
Geometry-based Mapping and Rendering of Vector
Data over LOD Phototextured 3D Terrain Models

Anupam Agrawal

Indian Institute of Information
Technology,

Deoghat, Jhalwa,
 India (211011), Allahabad, U.P.

anupam@iiita.ac.in

M. Radhakrishna
Indian Institute of Information

Technology,
Deoghat, Jhalwa,

India (211011), Allahabad, U.P.

mkrishna@iiita.ac.in

R.C. Joshi
Dept. of E& C Engineering,

Indian Institute of Technology,

India (247667), Roorkee, U.A.

joshifcc@iitr.ernet.in

ABSTRACT
Interactive three-dimensional (3D) visualization of very large-scale grid digital elevation models coupled with
corresponding high-resolution remote-sensing phototexture images is a hard problem. The graphics load must be
controlled by an adaptive view-dependent surface triangulation and by taking advantage of different levels of
detail (LODs) using multiresolution modeling of terrain geometry. Furthermore, the display of vector data over
the level of detail terrain models is a challenging task. In this case, rendering artifacts are likely to occur until
vector data is mapped consistently and exactly to the current level-of-detail of terrain geometry. In our prior
work, we have developed a view-dependent dynamic block-based LOD mesh simplification scheme and out-of-
core management of large terrain data for real-time rendering on desktop PCs. In this paper, we have proposed a
new rendering algorithm for the combined display of multiresolution 3D terrain and polyline vector data
representing the geographical entities such as roads, state or country boundaries etc. Our algorithm for
multiresolution modeling of vector data allows the system to adapt the visual mapping without rendering
artifacts to the context and the user needs while maintaining interactive frame rates. The algorithms have been
implemented using Visual C++ and OpenGL 3D API and successfully tested on different real-world terrain
raster and vector data sets.

Keywords
Digital terrain models, Multiresolution Modeling, Level-of-Detail Rendering, Vector and Raster Data.

1. INTRODUCTION
In conventional printed topographic maps, the real
three-dimensional (3D) world is projected vertically
onto a two-dimensional plane with symbolization of
ground objects. On these maps, topography of the
terrain is represented by contours, which are
digitized and converted into grid digital elevation
model (height map). Apart from contour information,
the map consists of variety of other information
including point features (e.g. buildings, trees etc.),
line features (e.g. road networks, rivers etc.) and

polygon features (e.g. country boundaries, vegetation
zone etc.). It is not easy to understand information on
2D topographic maps, as it demands some
knowledge and skills in map reading.

3D rendering of the map provides information on
geographical data about the shape of the terrain and
location of other objects on a map quickly and easily.
An interactive system with real-time rendering is
useful in spatial support systems, virtual reality
applications, real-time GIS and cartography.

Geographic data may be categorized as raster data
and vector data. Raster data are analogous to a bit
map or a regular 2D array where each array element
contains a data value for a corresponding rectangular
grid cell in the 2D plane. Common sizes of digital
terrain raster data including height map and
corresponding geo-referenced remote-sensing
satellite imagery may consist of 1K*1K to 16K*16K
or more grid cells. The interactive visualization of
such large datasets has been a challenging problem.
The main problem in real-time graphics is rendering
efficiency [Ake02]. In order to get high rendering

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Short Communications proceedings ISBN 80-86943-05-4
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

WSCG2006 Short Papers Proceedings 1 ISBN 80-86943-05-4

performance, one of the approaches is to reduce the
scene complexity without leading to an inferior
visual representation. Multiresolution models provide
different levels of detail (LODs) representation of the
modeled objects. In LOD scheme, the close regions
are approximated more accurately than regions that
are far away such that the resulting image is without
any noticeable visual difference. In our prior work,
we have developed a view-dependent dynamic
block-based level-of-detail mesh simplification
scheme and out-of-core management of large terrain
data for real-time rendering on desktop PCs
[Agr04a], [Agr04b].

Vector data represents one major category of
geographic information and defines geometry as lists
of 2D coordinates that form points, lines and
polygons. Narrow linear features such as roads,
railway lines etc. are usually not visible on a satellite
image used in creating 3D phototextured views of the
terrain. Other vector features such as state or country
boundaries, property lines etc., usually used for
logical demarcation, are also required to be overlaid
on top of the 3D views with appropriate display
properties. These vector features are separately
digitized from corresponding topographic map.

Multiresolution level-of-detail terrain models, where
underlying mesh geometry is changing for each
frame, pose significant challenges in visual mapping
of vector data in 3D without any rendering artifacts.
Section 2 discusses related work and complications
in displaying vector data over multiresolution terrain
models. Section 3 briefly explains our view-
dependent adaptive multiresolution mesh
simplification framework, which is supporting real-
time frame rates on desktop PCs on arbitrarily large
digital terrain raster data. The proposed geometry-
based mapping approach of polyline vector data for
its integration with above multiresolution geometry
modeling framework is explained in section 4. The
approach smoothly adapts with our tile-based out-of-
core management of terrain raster data. In section 5,
we have shown the results of the proposed algorithm
and performance analysis on a real-world terrain
raster and vector data set. Finally section 6 gives
conclusions and scope for future work.

2. RELATED WORK AND COMPLIC-
ATIONS IN VECTOR DATA DISPLAY
Display of 2D polyline vector data over 3D terrain
geometry becomes relatively much simpler task if the
underlying terrain geometry is static and is not
changing with time i.e. the surface is being rendered
at constant resolution [Agr98]. In this case, height
values at points on vector data can be picked up from
underlying geo-referenced DEM or height map. But

this approach has the drawback that it very much
restricts the size of the terrain data. It is not feasible
to render large terrain raster data sets of size
16K*16K or more at interactive frame rates even on
a very high-end graphics workstation. Szenberg et al.
[Sze97] describe a method of terrain visualization
with polyline vector data such as transmission lines.
However, the visualization scheme for terrain height
field is not based on multiresolution modeling but
combines the Z-buffer with the floating Horizon
algorithm. Also results are shown on limited sized
terrain data (512*512 size) only. Xiaoping et al.
[Xia04] describe a method to render vector data on
static terrain geometry. The actual size of the terrain
data has not been reported in the paper.

In general, multiresolution modeling is necessary for
representing large size geo-referenced surfaces in
order to reduce their geometric complexity and to
achieve real-time rendering [Lue03]. Relatively very
less work has been reported in literature on
displaying vector data over multiresolution terrain.

There are two options to rendering polyline vector
data on multiresolution 3D mesh. One option is to
convert the polyline data to a texture image layer and
combine this polyline image layer with the primary
terrain texture image layer (e.g. from a satellite/aerial
photograph). The second option is to render the
polyline data as separate 3D geometric primitives.
We may call these two approaches as polyline-as-
texture solution and polyline-as-geometry solution
respectively. Both the approaches present a number
of complications.

A simple polyline-as-texture solution is to rasterize
the polyline into the primary texture image at the
image’s highest resolution and then to render the
terrain in the standard way using mipmaps or other
suitable filtering. However, this is a poor solution
because when zoomed out on the 3D terrain, the user
will find much of the polyline vector information
filtered away especially if single pixel lines were
used for the rasterized vector data. This could cause
district borders to be nearly or completely filtered
away when zoomed out to view an entire state. In
fact, the abstract line’s accuracy should be
independent of the resolution of the primary imagery
and also its visual representation’s accuracy should
not be limited to the texel resolution of the primary
imagery. More complex polyline-as-texture approach
is required to deal with above problems. Kersting et
al. [Ker02] describe a texture-based rendering of
vector data onto the level-of-detail terrain geometry.
The method uses OpenGL P-buffer for rendering
which allows to rasterize vector data within real-time
so that on-demand generation of textures becomes
practical.

WSCG2006 Short Papers Proceedings 2 ISBN 80-86943-05-4

i
h g

f
e

d c
b

a

i

hg

f
e

d
c

b
a

The polyline-as-geometry approach allows more
flexibility in polyline vector rendering as it supports
interactive enabling and disabling of the display of
different subsets of polyline data and interactive
adjustment of their display properties. Douglass et al.
[Dou99] describe a bottom-up LOD height-map
rendering scheme by placing building objects over
the terrain. In contrast to a top-down LOD approach,
a bottom-up approach necessitates the entire model
being available at the first step and therefore has
higher memory and computational demands. Zachary
et al. [Zac03] extend the approach of Douglass et al.
to overlay vector data over multiresolution 3D
terrain. It is important to note that any
multiresolution modeling of vector data approach
will depend on the underlying multiresolution level-
of-detail terrain geometry mesh simplification
scheme.

In this paper, we have proposed a new polyline-as-
geometry approach, which integrates well with our
dynamic multiresolution level-of-detail mesh
simplification algorithm for real-time rendering.
Displaying 2D polyline data on top of 3D terrain
becomes challenging in our terrain visualization
system for several reasons. First, we have used raster
data tiling approach to handle terrain’s 3D geometry
and image data, as the same are too large to fit into
primary memory. It requires dynamic paging of both
the data types based on the current 3D view of the
terrain. At any instant of time, only nine tiles, each of
size 256*256 pixels, are kept in main memory based
on viewer’s location. Accordingly, the display of
vector layer should also be limited to currently active
nine tiles at a time. Second, the 2D polyline data
should be treated independently from the raster data
and therefore should be rendered as separate
geometry by the graphics pipeline. This presents a
challenge because our multiresolution LOD
algorithm renders a 3D mesh whose constituent
triangles of different patches are changing at nearly
every frame. In order for the polyline vector data to
appear overlaid on the 3D mesh, the rendered
polyline geometry (height values on polyline points)
must therefore also change at each frame. Fig. 1
shows the need of multiresolution modeling of vector
data for geometry-based mapping.

Fig. 1(i) shows the 2D cross-sectional view of terrain
where current geometry patch is rendered at full
resolution and road polyline (bold line segments)
tightly follows the terrain surface. Fig. 1(ii) shows
the situation when the current patch is being rendered
at lower resolution because of viewer position and
screen resolution. If road polyline is displayed over
the low-resolution terrain mesh without changing its
geometry, then visual artifacts will be seen as shown
in Fig. 1(iii). Hence, it is required to adjust height
values on polyline points b, d, f, and h according to
slopes of the triangles of lower resolution terrain
patch (Fig. 1(iv)).

3. UNDERLYING MULTI-
RESOLUTION FRAMEWORK FOR
TERRAIN MODELS
We have developed a view-dependent dynamic
block-based LOD modeling for mesh simplification
and using tiled geospecific texture, to display the
details of the high-resolution satellite imagery in
real-time rendering [Agr04a]. The terrain geometry
and texture data are organized in titles of size
257*257 and 256*256 respectively. One pixel
overlap is kept between adjacent geometry tiles to
ensure proper stitching of tiles. At any instance of
time, only nine tiles are kept in main memory. The
viewer position is always assumed to be inside the
centre tile. The algorithm efficiently handles out-of-
core data by dynamic paging of terrain tiles between
secondary storage and main memory. Each geometry
tile data is organized with a quadtree with leaves
corresponding to patches or blocks of size 17*17 (the
size decided after experimentation) to speed up the
view-frustum culling. Fig. 2 shows quad-tree based
decomposition of the terrain geometry up to second
level where the gray area indicates the current view-
frustum seen by the camera.

Multiresolution pyramid representation is used to
define each terrain block. Fig. 3 shows the four
pyramid levels of the height map block of size
17*17. Considering the multiresolution
representation for each patch, the algorithm employs
a variable screen-space threshold to limit the
maximum error of the projected image considering
the terrain complexity, viewer distance and viewing
direction as the viewer navigates the terrain. The (iii)

(i)

(iv)

Figure 1. Geometry-based Mapping of Vector Data

Figure 2. Quad-tree based Decomposition of
Terrain Geometry

(ii)

WSCG2006 Short Papers Proceedings 3 ISBN 80-86943-05-4

algorithm pre-computes a look-up table at terrain tile
load time to decide the tessellation level of each
block within view-frustum based on position of the
camera from the block [Agr04b]. In our approach, a
group of vertices are considered instead of single
vertex for deciding whether to remove them or not.
Hence CPU requirements are many times lower as
compared to the other LOD mesh simplification
algorithms, which work on individual vertices of the
height field.

It is important to note that in a view-dependent
framework, the resolution of adjacent patches might
change at every frame. Hence, cracks occur on
borders of adjacent patches of different levels of
detail. In Fig. 4 (a), the circle shows the position of
crack in tessellation with level difference one (right
side patch is shown partially). Crack-filling methods
usually involve creating additional triangles to fill in
the gaps between patches, and/or modifying the
geometry of one or other of the patches to produce a
crack-free join. Fig. 4 (b) shows the modified
geometry to remove the cracks where the dashed
edges are excluded in triangulation and the bold
edges are included. Similar procedure is followed to
eliminate cracks when level difference between
adjacent patches is two or three. Image draping over
3D mesh geometry is performed using texture
mipmapping. The algorithm also handles the problem
of texture seams between adjacent texture tiles
[Agr04a].

To exploit the full performance of current GPUs
hardware, transmission of large data chunks is
advantageous. Graphics rendering can be accelerated
through compact representations of polygonal
meshes using data structures such as triangle strips
and triangle fans. Using triangle strip primitive, it is
possible to form a longer length of connected
triangles as compared to triangle fan. Generating
long triangle strips efficiently solves the CPU-to-card
bandwidth problem and avoids redundant 3D vertex
transformation and lighting (T&L) calculations.
However in view-dependent meshing methods the
underlying mesh is in a constant state of flux
between view positions. This poses a significant
hurdle to construct long triangle strips. Our triangle
strip generation scheme for view-dependent dynamic
multiresolution terrain shows significant
improvement in rendering speed as compared to
individual triangle-based and triangle-fan based
rendering schemes [Agr05]. The snapshot of the
triangulated height map is given in Fig. 5 using
triangle-strip primitive.

4. PROPOSED APPROACH TO
RENDERING VECTOR DATA OVER
MULTIRESOLUTION TERRAIN
MODELS
The proposed geometry-based mapping approach to
rendering polyline vector data over the multi-
resolution terrain consists of following four steps:

4.1 Vector Data Capture
The software TREND (acronym for Terrain
Rendering) has the provision for interactively
digitizing the polyline vector data. The user may
open a geo-referenced map or image in a 2D display
window and select option for vector digitization. The
selected points on a polyline may be stored in a new
vector file or may be appended at the end of an
existing vector file. There are ‘start’ and ‘end’
options for polyline digitization so that user may
capture different polylines in one session and save
the same in a file as shown in Fig. 6.

(a) Before crack removal

LOD-2 LOD-3

LOD-1LOD-0

Figure 3. Multiresolution Modeling of Height Map

(b) After crack removal

Figure 4. Removing Cracks between Adjacent Patches

Figure 5. Wireframe View of Terrain Geometry

WSCG2006 Short Papers Proceedings 4 ISBN 80-86943-05-4

4.2 Vector Data Organization
As discussed in section 2, the display of vector data
should be limited to current active nine tiles in
memory at a given time instant. As the user moves
over the terrain, these current nine tiles change
through dynamic terrain paging scheme. Accordingly
before storing the captured polyline vector data in a
file, it is rasterized at highest geometry mesh
resolution and has been divided into segments based
on number of geometry tiles (each of size 257*257
pixels) it is passing through. A unique sequence
number is also stored along with each point of the
vector polyline. This helps in identifying multiple
vector segments (part of same or different vector
polylines) inside a tile and draws them appropriately.

The software internally manages a dynamic data
structure to store tile-wise vector segment details as
shown in Fig. 7. When an existing vector file is
loaded into memory, different vector segments are
assigned to appropriate tile vector addresses. Based
on the viewer position, vector data corresponding to
current nine tiles is picked up for display.

4.3 Geometry-based Mapping and display
As discussed in section 3, the algorithm selects the
resolution of a patch (size 17*17 pixels) using a
lookup table based on its distance from the viewer.
Fig. 5 shows the snapshot of a portion of displayed
multiresolution mesh geometry. In our proposed
approach, we map the vector data over different
terrain geometry patches over which it is passing
through. Height values of all the vector polyline
points are picked up from the underlying geometry

patch. Now let us consider a situation when a patch
is rendered at lower resolution with an overlay of a
vector segment. Fig. 8(a) shows 1/4th portion of
highest resolution patch (LOD-0) and Fig. 8(b)
shows corresponding patch portion at lower
resolution (LOD-2) both with an overlay of same
vector segments.

When the patch is rendered at highest resolution, the
vector polyline segments are displayed without any
visual artifact (except in special case 1 discussed in
subsection 4.4.1) because heights of all vector
polyline points are matching with corresponding
geometry patch heights (ref. Fig. 1(i)). However,
when a patch is rendered at lower resolution, visual
artifacts may occur in displaying vector data (ref.
Fig. 1(iii)). In fact height values at all the vector
points in Fig. 8(b) should be matched with the
corresponding enclosing triangle slopes.

To compute correct height values, we first determine
a plane passing through three vertices (xi,yi,zi),
i=1,2,3 of the enclosing triangle with following
equation:

 ax + by + cz + d = 0 (1)
The height value z at vector point (x, y) may be
computed by solving following determinant:

x - x1 y – y1 z – z1
 x2 - x1 y2 – y1 z2 – z1 = 0 (2)
 x3 - x1 y3 – y1 z3 – z1
The height values at points on triangle edges may be
computed through linear interpolation of heights at
the end points. To minimize computational overhead,
this process is applied only for those geometry
patches through which the vector segment is passing
on. The polyline vector points with updated height
values will now tightly follow the terrain geometry.

4.4 Dealing with Special Cases
The algorithm discussed in subsection 4.3 is required
to be extended to deal with following two special
cases otherwise the output of vector data rendering
over multiresolution terrain will still suffer with
some visual artifacts.

Figure 6. Digitized Polyline Vector Data

0

1

2

Col*Row - 2

Col*Row - 1

vector pt. & seq. no.

NULL

NULL

vector pt. & seq. no.

NULL

vector pt. & seq. no.

NULL

NULL

NULL

NULL

Figure 7. Tile-wise Organization of Vector Data

Figure 8. Geometry-based Mapping

(b) 1/4th portion LOD-2 patch (a) 1/4th portion LOD-0 patch

WSCG2006 Short Papers Proceedings 5 ISBN 80-86943-05-4

Figure 10. Vector Segment Crossing Common
Diagonal

4.4.1 Case 1
When a vector segment crosses common diagonal of
adjacent triangles considering patch resolution of
different levels.

Fig. 9(a) shows a polyline vector drawn over 1/4th of
the full resolution patch (LOD-0) whereas Fig. 9(b)
shows the same polyline vector drawn over a lower
resolution patch (LOD-1) with level difference 1.

By careful examination of Figures 9(a) and 9(b), we
find that a vector segment, which crosses a common
diagonal of two adjacent triangles, may not be visible
in some situations. Consider the case in Fig. 10.
Assume that heights of points a & c are 100 and 110
respectively whereas heights of points b & d are 80
and 90 respectively. In this situation, the vector
segment bd hides beneath the two triangular faces
abc and acd of terrain geometry.

To deal with this situation, we should compute height
‘h’ at intersection point p considering heights at end
points a and c and then render the vector segment bd
as two sub-segments bp and pd with height ‘h’ at p.
In Figures 9(a) and 9(b), the hollow circles show the
positions where height values are to computed at the
intersection points and corresponding vector segment
is to be drawn in two parts. We deal in similar
manner when rendering of vector segments over two
other lower resolution patches (LOD-2 and LOD-3).

4.4.2 Case 2
When a vector segment is passing through the crack-
joining triangle at the boundary of two different
resolution patches.

Recall that as shown in Fig. 4, the geometry of
boundary triangles of higher resolution patch is
altered to avoid cracks between adjacent patches of

different resolutions. The problem arises when LOD-
1 patch is adjacent to LOD-2 (or LOD-3) patch as
shown in Fig. 11. Here height at a vector point either
inside the crack-filling triangle or on common
boundary (shown as filled squares nodes) should be
computed considering the modified vertices of the
adapting or crack-filling triangle instead of vertices
of enclosing triangle of current resolution patch.

We deal in similar manner when LOD-2 patch is
adjacent to LOD-3 patch or when LOD-0 patch is
adjacent to LOD-1 or LOD-2 or LOD-3 patch.

5. RESULTS AND PERFORMANCE
ANALYSIS
The proposed algorithms have been implemented
using Visual C++ and OpenGL 3D API for a Win32
environment. We have tested the software with
2K*4K terrain raster dataset of Grand Canyon and
16K*16K terrain data set of Puget Sound area
obtained from Georgia Institute of Technology
website. We have also generated the height map of
Dehradun (India) area using digitized contours on
Survey of India (SOI), India supplied topographic
map. The corresponding geo-referenced IRS-1D
FCC Satellite imagery has been used for image
draping.

The software TREND provides a 2D window
interface to digitize polyline vector data over the
geo-referenced map or image in the background (Fig.
6). Figures 12(a) and 12(b) show the 3D wireframe
display of terrain mesh geometry with overlay of
polyline vector data and corresponding phototextured
terrain view respectively using Grand Canyon
dataset. Without multiresolution modeling of the
polyline vector data, the visual artifacts are visible in
vector data display.

Figures 13(a) and 13(b) show the views obtained
after the proposed geometry-based mapping of
polyline vector data over multiresolution 3D terrain
as discussed in section 4.3. The visual appearance of
the displayed vector data is now much improved.
Fig. 14(a) shows the case when vector segments are
crossing common diagonals of adjacent triangles.
Fig. 14(b) shows visual artifact due to case 1 and Fig.

Figure 9. Segments Crossing Common Diagonals

(a) 1/4th portion LOD-0 patch (b) 1/4th portion LOD-1 patch

b c

da

p vector segment

common diagonal

Figure 11. Vector Segments Passing through
Crack-filling Triangles

WSCG2006 Short Papers Proceedings 6 ISBN 80-86943-05-4

14(c) shows the result of algorithm proposed in
subsection 4.4.1. The Fig. 15(a) shows the case when
a vector segment crosses a crack-joining triangle.
Fig. 15(b) shows visual artifact due to case 2 and Fig.
15(c) shows the result of algorithm proposed in
subsection 4.4.2.

We have tested our software on a PC with Intel PIV
2.4 GHz CPU, 512 MB RAM, and Intel 82865G
onboard Graphics Controller on 865GL motherboard.
The performance of the algorithm on raster data is
independent of size of terrain data as with the tiles
indexing scheme, the algorithm only keeps 9 tiles
active in main memory. The organization of the
terrain data in tiles of defined size is required to be
done only once on the same data set. For raster data,
the number of frames rendered per second mainly
depends on the complexity of the terrain (roughness)
under the view-frustum and the user defined image
quality metric (τ). Table 1 shows performance
analysis of the algorithms without and with
geometry-based mapping of polyline vector data
overlay.

Terrain Rendering Avg. no. of
Triangles

Avg. Frames
per Second

Full Resolution Raster
Data (considering 9
tiles only)

1327104.00 1.72

View-frustum culled
Surface

268120.70 7.18

Adaptive LOD
algorithm for Raster
Data (τ=4)

(a) using triangle list

(b) using triangle fan

(c) using triangle strip
(indexed vertex array)

20368.45

20368.44

23733.79

57.23

74.11

130.79

Multiresolution model-
ing of Vector Data
(total points: 573) and
rendering using
Triangle Strip as above

23698.74 92.76

6. CONCLUSIONS AND FUTURE
WORK
In this paper, we have presented a new geometry-
based mapping approach to rendering map vector
data over multiresolution 3D terrain models. The
proposed algorithm maps polyline vector data
consistently and exactly to the current level-of-detail
of terrain geometry and thus minimizes the rendering

artifacts. Performance analysis results show that our
combined multiresolution 3D terrain and polyline
vector data display algorithm maintains real-time
frame-rates on a desktop PC for large real-world
terrain data sets.

Currently all vector polyline data is kept in a single
file, but internally it is organized in the tile-wise
order for all the terrain tiles. To reduce main memory
overhead, the dynamic paging concept of tiled terrain
raster data may be extended to vector data also. We
may apply B-spline function to input points data to
make smooth curved polyline features. Future work
also includes extending the approach to display
wider width polyline data (e.g. roads) with
appropriate texture mapping.

7. ACKNOWLEDGMENTS
The research reported here has been partially
supported by the Ministry of Human Resource
Development (MHRD), Govt. of India under contract
F.26-4/2002.TS.V (R&D Scheme).

8. REFERENCES
[Agr05] Agrawal, Anupam et al. An Approach to

Improve Rendering Performance of Large
Multiresolution Phototextured Terrain Models
using Efficient Triangle Strip Generation. Paper
presented at IEEE IGARSS-2005 (Proc. on
DVD) held in Seoul, Korea, July 25-29, 2005.

[Agr04a] Agrawal, Anupam et al. Dynamic
Multiresolution Level-of-Detail Mesh
Simplification for Real-time Rendering of Large
Digital Terrain Models. Proc. IEEE INDICON-
2004, IIT Kharagpur, India, pp. 278-282, Dec 20-
22, 2004.

[Agr04b] Agrawal, Anupam et al. TREND: Adaptive
Real-time View-dependent Level-of-Detail-based
Terrain Rendering. Proc. IT++: The Next
Generation - the 39th Annual National
Convention of Computer Society of India (CSI)
held in Mumbai, pp. 146-157, Dec1-4, 2004.

[Agr98] Agrawal, Anupam et al. Delaunay
Triangulation Based Surface Modeling and
Three-Dimensional Visualization of Landforms.
Journal of IETE Technical Review, pp. 425-433,
15(6), 1998.

[Ake02] Akenine-Moller, T., and Haines, E. Real-
Time Rendering. Ed.2. A.K. Peters, 2002.

[Dou99] Douglass, D. et al. Real-Time Visualization
of Scalably Large Collections of Heterogeneous
Objects. Proc. IEEE Visualization’99, pp. 437-
440, 1999.

[Ker02] Kersting, O., and Dollner, J. Interactive 3D
Visualization of Vector Data in GIS. Proc. of
10th ACM Int. Sym. on Advances in Geographic
Information Systems, pp. 107-112, Nov. 2002.

Table 1. Performance Analysis

WSCG2006 Short Papers Proceedings 7 ISBN 80-86943-05-4

[Lue03] Luebke, D. et al. Level-of-Detail for 3D
Graphics. Morgan Kaufmann Pub., 2003.

[Sze97] Szenberg, Flavio et al. An Algorithm for the
Visualization of a Terrain with Objects. URL:
http://www.tecgraf.pucrio.br/~szenberg/
artigo_sib97/ artigo_sib97. html.

[Xia04] Xiaoping, R. and Yanmin, Z. Overlaying
Vector Data On 3D Terrain. Proc. IEEE IGARSS

2004, Alaska, USA, pp. 4560-4563, Sept. 20-24,
2004.

[Zac03] Zachary, W. et al. Rendering Vector Data
over Global, Multiresolution 3D Terrain. Joint
EUROGRAPHICS – IEEE TCV Symposium on
Visualization, pp. 213-222, 2003.

Figure 15. Handling Special Case 2

(a) (b) (c)

Figure 14. Handling Special Case 1

(a) (b) (c)

Figure 13. Display of Vector Data over LOD 3D Terrain (with Multiresolution Modeling)
(a) (b)

Figure 12. Display of Vector Data over LOD 3D Terrain (without Multiresolution Modeling)
(a) (b)

WSCG2006 Short Papers Proceedings 8 ISBN 80-86943-05-4

