
area and thus clarified graph structures. Wong and Carpendale [22]
further proposed another interactive technique, Edge Plucking, which
temporarily pulls edges apart to clarify underlying node-edge relation-
ships. These interactive graph exploration tools are very useful to re-
veal the local structures in a region of interest, while our method aims
at revealing the global structures and large-scale patterns of the graph.
Actually, our method can complement the strengths of edge-dispersing
techniques and can be used together with them.

Edge clusteringAnother kind of edge-based techniques focuses on
merging edges to reduce visual clutter. Confluent drawings [5] ex-
ploit curves to visualize non-planar node-link diagrams in a planar
way. However, not all the graphs can be drawn confluently. In ad-
dition, the complexity of deciding whether a graph is confluent or not
remains open [13]. By curving and merging edges, Phan et al. [18]
presented flow map layouts to draw single-source graphs whose edges
share a common end point as a “free-style” binary tree. Considering
the common end point as the tree root, the algorithm automatically
generates a hierarchical structure based on the leaf positions. By mak-
ing the line widths proportional to the edge weights, a flow map can
provide a clear flow distribution and reduce visual clutter. Their re-
sults are very encouraging; however, it is not clear how to extend their
method to general graphs.

Edge Bundles [12] are designed for visualizing datasets contain-
ing both hierarchical structures and adjacency relations, such as ref-

erence relations among the elements of a file directory. Linking two
leaf nodes in the tree, each edge is curved according to the tree path
that connects the two leaf nodes. If two edges share some segments in
their tree paths, they will be bundled at those common segments. This
method demonstrates the effectiveness of using curves to reduce visual
clutter, but the technique is designed for graphs with known hierarchi-
cal structures. Gansner and Koren [11] improved circular layouts by
grouping edges to maximize area utilization and readability. Com-
pared with the previous work on edge clustering, our method works
for general graphs. Qu et al. [19] proposed a novel edge-clustering
framework for general node-link diagrams. By grouping links based
on their intersections with the edges in the Delaunay triangulation of
the nodes, this method reduces edge clutter and gives an overall ab-
straction of graphs. However, for large graphs, their method generates
many zigzag edges, making it difficult for users to discern the curve di-
rection and end points. Our method introduces a local-smoothing tech-
nique to address the zigzag problems. In addition, we demonstrate that
using Delaunay triangulation does not work for many graphs; there-
fore, we design another mesh generation method that can better cap-
ture the underlying graph patterns for edge clustering. Furthermore,
three novel visualization and interaction techniques are introduced to
make our method more effective.

3 GEOMETRY-BASED EDGE CLUSTERING OVERVIEW

In this section, we give a brief overview of our edge-clustering frame-
work. We assume that the positions of the nodes in the input graph are
already available. For some applications, node positions encode ge-
ographic information and any dramatic adjustment of node positions
may cause confusion for users. For other applications, the positions of
nodes can be computed by methods such as force-based models [17]
and thus a relatively good initial layout can be obtained. Therefore,
we do not further change node positions and the original node layout
is preserved. Our goal is to convert general straight line graphs into
road-map-style graphs, and the basic idea of our method is to cluster
the edges based on a control mesh that reflects the underlying graph
structures.

Fig. 1 illustrates the framework of our approach. It consists of three
major steps: 1) control mesh generation, 2) edge clustering, and 3)
visualization. Control mesh generation has two components: graph
analyzer and mesh generator. The node and edge information of the
original graph is first sent to the analyzer to detect underlying edge
distribution patterns. After that, some representative primary edge di-
rections are output to the mesh generator, which then generates some
mesh edges perpendicular to each selected primary direction. These
mesh edges serve as basic control-mesh edges. By further adding more
mesh nodes and triangulating the nodes and basic edges, the mesh gen-
erator completes the control mesh and sends it to the bundler. Based on
the intersections between the original graph and the control mesh, the
edge bundler sets some control points on the control-mesh edges and
curves the original graph edges to pass through these control points
to form edge clusters. In the edge smoother, some curved edges with
too many zigzags are further fine-tuned to become visually pleasing.
Finally, in the visualizer, an intuitive exploration interface is provided
for users to interact with the edge-clustering results.

4 CONTROL MESH GENERATION

We use a triangle mesh, called control mesh, to guide the edge clus-
tering process. The control mesh plays a very important role in the
edge-clustering process and is critical for the final graph layout. A
good control mesh will lead to an informative layout, which can reduce
the number of edge crossings, bundle edges with similar directions
and lengths, and minimize the distances between original straight-line
edges and resulting polyline edges. In other words, a good layout
should faithfully reveal and enhance the underlying graph patterns and
effectively reduce visual clutter. In this section, we first discuss the
overall strategy for control mesh generation and then introduce three
mesh generation methods.
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Fig. 1. Framework of our graph visualization system.

4.1 Control Mesh Generation Strategy

The control mesh should be generated based on the underlying graph
structures. One simple strategy is to generate control meshes based on
the node distributions. For example, we can triangulate the nodes into
a control mesh using Delaunay triangulation [19]. However, we find
that this kind of control mesh does not work for many graphs because
the underlying edge distribution is not taken into account. Fig. 2a
shows such an example. If we use the Delaunay mesh in Fig. 2b as
the control mesh, the edge cluster linking the east nodes and the west
nodes cannot be bundled together. Therefore, a good control mesh
should not be computed solely based on the nodes of the graphs.

A

(a) (b) (c) (d)

Fig. 2. Control meshes: (a) a graph; (b) a control mesh generated by the
Delaunay triangulation of nodes. With this mesh, no edges in graph (a)
will be clustered. (c) a control mesh generated according to the edge
distribution pattern; (d) the layout after clustering the edges along the
control point A.

One of the most interesting patterns in a graph is the edge clusters
consisting of edges with similar directions and lengths. If these edges
are bundled together, the visual clutter can be reduced (see Fig. 2d).
Therefore, the control mesh should facilitate grouping spatially close
edges with similar directions. In order to do so, some control points
(e.g., control point A in Fig. 2d) must be located in the middle of the
edge cluster. After these edges are forced to pass through the control
points, edge bundles can be generated accordingly. Because our con-
trol points are set on the mesh edges, we need to make some mesh
edges (e.g., the vertical green edge in Fig. 2c) crossing the edge clus-
ter. Therefore, our control mesh generation strategy is to first detect
edge clusters manually or automatically and then generate mesh edges
to pierce through these edge clusters.

4.2 Manual Mesh Generation

One straightforward solution is to allow users to manually generate a
control mesh according to the data. Our system can provide some vi-
sual cues such as edge densities and direction variations to users. The
basic guideline is that some edges in the control mesh should cross
edge clusters. Based on this guideline, users can either manually set
vertices around the edge clusters or directly draw mesh edges crossing
through the clusters. Users can draw the whole mesh by themselves or
let our system automatically connect these chosen vertices and edges
to form a triangle mesh. Fig. 3 illustrates such an example. Fig. 3a
shows the original graph. We can clearly see that there are some clus-
ters of almost parallel lines. Users can then directly click on the graph
display to generate a set of vertices (see Fig. 3b) and edges, which can
then be connected to form a triangle mesh (see Fig. 3c) by Constrained
Delaunay triangulation [3]. For simple graphs with some obvious edge
cluster patterns, users can manually set the mesh and thus obtain the
final edge-clustering results. For some dense graphs, it becomes dif-
ficult and time-consuming for users to visually find the edge clusters
and set the entire mesh manually; therefore, we introduce two more
sophisticated mesh generation schemes in the next two subsections.

(a) (b) (c)

Fig. 3. Manual mesh generation: (a) a graph; (b) users click a set of
vertices and edges; (c) a mesh is generated by Constrained Delaunay
triangulation of the vertices and edges.

4.3 Automatic Mesh Generation

A better solution is to automatically generate a control mesh by ana-
lyzing the underlying edge patterns. Fig. 4 illustrates the basic idea of
our automatic mesh generation method. We first compute the bound-
ing box for the input graph. Then we divide the bounding box into
cells using a regular grid (see Fig. 4b). The resolution of the grid
can be configured by users. For each grid cell, we compute the num-
ber of nodes falling into this region and the number of links passing
through it. A feature vector can be constructed to record the direction
of each passing link. Then we use Kernel Density Estimator [6] to
detect whether there is a strong clustering of those feature vectors. If
so, this clustered direction will be selected as a primary direction of
this cell (see red arrow in Fig. 4b). Otherwise, this cell will be ignored
in the following steps. Next, we merge smaller regions with similar
primary directions into some larger regions (see thick red polygons in
Fig. 4b) until the maximum angular difference of primary directions
in the region is beyond a threshold (e.g., 15o) specified by users. Then
the weighted average of the primary directions in the smaller regions
will become the primary direction of the resulting larger region. For
each region, we want to cluster the links along the primary direction
and minimize the average distance between the clustered line and the
original straight lines. To achieve this goal, we found that it is better to
make mesh edges pierce through the clusters and become perpendicu-
lar to the clusters’ primary direction. Under this guideline, our system
can automatically generate a set of mesh edges (see green edges in
Fig. 4c). After processing all grids, we get a set of vertices and edges.
We first merge some vertices which are too close to one another, and
then we use Poisson sampling to generate more vertices if needed. Fi-
nally, a triangle mesh as shown in Fig. 4d can be generated using Con-
strained Delaunay triangulation [3]. This automatic approach is used
as the default mesh generation method for the remaining sections.

4.4 Hierarchical Mesh Generation

The level-of-detail graph visualization can be achieved through a set
of hierarchical control meshes. The hierarchical meshes can be gen-
erated in two ways: discrete level-of-details and continuous level-of-
details. The concept of continuous level-of-details is borrowed from
the computer graphics field. It indicates a smooth transition from a
high-resolution mesh to a low-resolution mesh by edge collapse. In the
automatic mesh generation process, we allow the merging of smaller
regions with similar primary directions into a larger region based on
a user-specified angular difference threshold. The discrete level-of-
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(a) (b)

(c) (d)

Fig. 4. Automatic mesh generation: (a) a graph; (2) grid the graph,
calculate a primary direction for each grid and merge them based on
their primary directions; (3) set some mesh edges perpendicular to the
blocks’ primary directions; (4) link the edges together to generate a
mesh.

(a) (b) (c)

Fig. 5. The hierarchical meshes generated using three angular differ-
ence thresholds, i.e., 5o, 12o, and 40o, respectively.

details can be achieved by specifying a series of discrete thresholds
(e.g., 5o, 10o, 15o) and then generate the control meshes accordingly.
The continuous level-of-details can be constructed by merging cells
one by one based on the difference of the primary directions. The two
neighboring cells with the smallest difference of primary directions
will get merged first. After each merge, we can generate a new control
mesh that has fewer triangles than the previous one. We keep doing
the merging and then a sequence of control meshes with continuous
level-of-details can be generated.

Another possible way to generate hierarchical meshes is to change
the grid resolution. For example, the graph region can be divided
into 64×64, 128×128, and 256×256 grids, which lead to three dis-
crete levels of hierarchical meshes. For continuous level-of-details, we
can start from a high-resolution control mesh and then simplify it us-
ing some well-established computer graphics techniques such as ver-
tex merging or quadratic error metrics. Because mesh simplification
is thoroughly studied, we can leverage those advanced techniques to
achieve sophisticated graph visualization results. The flexible level-of-
detail control is a major advantage of our geometry-based framework.
Fig. 5 shows the control meshes at three discrete level-of-details.

Our automatic mesh generation methods can guarantee that the con-
trol meshes are generated solely based on information from the data
and most likely reflect the underlying edge patterns. Even with these
automatic methods, manual mesh generation may be still useful as it
enables users to create control meshes in some local areas where the
automatic methods fail to generate adequate mesh edges.

5 EDGE CLUSTERING

After we have the control mesh, the next step is to compute the con-
trol points and conduct edge clustering based on the control mesh and
control points. In this section, we first introduce a straightforward
edge-clustering scheme. Then we present a local-smoothing method
to address some unwanted features in the clustered graph.

(a) (b) (c)

Fig. 6. Edge clustering by control points: (a) a graph with a control
mesh; (b) the intersections and the control points; (c) the merged graph.

5.1 Edge Clustering by Control Points

Fig. 6a shows a graph and the corresponding control mesh. All the in-
tersection points between the links and control-mesh edges are shown
as red dots in Fig. 6b. Intuitively, the control point(s) on each edge
should be in the center of these intersection points. Then, after original
links are forced to pass through the control point(s) instead of the inter-
section points, the overall distortion can be minimized. Therefore, we
apply the K-means clustering method to compute one or several con-
trol points for each edge. After forcing the links to pass through these
control points, we can get an edge-clustered graph (see Fig. 6c). The
method is intuitive to use, and different graph layouts can be generated
by using different control meshes and control points. In addition, the
merged curves can be drawn using different curve styles.

5.2 Local Smoothing

The edge-clustered result generated by the previous method may not
be visually pleasing because some edges may have too many zigzags.
Fig. 7 illustrates this problem. Fig. 7a shows one original straight-line
edge (dotted red line) and the resulting polyline edge (solid red line),
which has severe zigzag. The zigzag edge is not pleasing and can even
indicate wrong direction of the original link and thus cause misleading
comprehension of the graph.

To alleviate the problem and make the edges as smooth as possible,
we introduce a local-smoothing algorithm. Because each straight line
becomes a polyline in the final layout, we first develop a quality metric
to measure how well the polylines represent the original straight lines.
The quality metric should consider the polyline’s curvature, the num-
ber of turning points, and the maximum distance between the polyline
and the original straight line. After experiments with various metrics,
our path quality for a polyline edge e is quantitatively modeled as fol-
lows:

Q(e) = Qangle(e)+ Qdistance(e)

where Qangle(e) and Qdistance(e) are the two terms computing the
angle and distance variation. and are the corresponding weights
for each term. The first term Qangle(e) is defined as follows:

Qangle(e) = −
n

i=3
i| i|

We assume that e consists of n segments and (n−1) control points.

i records the angular difference between the ith segment and the (i−
1)th one. Boolean variable i indicates whether there is a zigzag or
direction change for control point i. The formulations of i and i are
listed below:

i =

⎧

⎨

⎩

Ai−Ai−1 if − < |Ai−Ai−1| <
|Ai−Ai−1|−2 if |Ai−Ai−1| >
2 + |Ai−Ai−1| if |Ai−Ai−1| < −

where Ai is the radian angle formed by ith segment and the original
straight line e′.

i =

{

0 if sign( i) = sign( i−1)
1 if sign( i) �= sign( i−1)
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(a) (b) (c)

Fig. 7. Local smoothing: (a) a zigzag path (solid red line) with-
out smoothing; (b) the search region (solid green region) to find the
smoothest path; (c) the smoothest path (solid red line) found in this re-
gion. The dotted red line is the original straight line.

The second term Qdistance, which is to record the distance variation
between the curved edge e and the straight line e′, is approximated by
the following equation:

Qdistance = −
n−1

l=1

Dl

where Dl is the Euclidian distance from the lth control point to
the straight-line edge e′. If users want the curved lines to have fewer
zigzags, they can choose a large value. If the curved lines should
not be far away from their original positions, a large value should be
used.
Based on this quality measure, we can identify a set of polylines

with poor quality and then do local smoothing for them. The basic
idea is to find another path or a set of control points in a local area
for the corresponding original edge of each poor polyline. The first
step of our local-smoothing algorithm is to compute a local area for
this edge to narrow the search space for the new path. All the triangles
in the control mesh that the edge passes through and some neighbor-
ing triangles whose vertices are within a certain distance threshold to
the edge will form the search region. The distance threshold can be
configured by users. A larger threshold will result in a larger search
region and a better chance that a smooth path can be found but at the
cost of longer computation time. After that, we just search all the pos-
sible paths in the search region for the original link and choose the one
that has the highest quality according to our quality metric. We exploit
dynamic programming and thus the local-smoothing algorithm can be
run at O(n2) time complexity, where n is the total number of triangles
in the search region. Compared with the global optimization used in
energy-based methods, our local smoothing can be performed much
faster as it is a one pass process with narrowed search space. Fig. 7c
shows the computed smooth path.

(a) (b)

Fig. 8. Color and opacity enhancement: (a) an edge-clustered graph;
(b) the graph after color and opacity enhancement. The color encodes
the orientations of original links and the opacity indicates the line density
of overlapped segments.

6 VISUALIZATION TECHNIQUES

The layout generated by our edge-clustering method can be further
explored with some advanced visualization techniques such as color
and opacity enhancement, mesh adjustment, and animation.

6.1 Color and Opacity Enhancement

For dense graphs, the patterns may still be obscured after edge clus-
tering because of occlusion. To reveal these patterns, we can assign

different colors and opacities to edge segments based on certain at-
tributes.

After edge clustering, we can compute various attributes for the
polyline segments of the graph. For example, each polyline segment
in the edge-clustered graph may represent a certain number of original
edges; the distance of each polyline segment to the original straight
lines may be different; and these original straight lines may have dif-
ferent directions. Therefore, we can compute the line density, the av-
erage distance of these edges to their original links, and the direction
variation for each polyline segment. We can then design a transfer
function that maps these attributes to color and opacity values to en-
hance different patterns in the graph. For example, for a polyline seg-
ment e, we can compute its weighted density attribute as follows:

De =
n

i=1

cili

where n is the number of e’s sub-segments, ci is the number of
original straight-line edges that are bundled or merged into the ith sub-
segment, and li is the length of the ith segment serving as the weight.

We design an interface similar to the transfer function specification
in volume rendering and parallel coordinates [14] to assign the color
and opacity values based on different attributes. Users can then inter-
actively manipulate the transfer function and thus selectively enhance
different edge bundles. Fig. 8 shows an example of using color and
opacity enhancement.

A

B

C

A

(a) (b) (c)

Fig. 9. Mesh adjustment: (a) one control mesh; (b) the result with control
mesh a; (c) after moving mesh node A, edge bundle B and C in (b) are
merged into one bundle.

6.2 Mesh Adjustment

To further explore the data, users can interactively adjust the control
mesh so that different layouts may be generated. In this way, different
clusters may be revealed. Some typical mesh adjustment operations
include: adjusting vertex positions; merging two vertices; splitting an
edge; subdividing a triangle into four sub-triangles. By adjusting the
meshes, some otherwise separated clusters may get merged. Fig. 9
demonstrates that different meshes can lead to different graph layouts.

6.3 Animation

Different animation schemes can be used together with our edge-
clustering method. For example, we can change the level of clustering
to allow the edges to be grouped instead of being merged such that
each individual edge is still discernible. We can also generate an an-
imation to show the whole process of edge clustering, i.e., how edges
are changed from straight lines to polylines and then gradually merged
together. In our system, we provide two animation techniques: ani-
mated transitions from the original straight line graph to the resulting
edge-clustered graph, and animated sequences to display the layout at
different levels of detail. By viewing the animations, users will have
a better idea about the data and may detect some patterns that may
otherwise disappear in the final static layouts. Fig. 10 shows some
frames during an animation sequence, which shows the transition from
a straight line graph to an edge-clustered graph.

1281CUI ET AL: GEOMETRY-BASED EDGE CLUSTERING FOR GRAPH VISUALIZATION



(a) (b) (c) (d) (e)

Fig. 10. An animation sequence for an edge-clustering process. The color is used to encode the edge directions.

(a) (b) (c)

Fig. 11. Edge clustering on a synthesized dataset.

(a)

AB

(b)

B A

(c)

Fig. 12. Experiments on the GD’96 contest data.

7 EXPERIMENTAL RESULTS

In this section, we apply our geometry-based edge-clustering method
to several graphs and demonstrate the effectiveness of our approach.

First we tested our method with a synthesized graph with simple
patterns. Fig. 11a shows a layout which is also used in [12]. Fig. 11b
is the control mesh automatically generated based on the underlying
edge patterns. Then an edge-clustered graph layout that is similar to
the result using Edge Bundles [12] can be easily generated using our
method (see Fig. 11c). This example demonstrates that our method
works well for graphs with simple patterns.

Next we tested our algorithm on a benchmark dataset used in the
Graph Drawing 96 contest 1. Fig. 12a shows the result of this graph
using a force-based method [23]. As pointed out in [23], the force-
based approach can reveal most of the major features in this dataset,

1http://www.research.att.com/conf/gd96/contest.html

except one root node “A” in the rectangular area that is enlarged in
Fig. 12b. Another root node “B” is clearly shown in Fig. 12b, while
root node “A” is embedded in a massive number of nodes and edges.
However, after applying our edge-clustering method, both root nodes
are highlighted by dark red edges linking to them (see Fig. 12c), be-
cause our method can successfully detect and enhance the edge bun-
dles with high density and then encode them with high opacity values.

The third dataset is about the major airline routes of Northwest Air-
lines in the United States. Fig. 13a shows the original graph. Because
of severe clutter, not much information is revealed. After applying our
method, some high-level patterns are revealed (see Fig. 13b). From the
result, we can clearly see that there are some major clusters of airline
routes going from the west coast to the east coast, while the directions
of the airline route clusters are more diversified in the northeast region.
After zooming into the northeast region, more details are displayed
with our hierarchical control meshes (see Fig. 13d and 13f). Fig. 13e
and 13g show the results after applying different transfer functions.
One disadvantage of our approach is that the individual link direction
and length information is lost after edge-clustering or edge-bundling.
However, we can compensate for this by color encoding. For exam-
ple, in Fig. 13e where edges are bundled instead of merged, we can use
color to encode the original edge directions. Red indicates east-west
direction while blue means north-south direction. In Fig. 13e, we can
see that edge bundle “A” mainly consists of red colors; therefore, most
of its edges connect the east region and the west region. The blue edge
bundle “B” has some orange edges in it, which means that some of
its edges are linking the northeast region and the southwest region. In
Fig. 13g, color is used to encode the edge length information. Blue in-
dicates short edges while red means long. We can easily find that edge
bundle “C” consists of some long edges (red) and also some relatively
short edges (blue). Therefore, our color and opacity enhancement tool
can further help users explore the clustered graph by providing more
information about the original edge attributes.

The last example is a dense graph, representing the migration
among the states in the United States. The same dataset has also been
used in [18]. The straight line graph layout (see Fig. 14a) has numer-
ous line crossings that obscure any patterns and is therefore impossible
to interpret. After applying our method, some patterns become visible
as shown in Fig. 14b, but some parts are still very fuzzy (see the rect-
angle region of Fig. 14b). We then applied a transfer function based
on the number of gross migration (i.e., the sum of inmigration and out-
migration). We used red to encode the highest gross migration value
and blue to encode the lowest value. The patterns are beautifully re-
vealed. For example, the state of California has thick red edges linking
to it. This state is also the most active state with highest gross migra-
tion numbers. Fig. 14d shows the result after applying the same kind
of transfer function without edge clustering. Not much pattern is re-
vealed. This example clearly demonstrates that our method can reveal
the patterns in a very large graph and the color and opacity enhance
scheme will be especially effective after edge clustering. Fig. 14e
shows a flow map result [18] that only reveals the immigration from
a west coast city. Our graph can reveal much more information than
a single flow map because the overall context is also displayed with
the flow map. In a sense, our method can be thought of as embedding
multiple flow maps into one graph display.

We implemented our algorithm on a Macbook Pro with Intel Core 2
Duo 2.2GHz CPUs and 2GB Memory. The computation times of our
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edge clustering for datasets used in Fig. 13 and Fig. 14 are 2.5s and
12.9s respectively. There are some configurable parameters in our
system but our default setting works well for many graphs. For ex-
ample, all the experiments in this paper were generated using grid size
= 30×30, angular threshold = 20◦, = 0.7, and = 0.3. These pa-
rameters are intuitive to use so users can easily change them to reveal
different patterns. For example, a large grid size and a large angular
difference threshold will result in a layout revealing large patterns, and
vice versa.

8 DISCUSSION

One major advantage of our framework is that our system is highly
configurable and provides excellent interactions. It is very intuitive
to adjust the layout. We give users great control and flexibility in the
whole process. In addition, our method can be computed very fast.
Very efficient algorithms exist for all the major computation tasks in
our algorithm. For example, Delaunay triangulation, line-triangle in-
tersections, and K-means clustering can all be accelerated by GPUs.
Our method is also very stable. Changing a graph node or control-
mesh node position will be localized and will not dramatically affect
the whole layout. Furthermore, our method can scale well with data
size and elegantly handle levels of detail.

Compared with data-domain filtering and clustering techniques, our
method shows all the data to users and lets users identify the patterns
in the data. We do not remove any data item from the graph display.
Instead, we enhance the patterns and then show both the patterns and
context to users. Users can easily use transfer functions to emphasize
the patterns and suppress the context. Compared with other curve-
based graph layout methods [12, 18], our framework works for gen-
eral graphs. To the best of our knowledge, our method is the first
framework to generate road-map-style layouts for general graphs. As
demonstrated in Fig. 11c and Fig. 14e, for special graphs, our method
can generate similar results as some previous work.
Curves and straight lines all have their advantages and disadvan-

tages. Straight line graphs are good at revealing the line direction
and the connection between two nodes, while curve graphs are good
at showing clusters and making the overall layout more discernible.
Therefore, we suggest that users use our system along with straight
line systems. In some situations, the patterns may be better perceived
using straight-line graphs. Fortunately, users can easily switch back to
the original straight line layout using our system.
Our method also has some weaknesses. The effectiveness of our ap-

proach highly relies on the quality of control meshes. Even though we
introduce an automatic mesh generation algorithm and provide some
visual cues for manual mesh generation, there is no guarantee that an
effective mesh can always be obtained. The global topology of the
original graphs may not be preserved in the edge-bundled layouts and
the edge bundles created by our method may not have strong seman-
tic meanings. Our method focuses on finding the clusters of lines with
similar directions. For data without such patterns, our approach cannot
help much. If users are interested in information such as connectivity
between two nodes, other representations such as matrix can be used
together with our system.

9 CONCLUSION AND FUTURE WORK

We have presented a mesh-based edge-clustering method for graphs.
Our approach is intuitive, efficient, and highly configurable. We in-
troduced different control mesh generation techniques that can cap-
ture the underlying edge patterns and generate informative and less
cluttered layouts. The quality of clustered graphs can be further im-
proved by local smoothing. Several advanced visualization techniques
are specifically designed for edge-clustered graphs. Our method can
improve the layouts generated by other methods such as force-based
models, and provide excellent user interactions, which are critically
important for large graphs. Users can easily change the layout by ad-
justing the mesh and transfer function.
There are several avenues for future work. Triangle meshes are cur-

rently used as the control meshes in our system. We will investigate
other types of control meshes such as curvilinear grids. The current

color and opacity enhancement scheme is still primitive. More sophis-
ticated transfer function design schemes taking both node position and
edge directions into consideration will be explored.
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Fig. 13. Airline routes with 235 nodes and 2101 edges: (a) original layout; (b) our layout; (c) the original layout after zooming into the northeast
region; (d)(f) our layout with two different control meshes; (e)(g) our result after color and opacity enhancement.

(a) (b)

(c) (d) (e)

Fig. 14. U.S. immigration graph with 1790 nodes and 9798 edges: (a) original layout; (b) the edge-clustered result; (c) the result after applying
edge clustering and transfer function; (d) the result after applying only transfer function; (e) a flow map layout highlighted in orange color.
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