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Abstract—Computer aided diagnosis systems (CADx) play a 

major role in the early diagnosis of breast cancer. Extracting the 

breast region precisely from a mammogram is an essential 

component of CADx for mammography. The appearance of the 

pectoral muscle on medio-lateral oblique (MLO) views increases 

the false positive rate in CADx. Therefore, the pectoral muscle 

should be identified and removed from the breast region in an 

MLO image before further analysis. None of the previous 

pectoral muscle segmentation methods address all breast types 

based on the breast imaging-reporting and data system (BI-

RADS) tissue density classes. In this paper, we deal with this 

deficiency by introducing a new simple yet effective method that 

combines geometric rules with a region growing algorithm to 

support the segmentation of all types of pectoral muscles 

(normal, convex, concave, and combinatorial). Experimental 

segmentation accuracy results were reported for four tissue 

density classes on 872 MLO images from three publicly available 

datasets. An average Jaccard index and Dice similarity 

coefficient of 0.972±0.003 and 0.985±0.001 were obtained, 

respectively. The mean Hausdorff distance between the contours 

detected by our method and the ground truth is below 5mm for 

all datasets. An average acceptable segmentation rate of ~95% 

was achieved outperforming several state-of-the-art competing 

methods. Excellent results were obtained even for the most 

challenging class of extremely dense breasts.  

 
Index Terms—Breast cancer, computer aided diagnosis, digital 

mammography, geometry rule-based segmentation. 

I. INTRODUCTION 

OR women from 15 to 54 years of age, breast cancer is the 
leading cause of death [1]. Mammography is a standard 

tool for the early diagnosis of breast cancer. To address the 
limitations of manual visual inspection for screening 
mammography, such as reduced sensitivity in dense breasts, 
misinterpreting non-cancerous lesions as cancer and vice 
versa, as well as to reduce time and cost, computer-aided 
detection/diagnosis systems (CADx) have been developed [2, 
3]. One critical issue in mammogram processing for CADx is 
that the pectoral muscle lies posterior to the breast and has a 
similar density to tumor cells. As a result, the appearance of 
the pectoral muscle on medio-lateral oblique (MLO) views 
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usually increases the false positive rate of CADx [4]. 
Although many articles have been published in the past decade 
on pectoral muscle segmentation and despite the fact that there 
are some commercially available tools, they either require 
human intervention or have a low accuracy rate that negatively 
affects the subsequent diagnosis and therapy planning. 
Therefore, there remains a need for developing automatic, fast, 
and robust mammography CADx systems [5-9]. To the best of 
our knowledge, we are unable to identify a CADx method that 
supports all types of muscles with high accuracy on all four 
tissue density classes defined in the breast imaging-reporting 
and data system (BI-RADS), introduced by the American 
College of Radiology [10]: 1. almost entirely fatty; 2. scattered 
fibro-glandular; 3. heterogeneously dense; and 4. extremely 
dense. 

In one of the earliest studies [11], the authors defined a 
rectangle to isolate the pectoral muscle from a region of 
interest (ROI). They then attempted to remove the pectoral 
muscle using a modified region growing (RG) method. 
However, the ROI in this method continues to include a large 
portion of the pectoral muscle leading to erroneous 
segmentation of the muscle. The Hough transform and cliff 
detection techniques were used by Kwok et al. [12] to 
delineate the pectoral muscle region. However, the 
performance of this method deteriorates significantly when the 
breast tissue contains complex textures, which is often the 
case. Also, it is not justifiable to adopt a straight-line 
assumption (as done in [12]) since the curvature of the muscle 
boundary can vary.  

Ferrari et al. [13] applied a multi-resolution procedure using 
Gabor wavelets to enhance the edge of the pectoral muscle 
and a method called edge-flow propagation [34] to detect 
relevant edges of the pectoral muscle. Although this approach 
addresses some weaknesses of the straight-line representation, 
the identified pectoral muscle may be under-segmented when 
the glandular tissue obscures the muscle. Another approach 
that is based on adaptive pyramids and minimum spanning 
trees was introduced by Ma et al. [14]. This method obtained 
unsatisfactory results for multi-layer pectoral muscles. In Raba 
et al. [15], the authors combined RG with morphological 
operators to identify the muscle. However, in dense breasts, 
the muscle region may be over/under-segmented due to the 
nature of the intensity threshold estimation based RG which 
they used. Furthermore, their method needs to specify the RG 
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seed point manually.  Mustra et al. [16] implemented a bit-
depth reduction method in combination with wavelet 
decomposition for detecting the pectoral muscle. This 
approach obtained desirable results only on the images with a 
high contrast between the pectoral muscle and the surrounding 
tissue, but a drop in performance is evident in low contrast and 
small pectoral muscles.  

In the work of Wang et al. [17], the authors tried to address 
some of the drawbacks of the methods mentioned above, such 
as the inability to handle various curvature types and multi-
layered muscles, using a discrete time Markov chain and an 
active contour model. In the first steps of their method, they 
separated the breast into two regions of interest (two separate 
regions containing the pectoral muscle); however, this 
separation process is highly dependent on contrast.  Camilus et 
al.  [18] attempted to segment the pectoral muscle using a 
graph cut based region merging algorithm combined with an 
underlying Bezier curve shape representation. However, their 
results were sensitive to the order in which the regions were 
merged. Later, Camilus et al. [19] presented a watershed 
transformation-based algorithm. However, the watershed 
method often leads to over-segmentation, and it is 
cumbersome to adjust the merging criterion. Other recent 
works can be found in Ganesan et al. [4].  

An important issue that has not been addressed in all these 
works is performance evaluation on the third and fourth BI-
RADS tissue density classes. In these two classes, a significant 
part of the breast is made up of fibrous and glandular tissues, 
which makes the segmentation even more challenging.  The 
risk of breast cancer increases in higher breast densities (a 4 to 
6-fold increase in breast cancer risk has been reported in 
women with extremely dense breasts compared to those with 
predominantly fatty breasts [20]) hence, this issue should not 
be ignored. Higher densities also affect the sensitivity and 
accuracy of CADx, as tumors are concealed behind the higher 
attenuating fibro-glandular tissue areas [21]. To the best of our 
knowledge, we could not identify an existing method robust to 
all tissue density classes, brightness, multi-layer muscles, and 
to the size of the breast and muscle.  

In this paper, a geometrical rule-based algorithm for the 
segmentation of the pectoral muscle is proposed. The method 
supports all types of pectoral muscles without any limitation 
on the size of the breast or muscle. Since accurate 
segmentation is highly dependent on finding the edge of the 
muscle, edge detection techniques based on color or brightness 
may fail when dealing with complex textures. In contrast, our 
proposed method is based on geometric rules instead and thus 
is robust to different image appearances. Since the basis of our 
method is not based on tissue, color, or contrast, we would 
expect the algorithm to have improved performance on almost 
all BI-RADS density categories. Nevertheless, for supporting 
the other types of muscles such as convex, concave, or their 
combination, we optimize the proposed method via a modified 
region growing algorithm designed to limit the region for the 
RG algorithm. Our method also chooses the region growing 
seed point automatically.   

II. METHODS 

The first challenge for pectoral muscle segmentation is to 
identify the approximate location of the pectoral muscle. The 
pectoral muscle and the breast should be distinguishable given 
their different locations and appearances in mammographic 
imaging. A careful observation shows that the breast is 
contained within a right angle triangle (this is true for MLO 
views; because the imaging is performed with the patient in a 
standing position with their breast resting on a flat surface, 
thus forming a right angle triangle) and the inferior region of 
the breast can be approximated as a circle (Fig. 1). Together, 
the triangle and circle form a rough geometric model of the 
imaged breast region. Knowing that the muscle is located 
posterior to the breast (Fig. 1), we fit a circle (a maximum 
inscribed circle, MIC, to be exact) inside the approximating 
triangle and localize the desired muscle region as the region 
located inside the triangle but above (i.e. superior to) the MIC. 
Fig. 1 shows that other possible geometrical shapes, e.g. 
maximum inscribed rectangle (MIR), square (MIS), or oval 
(MIO), would not be as suitable as the proposed MIC.  Our 
method to locate the pectoral muscle consists of 3 main steps: 
(1) Pre-filtering and breast boundary detection; (2) 
Identification of the muscle location via geometric rules; and 
(3) Optimization of the method for convex and combinatorial 
muscles. 

A. Pre-filtering and breast boundary detection 

Mammograms are essentially low contrast images with 
inconspicuous edges. We first perform contrast-limited 
adaptive histogram equalization (CLAHE) [11] to the images 
to enhance their contrast and obtain clearer details and 
stronger edges. In our experiment, the CLAHE parameters 
have been set as follows: We defined the number of 
rectangular contextual regions (tiles) to be 2×2. The optimal 
number of tiles is dependent on the input image, and it is best 
determined through experimentation. The contrast factor (Cf) 
avoids over-saturation of the image in homogeneous areas and 
was limited to 0.01. The number of ‘bins’ for the histogram 
needed for the contrast enhancement transformation was set to 
256. The ‘uniform’ mode was selected for the histogram 
distribution. In order to detect the breast contour, we 
converted the grey-scale image to a binary image with 
threshold t set to 0.3 (or lower) and applied the Canny edge 

 
 
Fig. 1.  Illustration of the similarity of the breast to a right angle triangle 
(white dashed line) and how the MIC helps identify the muscle region. 
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detector.  The steps to obtain the breast contour are shown in 
Fig. 2. 

To set the parameters, we tested several different values e.g., 
the Cf parameter was changed from 0.005 to 0.015. As 
illustrated in Fig. 3, Cf = 0.01 produced sharper images than 
other values.  Although it is barely palpable (visually), the 
edges in the images with Cf = 0.005 are not clear enough to 
separate the regions easily while the images with Cf = 0.015 
are likely to cause miscalculation in the region growing step 
because the gray-level values of the muscle region will be 
similar to the surrounding tissue (see the areas with a dashed 
black oval). The threshold value for converting gray images to 
binary ones was varied from 0.03 to 0.15. As can be seen in 
Fig. 4, the value of t that resulted in the best contour detection 
is 0.03. Note that the parameters are fixed for all images. 

B. Identification of the muscle location via geometric rules 

We now find the maximum inscribed circle (MIC): C1, 
within the detected breast contour. Finding the MIC is the first 
step in geometrically delineating the muscle. We use the 
method of Xia et al. [22] to find the MIC. This method applies 
a vector distance transformation strategy to create a distance 
field, then globally searches the medial axis, radius, and center 
for the MIC. More details can be found in Xia et al. [22]. The 
detected breast contour is employed as a mask on the CLAHE 
image to obtain the MIC. After detecting the MIC process, all 
subsequent processing is applied on the CLAHE image. 

Once the location of the MIC: C1, with the center (xO, yO) 
and radius r has been specified, the next step in finding the 
muscle region is to locate the border of the muscle. The border 
starts from a point we call A. By plotting the mean grey level 
values of the pixels in the top p rows along the same column 
of the image we can easily decide point A (Fig. 5). In our 
experiments, p was tuned empirically being set to 2. 
Therefore, the second edge (local minimum, or local 
maximum [33] on a reversed signal) from the right which has 
a lower (darker) value is the starting location of the pectoral 
muscle (point A). In the case of a multi-layered muscle, as in 
the example of Fig. 14(a) second row, if we search for the 
muscle edge by moving from the left-hand side to the right-
hand side of the image, then we might not get the correct edge. 
However, when we move from the right-hand side to the left 
(from the dark background towards the breast), the first edge 
encountered would be the start of the breast tissue, and the 
second edge would be the edge of the muscle. This method 
was inspired by the imaging mechanism and the anatomy of 
the breast and chest. The experiments based on a large number 
of images in the three publicly accessible datasets show this 
method is effective. 

 Thus the method is robust enough to support the multi-

    
a) Original X-ray image b) After CLAHE c) Binary image d) Breast contour 

 
Fig. 2.  The steps for detecting the contour of the breast; applying CHAHE, 
converting the grey image into a binary one, and the detected edge. 

t = 0.03 t = 0.09 t = 0.15 

Binary Image     Contour Binary Image     Contour Binary Image     Contour 

                     

                    

                      

 
Fig. 4.  Testing different values of the contrast factor Cf for three different 
types of breast. Top: a heterogeneously dense breast with convex muscle; 
Middle: a breast with scattered fibro-glandular tissue and combinatorial 
muscle; Bottom: a heterogeneously dense breast with combinatorial muscle. 
  

 After CLAHE 

Original image Cf = 0.005 Cf = 0.01 Cf = 0.015 

    

    

    

 
Fig. 3.  Enhancement results with three different contrast factors for three 
different types of breast. Top: a heterogeneously dense breast with convex 
muscle; Middle: a breast with scattered fibro-glandular tissue and 
combinatorial muscle; Bottom: a heterogeneously dense breast with 
combinatorial muscle. 
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layer muscles (Fig. 14). Because of the anatomy of the breast 
in the mammograms, the plot of the top 2-4 rows of the 
mammogram is similar to what we have in Fig. 5.  

Next, we define O as the center of MIC, then calculate the 
length OA as OA = ((xA - xO)2

+ (yA - yO)2)1/2.  This is shown in 
Fig. 6(a), where (xA, yA) are the coordinates of point A. Once 
the length of the OA is computed, we draw the tangent line 
from A to C1 which is named S. 

As can be seen in Fig. 6(b), a right angle triangle is 
constructed from the line OA, the radius of C1 and the tangent 
S.  The length of the edge S is computed using S = ((OA2) - 
(r2))1/2. We denote the intersection of C1 and S as D1.  We then 
plot the circle C2 centered at A and with the radius of AD1 

shown in Fig. 6(c). The two circles: C1 and C2 are defined as 
C1: (x - xO)2 

+ (y - yO)2 = r2 and C2: (x - xA)2
+ (y - yA)2 = (AD1)

2 

= (OA)2 - r2. 
As illustrated in Fig. 7, if we extend the line S and denote it 

as d1, then the two lines: d1 and d2 (the left vertical side of the 
image) intersect at point B, whose coordinates are computed 
as follows: 

 {𝑑1;  𝑦−𝑦𝐴𝑥− 𝑥𝐴 =  𝑦𝐷1−𝑦𝐴𝑥𝐷1− 𝑥𝐴𝑑2;  𝑥 =  0                                 (1) 

 𝑥𝐵 = 0,   𝑦𝐵 = −𝑥𝐴 (𝑦𝐷1− 𝑦𝐴𝑥𝐷1− 𝑥𝐴) + 𝑦𝐴   

Fig. 7 shows the pectoral muscle region enclosed in the 
triangle AEB. As illustrated in Fig. 8, d1, d2, and d3 are three 
lines forming a right angle triangle, so the pectoral muscle 
region can be defined by the region contained by them.  
Formally this is written in Eq. 2, where (xp, yp) is any point 
inside the pectoral muscle region, and d3 is the upper 
horizontal side of the image. 

 𝑑3(𝑥𝑝 , 𝑦𝑝) ≤ 0 & 𝑑1(𝑥𝑝 , 𝑦𝑝) ≥ 0 &  𝑑2(𝑥𝑝 , 𝑦𝑝) ≤ 0      (2) 

C. Optimization of the method for convex and combinatorial 

muscles 

As shown in Fig. 8, the MIC is very helpful for identifying 
the boundary of the breast efficiently, however the pectoral 
muscles may be convex, concave or a combination of both. As 
shown in Fig. 8, in convex pectoral muscles, the muscle region 
protrudes to the right of line d1. To overcome the difficulty in 
segmentation of the irregular shape (curvature) of pectoral 
muscles, to avoid over-segmentation, and to address the 
constraint of the straight-line theory imposed by previous 
methods, we have defined a threshold line d1* that is plotted 
parallel to d1.  The threshold line prevents the region growing 
algorithm from growth beyond d1*. If we assume the width of 
the pectoral muscle, EA, is equal to T, then d1* is defined by 
shifting the line d1 to the right by a distance of T/4. The 
amount of shift (T/4) was obtained experimentally. Therefore, 
we will have the new triangle: EA'B' for the RG algorithm. 

In the last step, we optimize our method around d1* for the 
RG algorithm [23, 24] which is a luminance region based 
approach. In most of the recent works, the authors have 
selected the seed point manually to start the growing but, in 
this paper, point A has been defined as an initial seed point. 
The algorithm expands the area around A to include 
neighboring pixels that are within a threshold range. The 
expansion is based on the average intensities of a 15 × 15 

 
                    a                                      b                                      c 
 
Fig. 6. Finding the location of the border (S) of the pectoral muscle. a) 
Location of C1 and line OA, b) Position of the right angle triangle formed by 
S, AO and radius r. c) Position of the circle C2 which intersects C1 at points 
D1 and D2. 
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Fig. 5.  Finding the MIC in the breast contour (left), masking it on the 
CLAHE image (middle) and then finding the point A (right) which is the 
starting location of the pectoral muscle. 

 
Fig. 7. The pectoral muscle location in an approximating triangle AEB. 
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Fig. 8. Specifying the restrictive line d1* (red dashed-line) at the convex 
pectoral muscles which avoids over-expansion during the RG algorithm. 
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region of neighboring pixels to make the algorithm robust 
against noise.   The size of this region was tuned 
experimentally. The similarity condition we consider uses two 

thresholds, Th1 and Th2 [25], given by 𝑇ℎ1 =  𝐼 ̅ − (0.3 − 𝐾). 𝐼 ̅

and 𝑇ℎ2 =  𝐼 ̅ − (0.3 + 𝐾). 𝐼,̅ where 𝐼 ̅is the average value of 
luminance in the specified region and it is adjusted for every 
growing step, and K depends on a factor F given by [25], 

 𝐹 =  𝑑√𝑁𝑀 (𝐼𝑚𝑎𝑥 − 𝐼𝑠𝑒𝑒𝑑)                                                    (3) 
 

where d is the distance of the pixel with the maximum 
intensity from point A, Iseed is the intensity value of the seed, 
Imax is the maximum intensity value in the expanded area, M is 
||EA'||, and N is ||EB'||. Factor F is computed for each ROI and 
K is set for the best contour. K is related to F by implementing 
a robust linear regression of the point (K, F).  The initial value 
of K is defined as a + bF, where a and b are determined by the 
regression model. More details can be found in [24]. 
Optionally, a radiologist can help tune the parameter K in 
order to get the best result. 

Two main factors that lead to the successful segmentation 
of the pectoral muscle are the localization of both point A and 
the line d1 (or d1*) which in this paper have been identified 
accurately (the experimental results validate that the point A 
and line d1 have been correctly selected). The expanding area 
of the region growing algorithm in the convex or 
combinatorial muscles is from pixel A to the last pixel on the 
left side of the image and is bound by the threshold line d1* 
from the right. 

In order to get the best distance for plotting d1* we tested 
several different values (see Fig. 9) e.g., T/2 (the blue dashed 
line), T/4 (the red dashed line), T/6 (the black dashed line), 
and T/8 (the white dashed line). As can be seen in Fig. 10, in 
all cases (different tissues, muscle sizes, and breast shapes) the 
value T/4 properly contains also muscle types placed outside 
the pectoral muscle line.  This is denoted with the color green. 
The T/6 and T/8 lines sometimes cross the muscle line. 
Although the T/2 line was also placed outside the muscle, it 
contains a large portion of the breast which causes higher 
computational cost and possible inaccurate region growing. 
Using d1* to restrict the RG algorithm allows the pectoral 
muscle to be extracted without affecting other regions of the 
mammogram images that will be important in the subsequent 
processing steps. We selected 10 random images from each 
dataset for determining optimal parameter values (30 images 
in total). To allow for a fair comparison with other methods in 
the literature, e.g. [8, 12, 16, and 17], these images were also 
included when reporting the final results. 

An example of convex pectoral muscle segmentation and 
how the threshold line d1* provides a boundary for the 
segmentation is illustrated in Fig. 8. Note that the dashed blue 
circle is the detected MIC in the breast contour and d1 is 
specified according to the previous steps as detailed above. 
For concave pectoral muscles the d1* line is not needed and 
the extraction process can be formulated using only the d1 
line.  The process of segmentation of the combinatorial 
muscles is the same as the convex ones. 

The proposed algorithm consists of three main steps: MIC 
detection, d1 definition, and d1* optimization followed by 
adaptive region growing. The first step involves the whole 
image for enhancement of the breast contour and MIC 
detection. The second step detects the starting point A of the 
pectoral muscle in the top rows in the given image and finds 
the tangent line d1 of the MIC through A.  

The third step optimizes the location of the boundary 
between the breast and the pectoral muscle through translating 
d1 to d1* and adapts the region growing in a small region of the 
given image. Thus, the proposed method has a linear 
computational complexity in the number of pixels of the given 
image.  

We proposed further steps after finding line AB to avoid 
over/under segmentation of the muscle. As shown in Figures 8 
and 15 segmenting the muscle using only the direct line AB 
would cause over/under segmentation. Fitting a polynomial 
curve or dynamic programing has also been considered for 
finding the muscle edge. However, polynomial fitting requires 
the user to decide on the degree of the polynomial function 
and also requires robustly extracted edge points.  Finding the 
degree may not be simple in practice and may require trial and 
error as each image is different. Extracting the edge points is 
also not straightforward given the weak muscle boundary. A 
dynamic programing approach was also considered as an 
alternative to a degree-dependent polynomial, but again, as the 
intensity transition across the boundary of dense breasts is not 
clear, the user would have to ensure a suitable energy function 
with at least two terms (data and regularization terms) and 
decide on a proper weight that balances these terms or resort 
to inserting seed points manually along the boundary (as is 
common with the dynamic-programming based live-wire 
method [35]). 

III. RESULTS AND DISCUSSION 

Similar to several other works in the literature [16, 36, 37], 

 

 
Fig. 9. Different possible values for the restrictive line d1*. 
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one radiologist assessed the results visually. Segmentation 
quality was validated through visual inspection by the 
radiologist and by quantitatively comparing the extracted 
regions with hand drawn contours (ground truth) after contrast 
enhancement.  

To quantitatively evaluate the performance of the proposed 
segmentation algorithm, the Jaccard index [26] and Dice 
similarity coefficient [27] have been calculated which are 
defined as: 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =  |𝑅𝑎𝑖 ∩𝑅𝑚𝑖 ||𝑅𝑎𝑖 ∪𝑅𝑚𝑖 |     (4),             𝐷𝑖𝑐𝑒 =  2|𝑅𝑎𝑖 ∩𝑅𝑚𝑖 ||𝑅𝑎𝑖 |+|𝑅𝑚𝑖 |     (5) 

  

Where Ri
a and Ri

m are the pixels of the ith tissue type 
segmented by the proposed automatic method and the manual 
method respectively. The Jaccard and Dice metrics take values 
between 0 and 1: zero is obtained when two sets have no 
common elements while one is achieved when two sets are 
identical. The larger the values the more accurate the 

segmentation. In addition to reporting the Jaccard index and 
the Dice similarity coefficient, we also calculate the 
distances between the ground truth delineation and the 
boundary of the automatic segmentation. Given that for 
every point on one contour (i.e. the automatic 
segmentation) there is a minimum distance to the other 
contour (i.e. the ground truth), we report the, max (a.k.a. 
Hausdorff), and the mean of these inter-contour minimum 
distances. 

The proposed method has been applied to MLO images 
randomly selected from three datasets of INbreast [28] (197 
images), IRMA (Image Retrieval in Medical Applications) a 
version of DDSM [29] (353 images), and The Mammographic 
Image Analysis Society (MIAS) [30] (322 images). We would 
like to emphasize that modern digital mammography systems 
produce clearer images (INbreast) than traditional systems that 
digitize the images using scanners (MIAS, DDSM).  There are 
no artifacts and textual labels on images captured by modern 
mammographic imaging systems. In order to compare the 
proposed method with previous methods we also included the 
older MIAS and DDSM datasets. Radiopaque artifacts and 
labels which are shown in Fig. 10 (a) may produce an error in 
detecting the breast contour. We can easily remove them by 
running a simple morphological operation introduced by Nagi 
et al. [31]. A sample mammogram image, with the radiopaque 
artifacts suppressed has been demonstrated in Fig.10 (c).  

The average similarity measure of Jaccard and Dice indices 
between the regions segmented by the proposed geometric 
method and ground truth are plotted in Fig. 11. The ‘NRM’, 

‘CVX’, ‘CCV’, and ‘CMB’ are abbreviations of normal, 
convex, concave, and combinatorial.  The thin black lines in 
the middle of the bars show the standard deviation.  The 
results indicate that the proposed algorithm is promising in 
pectoral muscle segmentation for all four BI-RADS density 
classes. Note that the two datasets of INbreast and DDSM are 
based on four BI-RADS tissue density classes of almost 
entirely fatty (1), scattered fibro glandular (2), 
heterogeneously dense (3), and extremely dense (4) while the 
MIAS data is based on the three tissue density classes of fatty 
(F), fatty-glandular (Fg), and dense-glandular (Dg).  

The majority of the data for testing the algorithm is from 
classes 2 and 3 of the BI-RADS density classes because most 
women are included in these two classes (about 80%) [32]. As 
can be seen from Fig. 11, strong results have been achieved by 
the proposed segmentation algorithm for these two classes 
(2&3). For the class 2 density of the INbreast data, the Jaccard 
and Dice metrics were 0.976±0.013 and 0.987±0.006 
respectively. For class 3, the Jaccard and Dice metrics were 
0.972±0.008 and 0.986±0.004 respectively. For the class 2 
density of the DDSM data the Jaccard and Dice metrics were 
0.972±0.013 and 0.986±0.007, respectively. For class 3 the 
Jaccard and Dice metrics were 0.964±0.006 and 0.982±0.003 
respectively. For the class Fg of the MIAS data the Jaccard 
and Dice metrics were 0.976±0.013 and 0.987±0.006 
respectively. For the class Dg, Jaccard and Dice indices were 
0.973±0.009 and 0.986±0.005 respectively.  The most difficult 
category is the extremely dense breasts. Recent papers have 
not explicitly mentioned results of their segmentation. For this 
class our method achieved Jaccard and Dice indices of 
0.960±0.01 and 0.978±0.008 respectively.  

   

   

         a                          b                       c 

Fig. 10. A sample image in the MIAS dataset with Radiopaque artifacts 
removed; a) original image, b) binary image, c) image with artifacts removed 

   
Jaccard         Dice 

a) INbreast Dataset  
 

   
Jaccard           Dice 

b) DDSM Dataset 
 

   
Jaccard           Dice 

c) MIAS Dataset 
 

Fig. 11. Averages and standard deviations of Jaccard and Dice indices of 
pectoral muscle segmentation of the proposed method results for the INbreast, 
DDSM, and MIAS datasets. 
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The Hausdorff and mean distances between the contours 
detected by our proposed method and the ground truth is 

presented in Fig. 12. We achieve, on average, sub-
millimeter accuracy on all datasets. The Hausdorff distance 
captures the accuracy of the worst localized regions of the 
muscle boundary, yet this remains below 1 cm. Fig. 13 (a) 
shows a heterogeneously dense breast. The area marked by a 
dashed red oval is where the RG algorithm produces an error 
because there is no clear border between the muscle and breast 
tissue. This type of error is common in heterogeneously and 
extremely dense breasts. The yellow and yellow dashed lines 
in Fig. 13 (b) are the d1 and d1* lines respectively.  

As can be seen, the d1* line limited the possible region for 
the RG algorithm for accurate segmentation results illustrated 
in Fig. 13 (c). All the muscles are considered as 
convex/combinatorial. Therefore, we always draw line d1* and 
run the RG method. Fig. 14 shows the output of using the two 
lines d1 and d1* + RG method. As mentioned above, the most 
important category of density class is the extremely dense 
class that contains more than 75% glandular and fibrous tissue 
because it is involved with a high risk of cancer. A sample 
result from this class with an acceptable segmentation can be 
seen in Fig. 14. In contrast, it is unclear how the previous 
methods in the literature would work for this class. The 
methods based on region growing or clustering will produce 
significant errors in these cases due to the similarity in 
appearance and complex geometry of the muscle and breast 
tissue. Another limitation of some of the methods reviewed in 
the literature is that they have not shown how accurately they 
deal with multi-layer muscles. Our method achieved 
considerably high accuracy as illustrated in Fig. 14 (an 

extremely dense breast with multi-layer pectoral muscle). 
Note that these images are much harder to analyze than other 
multi-layer images because in addition to being multi-layer 
they represent extremely dense breasts. Nevertheless, our 
method accurately segmented the pectoral muscle. 

        
 

Fig. 12. The Hausdorff (left) and mean (right) distance results of the muscle 
segmentation using the proposed method. 
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     a                    b      c 

Fig. 13. An example muscle segmentation for a heterogeneously dense breast, 
a) Error producing region circled in red, b) The limitation boundary d1* 
shown as the yellow dashed line, which solves this problem, c) The region 
identified by the proposed algorithm (red) and GT (green).  

     
    

              
                      a                        b                     c                       d  
 
Fig. 14. Sample results of the proposed segmentation method (red) 
compared with the ground truth (green). a) Original image, b) CLAHE 
image, c) Ground truth vs. line d1, d) Ground truth vs. segmented region 
using d1* and RG. The first row is an extremely dense breast and the second 
row is a breast with a multilayered muscle. 

Normal 
mammogram 

CLAHE 
MIC and tangent 

line locations 
Detected 
muscle 

    

    

    

 
Fig. 15. Three samples of different breast types and their pectoral muscle 
segmentation results. The MIC is denoted by a blue circle, the ground truth 
is given by the green region and our results are given by the red region. 
Additionally, the yellow dashed line shows the limitation boundary. 

 

    



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

8 

Mammograms have a very similar structure, but the location, 
size, and shape of the breasts vary. As three samples of Fig. 15 
show, a mammogram could be taken in such a way that the 
biggest portion of the breast might not coincide with the 
location where the pectoral muscle starts. Nonetheless, the 
proposed method effectively handles these cases. Fig. 16 
shows the failed, successful, and acceptable segmentation 
results, respectively.  The red area is the region identified by 
our automatic algorithm, and the green region is the ground 
truth (GT). As shown in Fig. 16(a), the presence of the arm in 
the image caused an error. It should be noted that this situation 
rarely occurs as the images are captured using a standard 
procedure and device. However, these cases are easily 
screened out by the clinician and should not lead to a 
misdiagnosis. Fig. 16(c) shows an example of acceptable 
concave pectoral muscle identification.  

As was shown qualitatively in Figures 13-15, and 
demonstrated quantitatively in Fig. 11, our method was largely 
successful in segmenting a variety of cases and muscle types 
(breasts with different sizes/shapes/tissue densities; muscles 
with various shapes: multilayer, concave, convex, and 
combinatorial) and outperforming state-of-the-art. 
Nevertheless, there were different failure cases due to two 
main reasons: (i) The presence of the patient’s arm, which 
changed the profile of the intensities of the pixels in the 
image, and (ii) the weak boundaries between the pectoral 
muscle and breast tissue causing an ambiguity in determining 

the muscle borders. Figures 16 (a) and 17 show 4 example 
failure cases.  

Figures 17(i) and 17(ii) show two failed cases caused by the 
presence of a part of the patient's arm within the field of view, 
which resulted in multiple intensity transitions between the 
pectoral muscle and the breast and, hence, the ambiguity in 
determining their borders. Fig. 17(iii) shows another case in 
which the border of the muscle and the breast tissue is not 
clear in the original image. This has prevented the proposed 
method from excluding the muscle region from the breast 
tissue. Even so, the result is still acceptable. The small red 
arrows in Fig. 17(iii), show the area where the muscle edge is 
mixed with the breast tissue making the muscle border 
identification difficult. These cases are challenging to 
delineate even by experts.  

As shown above, the proposed method is robust enough to 
handle contrast variation, intensity variation, edge size 
variation, multi-layered muscles, and the curvature of the 
muscle boundary. The proposed geometric rule based method 
shows superior results on the extremely dense breast in 
addition to the other density classes. In order to compare with 
other methods a five-point assessment scale (Table 1), 
introduced by Kwok et al. [12] was adopted.  

The performance of the proposed method based on a 
radiologist’s opinion has been illustrated in Fig. 18. The ‘E’, 

                         
                                     (i)                                                                                         (ii)                                                                                        (iii) 
 
Fig. 17. Sample failure results of the proposed segmentation method (red) compared with the ground truth (green). a) Original image, b) CLAHE image, c) 
Ground truth vs. line d1, d) Ground truth vs. segmented region using d1* and RG. 

 
                                     a                         b                        c 
Fig. 16. Sample results of the proposed segmentation method (red) compared 
with the ground truth (green). a) an unacceptable result, b) an accurate result, 
c) an acceptable result. 

TABLE I 
DESCRIPTION OF FIVE-POINT ASSESSMENT SCALE 

Assessment scale Notation Description 

Exact E 
The detected borders fit the ground truth 
exactly and there is not any visual 
deviation. 

Optimal O 
The detected region specifies the muscle 
region exactly for at least half of its length 
and adequately for the remaining part. 

Adequate A 
The detected region specifies the muscle 
margin exactly, but with acceptable 
accuracy for specific purpose. 

Sub-optimal S 
The identified region is not adequate for at 
least half of its length. 

Inadequate I 
The segmented region is so inacceptable as 
to be inadequate for the intended purpose. 
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‘O’, and ‘A’ have been grouped as acceptable results while ‘S’ 
and ‘I’ are classified as unacceptable results. 

Our method achieved strong segmentation results with rates 
of 96%, 94%, and 95% for the MLO views of the INbreast, 
DDSM, and MIAS datasets respectively with a low 
unacceptable rate. We have no segmentation results in the 
group of ‘I’ for any of the three datasets. We compared our 
results with three other methods because the same assessment 
criterion was applied. The comparison results are shown in 
Table 2. In comparison to other previous methods the 
proposed method had a superior performance based on the 
number of acceptable results (E+O+A).   

As can be seen in Table 2, Kwok’s method has an accuracy 
of 83.9%. It is precise for a straight-line segment pectoral 
muscle edge, but the performance degrades significantly in 
cases where the mammograms' pectoral muscle border curves 
away from the chest wall. In contrast, our method applies the 
threshold line to solve this defect. Wang et al., tried to solve 
the curvature limitations of the muscle and they obtained an 
accuracy of 91%. However, their method is strongly 
dependent on the image contrast, while we propose to use the 
adaptive RG method to handle this issue. In other competitive 
work, Li et al. had a slightly improved accuracy 
(90.06%~92%). Their method is based on intensity deviation. 
The basic steps of our method are made by geometric rules 
and adaptive region growing which are robust to intensity or 
contrast change in mammograms, hence the improved 

performance of the segmentation.  

IV. CONCLUSION  

This paper has proposed a novel geometry based pectoral 
muscle segmentation method. This method takes advantages 
of geometric rules automatically and finds the starting point of 
the pectoral muscle and maximum inscribed circle in the 
breast contour. This allows the muscle borders to be identified. 
A threshold line and region growing were proposed to 
optimize the method performance on convex, concave, and 
combinatorial muscles. The method was tested on 872 MLO 
images and achieved strong results on all BI-RADS tissue 
density classes, especially extremely dense breasts, whose 
segmentation results are missing in the literature. The 
proposed method has the potential to be used in computer 
aided diagnosis systems as a preprocessing step. Our 
experimental results also indicate that the proposed algorithm 
is versatile enough to be applied to extensive varieties in the 
appearance of the pectoral muscle; it remains successful when 
superimposed breast tissue occludes the pectoral muscle edge.  

While the accuracy achieved by our method is high (>90%) 
and outperformed competing methods, there are still cases that 
would benefit from user interaction for an improved 
segmentation. Future work, towards CADx systems should 
assess the effect of such errors on the segmentation on the 
final diagnosis task. In order to improve the segmentation 
accuracy, possibilities for future work include: Exploring 
optimization-based segmentation techniques (instead of region 
growing) [25]; searching the hyper-parameters space using 
rigorous methods (instead of using the method proposed by 
Menchattini et al. [25] for setting the region growing 
thresholds, or for setting the CLAHE method parameters), e.g. 
via harmony search [43] and evolutionary computing [44] or 
combinatorial/continuous optimization of hyper-parameters 
[39-41]; or setting hyper-parameter values based on image 
contents [42]. However, it remains to be seen whether such 
additional methodological complexity will lead to worthwhile 
improvements in accuracy. Another potential future research 
direction is to investigate direct (or segmentation-free) 
methods [38] that predict disease classes without even 
resorting to segmentation-based feature extraction.  

           
 

                        DDSM dataset                              INbreast dataset 
 

 
MIAS dataset 

 
Fig. 18. Visual assessment of the results by radiologists for different datasets 

TABLE II 
DESCRIPTION OF FIVE-POINT ASSESSMENT SCALE 

Reference Methodology Database No. of Images Acceptable Results 

Kwok et al. [12] Straight line estimation and cliff detection MIAS 322 83.9% 

Wang et al. [17] Markov chain and active contour model DDSM 200 91% 

Mustra et al. [16] 
bit depth reduction and wavelet 

decomposition  
Private 40 85% 

Li et al.  [8] 
Homogenous texture and intensity 

deviation based method 

DDSM 100 92% 

MIAS 322 90.06% 

Proposed method Geometry based model 

DDSM 353 94% 

MIAS 
322 (4 images have no 

pectoral muscle) 
95% 

INbreast 197 96% 
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