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ABSTRACT 
Interactive three-dimensional (3D) visualization of very large-scale grid digital elevation models coupled with 
corresponding high-resolution remote-sensing phototexture images is a hard problem. The graphics load must be 
controlled by an adaptive view-dependent surface triangulation and by taking advantage of different levels of 
detail (LODs) using multiresolution modeling of terrain geometry. Furthermore, the display of vector data over 
the level of detail terrain models is a challenging task. In this case, rendering artifacts are likely to occur until 
vector data is mapped consistently and exactly to the current level-of-detail of terrain geometry. In our prior 
work, we have developed a view-dependent dynamic block-based LOD mesh simplification scheme and out-of-
core management of large terrain data for real-time rendering on desktop PCs. In this paper, we have proposed a 
new rendering algorithm for the combined display of multiresolution 3D terrain and polyline vector data 
representing the geographical entities such as roads, state or country boundaries etc. Our algorithm for 
multiresolution modeling of vector data allows the system to adapt the visual mapping without rendering 
artifacts to the context and the user needs while maintaining interactive frame rates. The algorithms have been 
implemented using Visual C++ and OpenGL 3D API and successfully tested on different real-world terrain 
raster and vector data sets. 
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1. INTRODUCTION 
In conventional printed topographic maps, the real 
three-dimensional (3D) world is projected vertically 
onto a two-dimensional plane with symbolization of 
ground objects. On these maps, topography of the 
terrain is represented by contours, which are 
digitized and converted into grid digital elevation 
model (height map). Apart from contour information, 
the map consists of variety of other information 
including point features (e.g. buildings, trees etc.), 
line features (e.g. road networks, rivers etc.) and 

polygon features (e.g. country boundaries, vegetation 
zone etc.). It is not easy to understand information on 
2D topographic maps, as it demands some 
knowledge and skills in map reading.  

3D rendering of the map provides information on 
geographical data about the shape of the terrain and 
location of other objects on a map quickly and easily. 
An interactive system with real-time rendering is 
useful in spatial support systems, virtual reality 
applications, real-time GIS and cartography. 

Geographic data may be categorized as raster data 
and vector data. Raster data are analogous to a bit 
map or a regular 2D array where each array element 
contains a data value for a corresponding rectangular 
grid cell in the 2D plane. Common sizes of digital 
terrain raster data including height map and 
corresponding geo-referenced remote-sensing 
satellite imagery may consist of 1K*1K to 16K*16K 
or more grid cells. The interactive visualization of 
such large datasets has been a challenging problem. 
The main problem in real-time graphics is rendering 
efficiency [Ake02]. In order to get high rendering 
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performance, one of the approaches is to reduce the 
scene complexity without leading to an inferior 
visual representation. Multiresolution models provide 
different levels of detail (LODs) representation of the 
modeled objects. In LOD scheme, the close regions 
are approximated more accurately than regions that 
are far away such that the resulting image is without 
any noticeable visual difference. In our prior work, 
we have developed a view-dependent dynamic 
block-based level-of-detail mesh simplification 
scheme and out-of-core management of large terrain 
data for real-time rendering on desktop PCs 
[Agr04a], [Agr04b]. 

Vector data represents one major category of 
geographic information and defines geometry as lists 
of 2D coordinates that form points, lines and 
polygons. Narrow linear features such as roads, 
railway lines etc. are usually not visible on a satellite 
image used in creating 3D phototextured views of the 
terrain. Other vector features such as state or country 
boundaries, property lines etc., usually used for 
logical demarcation, are also required to be overlaid 
on top of the 3D views with appropriate display 
properties. These vector features are separately 
digitized from corresponding topographic map. 

Multiresolution level-of-detail terrain models, where 
underlying mesh geometry is changing for each 
frame, pose significant challenges in visual mapping 
of vector data in 3D without any rendering artifacts. 
Section 2 discusses related work and complications 
in displaying vector data over multiresolution terrain 
models. Section 3 briefly explains our view-
dependent adaptive multiresolution mesh 
simplification framework, which is supporting real-
time frame rates on desktop PCs on arbitrarily large 
digital terrain raster data. The proposed geometry-
based mapping approach of polyline vector data for 
its integration with above multiresolution geometry 
modeling framework is explained in section 4. The 
approach smoothly adapts with our tile-based out-of-
core management of terrain raster data. In section 5, 
we have shown the results of the proposed algorithm 
and performance analysis on a real-world terrain 
raster and vector data set. Finally section 6 gives 
conclusions and scope for future work. 

2. RELATED WORK AND COMPLIC-
ATIONS IN VECTOR DATA DISPLAY 
Display of 2D polyline vector data over 3D terrain 
geometry becomes relatively much simpler task if the 
underlying terrain geometry is static and is not 
changing with time i.e. the surface is being rendered 
at constant resolution [Agr98]. In this case, height 
values at points on vector data can be picked up from 
underlying geo-referenced DEM or height map. But 

this approach has the drawback that it very much 
restricts the size of the terrain data. It is not feasible 
to render large terrain raster data sets of size 
16K*16K or more at interactive frame rates even on 
a very high-end graphics workstation. Szenberg et al. 
[Sze97] describe a method of terrain visualization 
with polyline vector data such as transmission lines. 
However, the visualization scheme for terrain height 
field is not based on multiresolution modeling but 
combines the Z-buffer with the floating Horizon 
algorithm. Also results are shown on limited sized 
terrain data (512*512 size) only. Xiaoping et al. 
[Xia04] describe a method to render vector data on 
static terrain geometry. The actual size of the terrain 
data has not been reported in the paper. 

In general, multiresolution modeling is necessary for 
representing large size geo-referenced surfaces in 
order to reduce their geometric complexity and to 
achieve real-time rendering [Lue03]. Relatively very 
less work has been reported in literature on 
displaying vector data over multiresolution terrain. 

There are two options to rendering polyline vector 
data on multiresolution 3D mesh. One option is to 
convert the polyline data to a texture image layer and 
combine this polyline image layer with the primary 
terrain texture image layer (e.g. from a satellite/aerial 
photograph). The second option is to render the 
polyline data as separate 3D geometric primitives. 
We may call these two approaches as polyline-as-
texture solution and polyline-as-geometry solution 
respectively. Both the approaches present a number 
of complications. 

A simple polyline-as-texture solution is to rasterize 
the polyline into the primary texture image at the 
image’s highest resolution and then to render the 
terrain in the standard way using mipmaps or other 
suitable filtering. However, this is a poor solution 
because when zoomed out on the 3D terrain, the user 
will find much of the polyline vector information 
filtered away especially if single pixel lines were 
used for the rasterized vector data. This could cause 
district borders to be nearly or completely filtered 
away when zoomed out to view an entire state. In 
fact, the abstract line’s accuracy should be 
independent of the resolution of the primary imagery 
and also its visual representation’s accuracy should 
not be limited to the texel resolution of the primary 
imagery. More complex polyline-as-texture approach 
is required to deal with above problems. Kersting et 
al. [Ker02] describe a texture-based rendering of 
vector data onto the level-of-detail terrain geometry. 
The method uses OpenGL P-buffer for rendering 
which allows to rasterize vector data within real-time 
so that on-demand generation of textures becomes 
practical. 
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The polyline-as-geometry approach allows more 
flexibility in polyline vector rendering as it supports 
interactive enabling and disabling of the display of 
different subsets of polyline data and interactive 
adjustment of their display properties. Douglass et al. 
[Dou99] describe a bottom-up LOD height-map 
rendering scheme by placing building objects over 
the terrain. In contrast to a top-down LOD approach, 
a bottom-up approach necessitates the entire model 
being available at the first step and therefore has 
higher memory and computational demands. Zachary 
et al. [Zac03] extend the approach of Douglass et al. 
to overlay vector data over multiresolution 3D 
terrain. It is important to note that any 
multiresolution modeling of vector data approach 
will depend on the underlying multiresolution level-
of-detail terrain geometry mesh simplification 
scheme. 

In this paper, we have proposed a new polyline-as-
geometry approach, which integrates well with our 
dynamic multiresolution level-of-detail mesh 
simplification algorithm for real-time rendering. 
Displaying 2D polyline data on top of 3D terrain 
becomes challenging in our terrain visualization 
system for several reasons. First, we have used raster 
data tiling approach to handle terrain’s 3D geometry 
and image data, as the same are too large to fit into 
primary memory. It requires dynamic paging of both 
the data types based on the current 3D view of the 
terrain. At any instant of time, only nine tiles, each of 
size 256*256 pixels, are kept in main memory based 
on viewer’s location. Accordingly, the display of 
vector layer should also be limited to currently active 
nine tiles at a time. Second, the 2D polyline data 
should be treated independently from the raster data 
and therefore should be rendered as separate 
geometry by the graphics pipeline. This presents a 
challenge because our multiresolution LOD 
algorithm renders a 3D mesh whose constituent 
triangles of different patches are changing at nearly 
every frame. In order for the polyline vector data to 
appear overlaid on the 3D mesh, the rendered 
polyline geometry (height values on polyline points) 
must therefore also change at each frame. Fig. 1 
shows the need of multiresolution modeling of vector 
data for geometry-based mapping. 

 

 

 

 

 

 

 

Fig. 1(i) shows the 2D cross-sectional view of terrain 
where current geometry patch is rendered at full 
resolution and road polyline (bold line segments) 
tightly follows the terrain surface. Fig. 1(ii) shows 
the situation when the current patch is being rendered 
at lower resolution because of viewer position and 
screen resolution. If road polyline is displayed over 
the low-resolution terrain mesh without changing its 
geometry, then visual artifacts will be seen as shown 
in Fig. 1(iii). Hence, it is required to adjust height 
values on polyline points b, d, f, and h according to 
slopes of the triangles of lower resolution terrain 
patch (Fig. 1(iv)). 

3. UNDERLYING MULTI-
RESOLUTION FRAMEWORK FOR 
TERRAIN MODELS 
We have developed a view-dependent dynamic 
block-based LOD modeling for mesh simplification 
and using tiled geospecific texture, to display the 
details of the high-resolution satellite imagery in 
real-time rendering [Agr04a]. The terrain geometry 
and texture data are organized in titles of size 
257*257 and 256*256 respectively. One pixel 
overlap is kept between adjacent geometry tiles to 
ensure proper stitching of tiles. At any instance of 
time, only nine tiles are kept in main memory. The 
viewer position is always assumed to be inside the 
centre tile. The algorithm efficiently handles out-of-
core data by dynamic paging of terrain tiles between 
secondary storage and main memory. Each geometry 
tile data is organized with a quadtree with leaves 
corresponding to patches or blocks of size 17*17 (the 
size decided after experimentation) to speed up the 
view-frustum culling. Fig. 2 shows quad-tree based 
decomposition of the terrain geometry up to second 
level where the gray area indicates the current view-
frustum seen by the camera. 

 

 

 

 

 

 

Multiresolution pyramid representation is used to 
define each terrain block. Fig. 3 shows the four 
pyramid levels of the height map block of size 
17*17. Considering the multiresolution 
representation for each patch, the algorithm employs 
a variable screen-space threshold to limit the 
maximum error of the projected image considering 
the terrain complexity, viewer distance and viewing 
direction as the viewer navigates the terrain. The (iii) 

(i) 

(iv) 

Figure 1. Geometry-based Mapping of Vector Data

Figure 2. Quad-tree based Decomposition of
Terrain Geometry 

(ii)
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algorithm pre-computes a look-up table at terrain tile 
load time to decide the tessellation level of each 
block within view-frustum based on position of the 
camera from the block [Agr04b]. In our approach, a 
group of vertices are considered instead of single 
vertex for deciding whether to remove them or not. 
Hence CPU requirements are many times lower as 
compared to the other LOD mesh simplification 
algorithms, which work on individual vertices of the 
height field. 

 
 

 

 

 

 

 

 

 

 

 

It is important to note that in a view-dependent 
framework, the resolution of adjacent patches might 
change at every frame. Hence, cracks occur on 
borders of adjacent patches of different levels of 
detail. In Fig. 4 (a), the circle shows the position of 
crack in tessellation with level difference one (right 
side patch is shown partially). Crack-filling methods 
usually involve creating additional triangles to fill in 
the gaps between patches, and/or modifying the 
geometry of one or other of the patches to produce a 
crack-free join. Fig. 4 (b) shows the modified 
geometry to remove the cracks where the dashed 
edges are excluded in triangulation and the bold 
edges are included. Similar procedure is followed to 
eliminate cracks when level difference between 
adjacent patches is two or three. Image draping over 
3D mesh geometry is performed using texture 
mipmapping. The algorithm also handles the problem 
of texture seams between adjacent texture tiles 
[Agr04a]. 
 

 

 

 

 

 

 

To exploit the full performance of current GPUs 
hardware, transmission of large data chunks is 
advantageous. Graphics rendering can be accelerated 
through compact representations of polygonal 
meshes using data structures such as triangle strips 
and triangle fans. Using triangle strip primitive, it is 
possible to form a longer length of connected 
triangles as compared to triangle fan. Generating 
long triangle strips efficiently solves the CPU-to-card 
bandwidth problem and avoids redundant 3D vertex 
transformation and lighting (T&L) calculations. 
However in view-dependent meshing methods the 
underlying mesh is in a constant state of flux 
between view positions. This poses a significant 
hurdle to construct long triangle strips. Our triangle 
strip generation scheme for view-dependent dynamic 
multiresolution terrain shows significant 
improvement in rendering speed as compared to 
individual triangle-based and triangle-fan based 
rendering schemes [Agr05]. The snapshot of the 
triangulated height map is given in Fig. 5 using 
triangle-strip primitive.  

 

 

 

 

 

 

 

4. PROPOSED APPROACH TO 
RENDERING VECTOR DATA OVER 
MULTIRESOLUTION TERRAIN 
MODELS 
The proposed geometry-based mapping approach to 
rendering polyline vector data over the multi-
resolution terrain consists of following four steps: 

4.1 Vector Data Capture 
The software TREND (acronym for Terrain 
Rendering) has the provision for interactively 
digitizing the polyline vector data. The user may 
open a geo-referenced map or image in a 2D display 
window and select option for vector digitization. The 
selected points on a polyline may be stored in a new 
vector file or may be appended at the end of an 
existing vector file. There are ‘start’ and ‘end’ 
options for polyline digitization so that user may 
capture different polylines in one session and save 
the same in a file as shown in Fig. 6. 

 

(a) Before crack removal 

LOD-2 LOD-3

LOD-1LOD-0 
 

Figure 3. Multiresolution Modeling of Height Map 

 

(b) After crack removal

Figure 4. Removing Cracks between Adjacent Patches

 

Figure 5. Wireframe View of Terrain Geometry
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4.2 Vector Data Organization 
As discussed in section 2, the display of vector data 
should be limited to current active nine tiles in 
memory at a given time instant. As the user moves 
over the terrain, these current nine tiles change 
through dynamic terrain paging scheme. Accordingly 
before storing the captured polyline vector data in a 
file, it is rasterized at highest geometry mesh 
resolution and has been divided into segments based 
on number of geometry tiles (each of size 257*257 
pixels) it is passing through. A unique sequence 
number is also stored along with each point of the 
vector polyline. This helps in identifying multiple 
vector segments (part of same or different vector 
polylines) inside a tile and draws them appropriately. 

 

 

 

 

 

 

 

 

The software internally manages a dynamic data 
structure to store tile-wise vector segment details as 
shown in Fig. 7. When an existing vector file is 
loaded into memory, different vector segments are 
assigned to appropriate tile vector addresses. Based 
on the viewer position, vector data corresponding to 
current nine tiles is picked up for display. 

4.3 Geometry-based Mapping and display 
As discussed in section 3, the algorithm selects the 
resolution of a patch (size 17*17 pixels) using a 
lookup table based on its distance from the viewer. 
Fig. 5 shows the snapshot of a portion of displayed 
multiresolution mesh geometry. In our proposed 
approach, we map the vector data over different 
terrain geometry patches over which it is passing 
through. Height values of all the vector polyline 
points are picked up from the underlying geometry 

patch. Now let us consider a situation when a patch 
is rendered at lower resolution with an overlay of a 
vector segment. Fig. 8(a) shows 1/4th portion of 
highest resolution patch (LOD-0) and Fig. 8(b) 
shows corresponding patch portion at lower 
resolution (LOD-2) both with an overlay of same 
vector segments. 

 

 

 

 

 

 

 

When the patch is rendered at highest resolution, the 
vector polyline segments are displayed without any 
visual artifact (except in special case 1 discussed in 
subsection 4.4.1) because heights of all vector 
polyline points are matching with corresponding 
geometry patch heights (ref. Fig. 1(i)). However, 
when a patch is rendered at lower resolution, visual 
artifacts may occur in displaying vector data (ref. 
Fig. 1(iii)). In fact height values at all the vector 
points in Fig. 8(b) should be matched with the 
corresponding enclosing triangle slopes.  

To compute correct height values, we first determine 
a plane passing through three vertices (xi,yi,zi), 
i=1,2,3 of the enclosing triangle with following 
equation: 

    ax + by + cz + d = 0                        (1) 
The height value z at vector point (x, y) may be 
computed by solving following determinant: 
 

x - x1  y – y1   z – z1 
 x2 - x1  y2 – y1   z2 – z1   = 0          (2) 
 x3 - x1  y3 – y1   z3 – z1 
The height values at points on triangle edges may be 
computed through linear interpolation of heights at 
the end points. To minimize computational overhead, 
this process is applied only for those geometry 
patches through which the vector segment is passing 
on. The polyline vector points with updated height 
values will now tightly follow the terrain geometry.  

4.4 Dealing with Special Cases 
The algorithm discussed in subsection 4.3 is required 
to be extended to deal with following two special 
cases otherwise the output of vector data rendering 
over multiresolution terrain will still suffer with 
some visual artifacts. 

 

Figure 6. Digitized Polyline Vector Data 
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Figure 7. Tile-wise Organization of Vector Data

Figure 8. Geometry-based Mapping 

(b) 1/4th portion LOD-2 patch (a) 1/4th portion LOD-0 patch 
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Figure 10. Vector Segment Crossing Common
Diagonal 

4.4.1  Case 1 
When a vector segment crosses common diagonal of 
adjacent triangles considering patch resolution of 
different levels. 

Fig. 9(a) shows a polyline vector drawn over 1/4th of 
the full resolution patch (LOD-0) whereas Fig. 9(b) 
shows the same polyline vector drawn over a lower 
resolution patch (LOD-1) with level difference 1. 
 
 
 
 
 
 
 
 
 
 
 
By careful examination of Figures 9(a) and 9(b), we 
find that a vector segment, which crosses a common 
diagonal of two adjacent triangles, may not be visible 
in some situations. Consider the case in Fig. 10. 
Assume that heights of points a & c are 100 and 110 
respectively whereas heights of points b & d are 80 
and 90 respectively. In this situation, the vector 
segment bd hides beneath the two triangular faces 
abc and acd of terrain geometry. 
 
 
 
 
 
 
 
 

 

To deal with this situation, we should compute height 
‘h’ at intersection point p considering heights at end 
points a and c and then render the vector segment bd 
as two sub-segments bp and pd with height ‘h’ at p. 
In Figures 9(a) and 9(b), the hollow circles show the 
positions where height values are to computed at the 
intersection points and corresponding vector segment 
is to be drawn in two parts. We deal in similar 
manner when rendering of vector segments over two 
other lower resolution patches (LOD-2 and LOD-3). 

4.4.2  Case 2 
When a vector segment is passing through the crack-
joining triangle at the boundary of two different 
resolution patches. 

Recall that as shown in Fig. 4, the geometry of 
boundary triangles of higher resolution patch is 
altered to avoid cracks between adjacent patches of 

different resolutions. The problem arises when LOD-
1 patch is adjacent to LOD-2 (or LOD-3) patch as 
shown in Fig. 11. Here height at a vector point either 
inside the crack-filling triangle or on common 
boundary (shown as filled squares nodes) should be 
computed considering the modified vertices of the 
adapting or crack-filling triangle instead of vertices 
of enclosing triangle of current resolution patch. 

 

 

 

 

 

 

 

We deal in similar manner when LOD-2 patch is 
adjacent to LOD-3 patch or when LOD-0 patch is 
adjacent to LOD-1 or LOD-2 or LOD-3 patch. 

5. RESULTS AND PERFORMANCE 
ANALYSIS 
The proposed algorithms have been implemented 
using Visual C++ and OpenGL 3D API for a Win32 
environment. We have tested the software with 
2K*4K terrain raster dataset of Grand Canyon and 
16K*16K terrain data set of Puget Sound area 
obtained from Georgia Institute of Technology 
website. We have also generated the height map of 
Dehradun (India) area using digitized contours on 
Survey of India (SOI), India supplied topographic 
map. The corresponding geo-referenced IRS-1D 
FCC Satellite imagery has been used for image 
draping. 

The software TREND provides a 2D window 
interface to digitize polyline vector data over the 
geo-referenced map or image in the background (Fig. 
6). Figures 12(a) and 12(b) show the 3D wireframe 
display of terrain mesh geometry with overlay of 
polyline vector data and corresponding phototextured 
terrain view respectively using Grand Canyon 
dataset. Without multiresolution modeling of the 
polyline vector data, the visual artifacts are visible in 
vector data display. 

Figures 13(a) and 13(b) show the views obtained 
after the proposed geometry-based mapping of 
polyline vector data over multiresolution 3D terrain 
as discussed in section 4.3. The visual appearance of 
the displayed vector data is now much improved. 
Fig. 14(a) shows the case when vector segments are 
crossing common diagonals of adjacent triangles. 
Fig. 14(b) shows visual artifact due to case 1 and Fig. 

 

Figure 9. Segments Crossing Common Diagonals

(a) 1/4th portion LOD-0 patch (b) 1/4th portion LOD-1 patch 

b c 

da 

p vector segment

common diagonal

Figure 11. Vector Segments Passing through 
Crack-filling Triangles 
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14(c) shows the result of algorithm proposed in 
subsection 4.4.1. The Fig. 15(a) shows the case when 
a vector segment crosses a crack-joining triangle. 
Fig. 15(b) shows visual artifact due to case 2 and Fig. 
15(c) shows the result of algorithm proposed in 
subsection 4.4.2. 

We have tested our software on a PC with Intel PIV 
2.4 GHz CPU, 512 MB RAM, and Intel 82865G 
onboard Graphics Controller on 865GL motherboard. 
The performance of the algorithm on raster data is 
independent of size of terrain data as with the tiles 
indexing scheme, the algorithm only keeps 9 tiles 
active in main memory. The organization of the 
terrain data in tiles of defined size is required to be 
done only once on the same data set. For raster data, 
the number of frames rendered per second mainly 
depends on the complexity of the terrain (roughness) 
under the view-frustum and the user defined image 
quality metric (τ). Table 1 shows performance 
analysis of the algorithms without and with 
geometry-based mapping of polyline vector data 
overlay. 

Terrain Rendering Avg. no. of  
Triangles 

Avg. Frames 
per Second 

Full Resolution Raster 
Data (considering 9 
tiles only) 

1327104.00 1.72 

View-frustum culled 
Surface 

268120.70 7.18 

Adaptive LOD 
algorithm for Raster 
Data (τ=4) 

(a) using triangle list 

(b) using triangle fan 

(c) using triangle strip 
(indexed vertex array) 

 

 

20368.45 

20368.44 

23733.79 

 
 
 

57.23 

74.11 

130.79 

Multiresolution model-
ing of Vector Data 
(total points:  573) and 
rendering using 
Triangle Strip as above 

23698.74 92.76 

 

 

6. CONCLUSIONS AND FUTURE 
WORK 
In this paper, we have presented a new geometry-
based mapping approach to rendering map vector 
data over multiresolution 3D terrain models. The 
proposed algorithm maps polyline vector data 
consistently and exactly to the current level-of-detail 
of terrain geometry and thus minimizes the rendering 

artifacts. Performance analysis results show that our 
combined multiresolution 3D terrain and polyline 
vector data display algorithm maintains real-time 
frame-rates on a desktop PC for large real-world 
terrain data sets. 

Currently all vector polyline data is kept in a single 
file, but internally it is organized in the tile-wise 
order for all the terrain tiles. To reduce main memory 
overhead, the dynamic paging concept of tiled terrain 
raster data may be extended to vector data also. We 
may apply B-spline function to input points data to 
make smooth curved polyline features. Future work 
also includes extending the approach to display 
wider width polyline data (e.g. roads) with 
appropriate texture mapping. 
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Figure 15. Handling Special Case 2 

(a) (b) (c) 

Figure 14. Handling Special Case 1

(a) (b) (c) 

Figure 13. Display of Vector Data over LOD 3D Terrain (with Multiresolution Modeling) 
(a) (b)

Figure 12. Display of Vector Data over LOD 3D Terrain (without Multiresolution Modeling)
(a) (b)
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