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Input views Synthesized novel views (GBT) Synthesized novel views (GBT w/o geometric bias)

Figure 1. Given a small set of context images with known camera viewpoints (left), our Geometry-biased transformer (GBT) synthesizes
novel views from arbitrary query viewpoints (middle). The use of global context ensures meaningful prediction despite large viewpoint
variation, while the geometric bias allows more accurate inference compared to a baseline without such bias (right).

Abstract
We tackle the task of synthesizing novel views of an

object given a few input images and associated camera
viewpoints. Our work is inspired by recent ‘geometry-
free’ approaches where multi-view images are encoded as
a (global) set-latent representation, which is then used to
predict the color for arbitrary query rays. While this repre-
sentation yields (coarsely) accurate images corresponding
to novel viewpoints, the lack of geometric reasoning lim-
its the quality of these outputs. To overcome this limita-
tion, we propose ‘Geometry-biased Transformers’ (GBTs)
that incorporate geometric inductive biases in the set-latent
representation-based inference to encourage multi-view ge-
ometric consistency. We induce the geometric bias by aug-
menting the dot-product attention mechanism to also incor-
porate 3D distances between rays associated with tokens
as a learnable bias. We find that this, along with camera-
aware embeddings as input, allows our models to generate
significantly more accurate outputs. We validate our ap-
proach on the real-world CO3D dataset, where we train our
system over 10 categories and evaluate its view-synthesis
ability for novel objects as well as unseen categories. We
empirically validate the benefits of the proposed geometric
biases and show that our approach significantly improves
over prior works.

1. Introduction
Given just a few images depicting an object, we humans

can easily imagine its appearance from novel viewpoints.
For instance, consider the first image of the hydrant shown
in Figure 1 and imagine rotating it slightly anti-clockwise –
we intuitively understand that this would move the small
outlet towards the front and right. We can also imagine
rotating the hydrant further and know that the (currently
occluded) central outlet will eventually become visible on
the left. These examples serve to highlight that this task
of novel-view synthesis requires both reasoning about geo-
metric transformations e.g. motion of the visible surfaces, as
well as an understanding of the global structure e.g. occlu-
sions and symmetries to allow for realistic extrapolations.
In this work, we develop an approach that incorporates both
these to synthesize accurate novel views given only a sparse
set of images of a previously unseen object.

Recent advances in Neural Radiance Fields (NeRFs)
[13] have led to numerous approaches that use these rep-
resentations (and their variants) for obtaining remarkably
detailed novel-view renderings. However, such methods
typically optimize instance-specific representations using
densely sampled multi-view observations, and cannot be di-
rectly leveraged for 3D inference from sparse input views.

* indicates equal contribution
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To enable generalizable inference from a few views, recent
methods seek to instead predict radiance fields using the im-
age projections of a query 3D point as conditioning. While
using such geometric reprojection constraints allows accu-
rate predictions in the close vicinity of observed views, this
purely local conditioning mechanism fails to capture any
global context e.g. symmetries or correlated patterns. As a
result, these approaches struggle to render views containing
unobserved aspects or large viewpoint variations.

Our work is motivated by an alternate approach to gen-
eralizable view synthesis, where a geometry-free (global)
scene representation is used to predict images from query
viewpoints. Specifically, these methods form a set-latent
representation from multiple input views and directly in-
fer the color for a pixel for a query view (or equivalently a
query ray) using attention-based mechanisms in the scene
encoding and ray decoding process. Not only is this direct
view synthesis more computationally efficient than volume
rendering, but the set-latent representation also allows cap-
turing global context as each ray can attend to all aspects of
other views instead of just the projections of points along
it. However, this ‘geometry-free’ design comes at the cost
of precision – these methods cannot easily capture the de-
tails in input views, and while they can robustly capture the
coarse structure, do not output high-quality renderings.

In this work, we develop mechanisms to inject geometric
biases in these set-latent representation-based approaches.
Specifically, we propose Geometry-biased Transformers
(GBTs) which consist of a ray-distance-based bias in the
attention mechanism in Transformer layers. We show that
these help guide the scene encoding and ray decoding stages
to pay attention to relevant context, thereby enabling more
accurate view synthesis. We benchmark our approach using
the Co3D dataset [18] that comprises of challenging real-
world captures across diverse categories. We show that our
approach outperforms both, projection-based radiance field
prediction and set-latent representation-based view synthe-
sis approaches, and also demonstrate our method’s ability
to generalize to unseen object categories.

2. Related Work
Instance-specific 3D Representations. Driven by the re-
cent emergence of neural fields [13], a growing number of
methods seek to accurately capture the details of a specific
object or scene given multiple images. Leveraging either
volumetric [1, 2, 5, 9, 13, 14, 16], implicit [17, 27, 31], mesh-
based [8,33], or hybrid [3,7] representations, these methods
learn instance-specific representations capable of synthesiz-
ing novel views. However, as these methods do not learn
generic data-driven priors, they typically require densely
sampled views to be able to infer geometrically consistent
underlying representations and are incapable of predicting
beyond what they directly observe.

Projection-guided Generalizable View Synthesis.
Closer to our goal, several methods have aimed to learn
models capable of view-synthesis across instances. While
initial attempts [22] used global-variable-conditioned
neural fields, subsequent approaches [4,24,28,32] obtained
significant improvements by instead using features ex-
tracted via projection onto the context views. Reiznestein
et al. [18] further demonstrated the benefits of learning
the aggregation mechanisms across the features along a
query ray, but the projection-guided features remained
the fundamental building blocks. While these projection-
based methods are effective at generating novel views by
transforming the visible structures, they struggle to deal
with large viewpoint changes (as the underlying geometry
maybe uncertain), and are fundamentally unable to generate
plausible visual information not directly observed in the
context views. We argue that this is because these methods
lack the mechanisms to learn and utilize contexts globally
when generating query views.

Geometry-free View Synthesis. To allow using global
context for view synthesis, an alternate class of methods
uses ‘geometry-free’ encodings to infer novel views. The
initial learning-based methods [23,30,34] typically focused
on novel-view prediction given a single image via global
conditioning. Subsequent approaches [11, 15, 19] improved
performance using different architectures e.g. Transform-
ers [26], while also allowing for probabilistic view synthesis
using VQ-VAEs [25] and VQ-GANs [6]. While this leads
to detailed and realistic outputs, the renderings are not 3D-
consistent due to stochastic sampling.

Our work is inspired by the recently proposed Scene
Representation Transformer (SRT) [20], which uses a set-
latent representation that encodes both patch-level and
global scene context. This design engenders a fast, de-
terministic rendering pipeline that, unlike projection-based
methods, furnishes plausible hallucinations in the invisible
regions. However, these benefits come at the cost of detail
– unlike the projection-based methods, this geometry-free
approach is unable to capture precise details in the visi-
ble aspects. Motivated by this need to improve the detail,
we propose mechanisms to inject geometric biases in this
framework, and find that this significantly improves the per-
formance while preserving global reasoning and efficiency.

3. Approach
We aim to render novel viewpoints of previously unseen

objects from a few posed images. To achieve this goal, we
design a rendering pipeline that reasons along the following
two aspects: (i) appearance - what is the likely appearance
of the object from the queried viewpoint, and, (ii) geometry
- what geometrically-informed context can be derived from
the configuration of the given input and query cameras?

Prior methods address each question in isolation e.g. via
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Figure 2. Learning novel view synthesis using Geometry-biased Transformers. Best viewed in color. a) Camera-fused patch embed-
ding. Each input image Ii is processed using a shared CNN backbone FC and the feature maps are fused with the corresponding input
patch-ray embeddings (obtained via pi). b) Geometry-biased scene encoding. Our proposed Geometry-biased Transformer encoder FE

converts the set of patch-level feature tokens into a scene encoding via self-attention biased with ray distances. c) Geometry-biased ray-
decoding. To decode pixels for a novel viewpoint, we construct ray queries that are decoded by a geometry-biased transformer decoder
FD by attending into the scene encoding. Finally, an MLP predicts the pixel color using the decoded query token.

global latent representations [11, 20, 22, 29] that address (i)
by learning object semantics, or, via reprojections [18, 32]
that address (ii) by employing explicit geometric transfor-
mations. In contrast to prior works, our method jointly
reasons along both these aspects. Concretely, we propose
geometry-biased transformers that incorporate geometric
inductive biases while learning set-latent representations
that help capture global structures with superior quality.

Fig. 2 depicts the Geometry-biased Transformer (GBT)
framework which has three components. First, a shared
CNN backbone extracts patch-level features which are
fused with the corresponding ray embeddings to derive lo-
cal (pose-aware) features (Fig. 2a). Then, the flattened
patch features and the associated rays are fed as input to-
kens to the GBT encoder that constructs a global set-latent
representation via self-attention (Fig. 2b). The attention
layers are biased to prioritize both the photometric and the
geometric context. Finally, the GBT decoder converts tar-
get ray queries to pixel colors by attending to the set-latent
representation (Fig. 2c). We now review the preliminary
concepts before describing our approach in detail.

3.1. Preliminaries

3.1.1 Ray representations

The fundamental unit of geometric information in our ap-
proach is a ray which is used to compute the geometric sim-
ilarity between two image regions. A naive choice for ray
representation is r = (o,d), where o ∈ R3 is the origin of
the ray, and d ∈ S2 is the normalized ray direction.

In contrast, we use the 4 DoF Plücker coordinates [10,
21], r = (d,m) ∈ R6, where m = o × d, that are invari-

ant to the choice of the origin along the ray. Intuitively, this
allows us to associate a single color (pixel RGB) to the en-
tire ray, agnostic to its origin. In practice, this simplification
mitigates overfitting to the camera origin during training.

3.1.2 Scene Representation Transformers

The overall framework of our approach is inspired by SRT
[20] that proposes a transformer encoder-decoder network
for novel view synthesis. Given a collection of posed im-
ages {(Ii,pi)}Vi=1 where I ∈ RH×W×3 pi ∈ R3×4, and a
query ray r, SRT computes the following:

{zp}V×Pp=1 = FE ◦ FC({Ii,pi}) (1)

C(r) = FD(r | {zp}) (2)

Here, the shared CNN backbone (FC) extracts P patch-
level features from each posed input image. These are ag-
gregated into a set of flat patch embeddings and fed as in-
put tokens to the transformer encoder (FE). The encoder
transforms input tokens into a set-latent scene representa-
tion {zp} via self-attention. To render a novel viewpoint,
the decoder FD queries for each ray r pertaining to the tar-
get pixels and yields an RGB color by attending to the scene
representation {zp}.

3.2. Geometry-biased Transformer (GBT) Layer

The core reasoning module in a transformer is a multi-
head attention layer that aggregates information from the
right context for each query. In our work, we propose to
extend this module by incorporating geometric reasoning.
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Figure 3. An illustration of attention within GBT layer. Given the query and key tokens q, kn, along with the associated rays rq , rkn ,
the attention within GBT incorporates two components: (i) a dot product similarity between features, and, (ii) the geometric distance bias
computed between the rays. Refer to Eq. 6 for the exact computation. Best viewed in color.

Base transformer layer. Given the query q, key {kn},
value {vn} tokens, a typical transformer layer computes:

q′ = T (q, {(kn,vn)}) (3)

which consists of a multi-head attention module, followed
by normalization and linear projection. During the context
aggregating step, each multi-head attention layer aggregates
token values based on query-key similarity weights:

wn = softmaxn

( Wqq ·Wkkn

η

)
(4)

Incorporating ray distance as geometric bias. In our
use case, each query and context token pertains to some
ray. For instance, all tokens passed to the encoder are patch
embeddings that have associated patch rays (Fig. 2b). Like-
wise, we query the decoder using target pixel rays (Fig. 2c).

In such a scenario, we propose to bias the transformer’s
attention by encouraging similarity between rays that are
closer to each other in 3D space. Specifically, the GBT layer
couples the query and key tokens with the associated rays
(q, rq), {(kn, rkn

)} and performs the token transformation:

q′ = GBT ((q, rq), {(kn, rkn
,vn)}) (5)

The attention layer is modified to account for the dis-
tance between rq = (dq,mq) and rkn

= (dkn
,mkn

):

wn = softmax
( Wqq ·Wkkn

η
− γ2 d(rq, rkn

)
)

(6)

where,

d(rq, rkn) =


|dq·mkn+dkn ·mq|
||dq×dkn ||2

, dq × dkn
6= 0

||dq×(mq−mkn/s)||
||dq||22

, dkn = sdq, s 6= 0

(7)

and γ is a learnable parameter controlling the relative im-
portance of geometric bias. This formulation explicitly ac-
counts for both appearance (feature similarity between q

and kn), and geometry (distance between rq and rkn
). This

attention mechanism is illustrated in Fig. 3. In practice, the
distance bias results in faster convergence to the right con-
text during training. While one can fix γ to some constant
hyperparameter, we found improved results by learning γ.

3.3. Learning Novel View Synthesis with GBTs

Given multiview images {Ii ∈ RH×W×3}Vi=1 with
paired camera poses {pi ∈ R3×4}Vi=1, we wish to render a
target viewpoint described by the camera pose pq ∈ R3×4.
Our network, as illustrated in Fig. 2, first processes the
posed multiview images using a CNN FC to extract patch-
level latent features. We then use GBT encoder FE to ex-
tract a scene encoding, and GBT decoder FD to yield pixel
colors given target ray queries.

a) Camera-fused patch embedding (FC). We process
each context image Ii through a ResNet18 backbone to
obtain patch-level image feature grid. Subsequently, each
patch feature is concatenated with the corresponding ray
embedding (Fig. 2a) as follows:

[fc]
k
i = W

(
[FC(Ii)]

k ⊕ h((dk
i ,m

k
i ))
)

(8)

where h(·) denotes harmonic embedding [13], (dk
i ,m

k
i )

denotes the Plücker coordinates for kth patch ray in the ith

input image, and ⊕ denotes concatenation. We define each
patch ray as the ray passing through the center of the recep-
tive field of the corresponding cell in the feature grid. The
concatenated features are projected using a linear layer W.

While SRT fuses input images with per-pixel rays before
the CNN, we fuse the CNN output feature grid with per-
patch rays (observe different inputs to FC in Eq. 1 and Eq.
8). This late fusion enables us to leverage transfer learning
using pretrained image backbones. Furthermore, since the
patch ray embeddings implicitly capture the positional in-
formation for each patch, we do not require 2D positional
encoding or camera ID embedding after the CNN (unlike
SRT), thus simplifying the architecture significantly.
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Table 1. Evaluation of novel view synthesis. Given V = 3 input views, we evaluate the reconstruction quality (PSNR ↑ and LPIPS ↓) of
each method on the CO3Dv2 [18] dataset. GBT denotes our proposed approach, and GBT-nb is an ablation. See Sec. 4.2.

10 training cat.
Apple Ball Bench Cake Donut Hydrant Plant Suitcase Teddybear Vase Mean

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

pixelNeRF [32] 20.87 0.29 20.17 0.30 18.69 0.34 19.20 0.34 20.79 0.29 20.43 0.26 20.68 0.30 22.19 0.32 19.80 0.34 20.82 0.28 20.37 0.31
NerFormer [18] 20.91 0.31 17.50 0.35 16.06 0.52 18.08 0.46 21.19 0.33 19.33 0.31 19.31 0.50 20.31 0.46 16.95 0.47 18.04 0.39 18.77 0.41
ViewFormer [11] 21.70 0.24 19.34 0.30 17.08 0.30 18.04 0.32 19.59 0.28 18.59 0.21 18.34 0.31 21.61 0.26 16.60 0.31 21.52 0.21 19.24 0.27

GBT-nb 22.83 0.28 20.59 0.32 19.22 0.34 20.56 0.34 21.87 0.31 21.32 0.24 21.52 0.30 23.30 0.29 19.82 0.34 22.65 0.27 21.37 0.30
GBT 25.08 0.23 22.96 0.26 19.93 0.31 21.51 0.30 23.05 0.27 22.76 0.22 21.88 0.27 24.15 0.27 20.89 0.30 23.36 0.25 22.56 0.27

Table 2. Evaluation of variable context views setting. We report
PSNR (↑) and LPIPS (↓) averaged over 10 categories for each V .

10 training cat. PSNR ↑ LPIPS ↓
V = 2 V = 3 V = 6 V = 2 V = 3 V = 6

pixelNeRF [32] 18.47 20.37 22.25 0.36 0.31 0.26
NerFormer [18] 17.88 18.77 20.01 0.43 0.41 0.38
ViewFormer [11] 18.62 19.24 20.12 0.28 0.27 0.26

GBT-nb 20.91 21.37 21.49 0.31 0.30 0.30
GBT 21.47 22.56 23.09 0.29 0.27 0.27

b) Geometry-biased scene encoding (FE). Given local
patch features, we employ GBT encoder layers to augment
them with the global scene context through self-attention.
Specifically, we compute fe = FE(fc, {(dk

i ,m
k
i )}) where

FE contains a stack of GBT encoder layers as depicted in
Fig. 2b. The query, key, and value tokens for the encoder
layers are derived from the patch features [fc]

k
i and their

corresponding patch rays (dk
i ,m

k
i ). For each transformer

encoder layer, we learn a separate γ parameter.
Finally, the encoder outputs a global scene encoding

{[fe]ki } that characterizes the appearance and the geome-
try of the object as observed from the multiple input views.
Note, this extension of the set-latent representation [20] in-
corporates both appearance and geometric priors.

c) Geometry-biased ray decoding (FD). To render a
novel viewpoint given camera pose pq , we construct an
H × W grid of query rays rq = (dq,mq), with one ray
per query pixel. We then employ a stack of GBT decoder
layers FD that decodes each query ray independently by ag-
gregating meaningful context via cross-attention (Fig. 2c).
Specifically, the query tokens for the multihead attention
pertain to the query ray embeddings h(rq), while the keys
and values comprise of the global scene encoding tokens
{[fe]ki } along with the patch rays. The transformed query
embeddings are processed by an MLP to predict the pixel
color. Similar to FE , we learn a separate parameter γ for
each GBT decoder layer in FD.

Architectural details. We use a ResNet18 (ImageNet ini-
tialized) up to the first 3 blocks as FC . The images are re-

Table 3. Evaluation of novel-view synthesis on unseen cate-
gories. Given V = 3 input views, we evaluate the reconstruction
quality (PSNR ↑ and LPIPS ↓) on unseen categories.

5 heldout cat.
Backpack Book Chair Mouse Remote Mean

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

pixelNeRF [32] 22.87 0.31 18.86 0.34 20.30 0.32 23.39 0.27 23.74 0.23 21.83 0.30
ViewFormer [11] 20.84 0.31 16.84 0.32 15.94 0.31 21.55 0.26 20.42 0.22 19.12 0.28

GBT-nb 23.55 0.33 19.38 0.35 20.50 0.32 23.72 0.27 24.00 0.22 22.23 0.30
GBT 24.08 0.30 20.36 0.32 21.46 0.28 24.91 0.23 24.63 0.21 23.09 0.27

sized toH×W = 256×256 and FC outputs a 16×16 fea-
ture grid. We use 8 GBT encoder layers and 4 GBT decoder
layers, wherein each transformer contains 12 heads for
multi-head attention with gelu activation. For the harmonic
embeddings h, we use 15 frequencies {2−6π, . . . , 28π}.
Since we do not have access to a consistent world coordi-
nate frame across scenes, we choose an arbitrary input view
as identity [20, 32]. All other cameras are represented rela-
tive to the identity view. See Appendix C for more details.

Training and Inference. During training, we encode
V = 3 posed input views and query the decoder for Q =
7168 randomly sampled rays for a given target pose pq . The
pixel color is supervised using an L2 reconstruction loss.
The model is trained with Adam optimizer with 10−5 learn-
ing rate until loss convergence. At inference, we encode the
context views once and decode a batch of H ×W rays for
each query view in a single forward pass. This results in a
fast rendering time. See Appendix D for more details.

4. Experiments
4.1. Setup and Training Data

Dataset. We experiment on the Common Objects in 3D
(CO3Dv2) dataset [18] that contains multi-view images
along with camera pose annotations. This is a challenging
dataset containing real-world object captures from 51 MS-
COCO categories. Following [18], we train our network on
10 categories (see Table 1). Further, we evaluate our method
on 5 additional heldout categories (see Table 3) to demon-
strate generalization to unseen categories (see Appendix D
for details on training and testing splits).
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Input pixelNeRF NerFormer ViewFormer GBT-nb GBT Ground Truth Input pixelNeRF NerFormer ViewFormer GBT-nb GBT Ground Truth

Figure 4. Qualitative results on heldout objects from training categories. For each object, we consider V = 3 input views and compare
the reconstruction quality of each method on 2 other query views. Best viewed in color.

Baselines. We benchmark GBT against three state-of-the-
art methods:

- pixelNeRF [32] which is a representative of projection-
guided methods for generalizable view synthesis. Similar to
our setting, we train a single category-agnostic pixelNeRF
model on 10 categories from the CO3Dv2 dataset.

- NerFormer [18] which uses attention-based mechanisms
to aggregate projected features along a query ray. We utilize
(category-specific) models provided by the authors. 1

- ViewFormer [11] which uses a two-stage ‘geometry-free’
architecture to first encode the input images into a compact
representation, and then uses a transformer model for view
synthesis. For evaluation, we use the co3d-10cat model pro-
vided by the authors.

Additionally, we compare against another variant of our
approach, where we replace the geometry-biased trans-
former layers with regular transformer layers (equivalently,
set γ = 0 during training and inference). We refer to this
as GBT-nb (no bias) in further discussion. GBT-nb is an
extension of SRT [20], where we use Plücker coordinates

1 While we evaluated per-category models, the NerFormer authors
conveyed this performance is similar to a cross-category model.

Table 4. Ablative analysis. We train a separate category-specific
model from scratch under each setting. The models are evaluated
on the held out objects under consistent settings.

Method
Hydrant Teddybear

PSNR (↑) LPIPS (↓) PSNR (↑) LPIPS (↓)

SRT* 19.63 0.23 19.48 0.32
GBT-nb 21.30 0.20 19.32 0.31
GBT-fb 23.93 0.17 20.99 0.28
GBT 24.22 0.17 21.45 0.26

representation of rays and perform a late camera-fusion in
the feature extractor.

Evaluation Metrics. To evaluate reconstruction quality,
we measure the peak signal-to-noise ratio (PSNR) and per-
ceptual similarity metric (LPIPS). For each category, we se-
lect 10 scenes from the dev set for evaluation. We randomly
sample V context views and 32 query views for each scene
and report the average metrics computed over these query
views. We set appropriate seeds such that the context and
query views are consistent across all methods.

6



Input Views Novel Views

Figure 5. Qualitative results on heldout categories. On each row
we visualize the rendered views obtained from GBT (right) given
V = 3 input views (left). Note that the model has never seen these
categories of objects during training.

4.2. Results

Novel view synthesis for unseen objects. Table 1 demon-
strates the efficacy of our method in synthesizing novel
views for previously unseen objects. GBT consistently out-
performs other methods in all categories in terms of PSNR.
With the exception of a few categories, we also achieve su-
perior LPIPS compared to other baselines.

For categories such as bench, hydrant, etc. we at-
tribute ViewFormer’s higher perceptual quality to their use
of a 2D-only prediction model, which comes at the cost
of multi-view consistent results. For instance, in Fig 4,
ViewFormer’s prediction for the donut is plausibly similar
to some donut, however, lacks consistency with the corre-
sponding ground truth query view. Also, in cases where
the query view is not visible in any of the input views (ball,
top-right), pixelNeRF and NerFormer - which rely solely on
projection-based features from input images - suffer from
poor results, while our method is capable of hallucinating
these unseen regions.

Table 2 analyses the performance of all methods with
variable number of context views. While GBT is only
trained with a fixed V = 3 input views, it is capable of
generalizing across different input view settings. We ob-
serve a higher performance gain under fewer context views
(2-3). However, as the number of input views increases,
pixelNeRF becomes more competitive.

Generalization to unseen categories. To investigate
whether our model learns generic 3D priors and can infer
global context from given multi-view images, we test its
ability to generalize to previously unseen categories. In Ta-
ble 3 we benchmark our method by evaluating over 5 held
out categories. We empirically find that GBT demonstrates
better generalizability compared to baselines, and also ob-
serve this in the qualitative predictions in Figure 5.

Figure 6. Effect of viewpoint distance in prediction accuracy.
Given 200 frames, we set the 50th, 100th, 150th frame as the in-
put views, and evaluate the performance of novel view synthesis
over all other views. While the prior methods show accurate re-
sults close to the input views, our approach (GBT) consistently
outperforms them in other views.

4.3. Analysis

Effect of Viewpoint Distance in Prediction Accuracy.
In Fig 6, we analyze view synthesis accuracy as a function
of distance from context views. In particular, we use 80
randomly sampled sequences from across categories with
200 frames each, and set the 50th, 100th, 150th views as
context, and evaluate the average novel view synthesis ac-
curacy across indices. We find that all approaches peak
around the observed frames, but our set-latent representa-
tion based methods (GBT, GBT-nb) perform significantly
better for query views dissimilar from the context views.
This corroborates our intuition that a global set-latent repre-
sentation is essential for reasoning in the sparse-view setup.

Ablative analysis. We investigate the importance of the
design choices made in GBT, by ablating individual com-
ponents and analysing performance. First, we analyze the
effect of learnable geometric bias by fixing γ = 1 (GBT-fb)
during the training process. Next, we remove the geomet-
ric bias component (GBT-nb); equivalently γ = 0. Finally,
we replace Plücker coordinates for ray representation with
r = (o,d). We term this trimmed version of GBT as SRT*
(variant of SRT with late camera fusion).

For each ablation (see Table 4), we train a category-
specific model from scratch and evaluate results on held-
out objects. From Table 4, we see that learnable γ yields
some benefit over fixed γ = 1. However, removing geome-
try altogether results in a considerable drop in performance.
Also, the choice of Plücker coordinates as ray representa-
tions improves the predictions in general.

Robustness to camera noise. As the use of the geometric
bias requires known camera calibration, we study the effect

7
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Figure 7. Effect of camera noise. Given the 3 input views with noisy camera poses (increasing left to right), we visualize the predictions
for a common query view across three methods (rows).
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Figure 8. Attention visualization. For the query pixel marked
in green, we visualize the attention over the input patches for the
1st and the 4th decoder layer. We compare the attention maps
of GBT-nb (top) and GBT (bottom), wherein GBT is observed to
yield sharper results. See Sec. 4.3.

Table 5. Evaluation of noisy cameras. All models are trained on
10 categories and evaluated on the Hydrant category.

σ = 0 σ = 0.02 σ = 0.05 σ = 0.1

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

pixelNeRF 20.43 0.26 20.06 0.26 19.20 0.27 18.09 0.29

GBT-nb 21.32 0.24 21.26 0.24 20.85 0.24 19.88 0.25

GBT 22.76 0.22 22.40 0.22 21.43 0.23 19.84 0.25

of noisy cameras on novel view synthesis. Following [12,
20], we synthetically perturb input camera poses to various
degrees and analyze the effect of noise during inference (for
models trained without any camera noise during training).

We report the results in Table 5, and see that performance
degrades across all methods with camera noise. Although
GBT-nb degrades more gracefully, the performance of GBT
is better until a large amount of noise is added (about 10cm
camera motion for a camera unit distance away from an ob-
ject, and 9 degree rotation). Fig. 7 demonstrates these ob-
servations visually.

Visualizing attention. In Fig 8 we visualize attention
heatmaps for a particular query ray highlighted in green. In
absence of geometric bias (GBT-nb), we observe a diffused
attention map over the relevant context, which yields blur-
rier results. On adding geometric bias (GBT), we observe
more concentrated attention toward the geometrically valid
regions, resulting in more accurate details.

5. Discussion
Our work introduced a simple but effective mechanism

for adding geometric inductive biases in set-latent repre-
sentation based networks. In particular, we demonstrated
that for the task of novel view synthesis given few input
views, this allows Transformer-based networks to better
leverage geometric associations while preserving their abil-
ity to reason about global structure. While our approach
led to substantial improvements over prior works, there are
several unaddressed challenges. First, unlike projection-
based methods, the set-latent representation methods (in-
cluding ours) struggle to predict precise details and it re-
mains on open question how one can augment such meth-
ods to overcome this. Moreover, the use of geometric infor-
mation in our approach presumes access to (approximate)
camera viewpoints for inference, and this may limit its ap-
plicability to in-the-wild settings. While our work focused
on the task of view synthesis, we believe that the geometry-
biasing mechanisms proposed would be relevant for other
tasks where a moving camera is observing a common scene
(e.g. video segmentation, detection).
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Appendix A. Additional Random Results

We provide additional results on randomly selected ob-
jects across each category, and, provide 360-degree render-
ing for each figure in the main text. See the project page for
video visualizations, and Sec. E for attention map visual-
izations on more examples across each category.

We observe that while ViewFormer produces plausible
images, these are not 3d consistent due to the stochastic na-
ture of the rendering pipeline. While pixelNeRF and Ner-
Former produce accurate results in the vicinity of the ob-
served context views, the results are inaccurate and implau-
sible under larger camera deviations. Our baseline, GBT-nb
produces consistent but blurry results. Finally, GBT im-
proves over GBT-nb by furnishing finer details while pre-
serving consistency across all viewpoints, although there is
clear room for improvement in the level of details modeled.

Appendix B. Classwise metrics for Table 2

In Table 2, we present averaged results for V = 2, 3, 6
over 10 categories. The per-category metrics are presented
in Table 6 (for V = 2) and Table 7 (for V = 6). Note, the
per-category results for V = 3 setting is presented in the
paper (in Table 1).

Appendix C. Architectural Details

We will make our implementation publicly available
for reproducibility. We also describe the implementation
details of GBT here. Overall, GBT consists of 3 com-
ponents - the CNN backbone FC , GBT Encoder FE and
the GBT Decoder FD. The input to the model is a set
of V posed images {(Ii,pi)}Vi=1, and H ×W ray queries
{rj}H×Wj=1 generated using the target camera pose pq . The
model outputs RGB colors for each query ray, which are
then reshaped to generate an image of size H ×W × 3.

We use PyTorch for model development. In the discus-
sion below, tensor shapes are annotated in monospace
font. We omit the batch dimension for simplicity. Across
all models, the image size used is H =W = 256.

C.1. GBT

a) Camera-fused patch embedding (FC). We use a
ResNet18 backbone (upto Res3 block) shared across input
images to extract patch level features. Concretely, given the
V input images {Ii}Vi=1 of shape (V, 3, 256, 256),
the CNN outputs a feature grid (V, 256, 16, 16).

Each of the 16× 16 cells in the feature grid corresponds
to a receptive field in the input image. We associate each re-
ceptive field with a ray that passes through its center (called
as ‘input patch ray’ in the paper). Each input patch ray is
represented in the Plücker coordinates (dk

i ,m
k
i ) ∈ R6 -

a tensor of shape (V, 16, 16, 6), where the notation

implies ith image’s kth patch. We extract harmonic em-
beddings [13] over the Plücker coordinates, h((dk

i ,m
k
i )),

using 15 frequencies f = −6, . . . 8. Specifically, we get
h(x) = [sin(2fπx), cos(2fπx)] for each coordinate. This
results in a 6∗2∗15 = 180-d feature representation, yielding
a ray embedding tensor of shape (V, 16, 16, 180).

The CNN features {[FC(Ii)]
k} and the ray embeddings

h((dk
i ,m

k
i )) are concatenated along the channel dimen-

sion {[FC(Ii)]
k ⊕ h((dk

i ,m
k
i ))} that results in a tensor of

shape (V, 16, 16, 436). Finally, these features are
projected to a 768 dimensional feature space using a linear
layer W (i.e. camera fusion). The output of the first stage
is therefore camera-fused patch level features [fc]

k
i repre-

sented by a tensor of shape (V, 16, 16, 768).

b) Geometry-biased scene encoding. We use GBT en-
coder to embed the global scene context into the patch fea-
tures. The GBT encoder consists of 8 geometry-biased
transformer encoder layers with GELU activation, 12 MHA
heads, and 768-d latent feature size. Each MHA module is
biased using ray distances as done in Eq. 6.

We construct the query, key and value tokens using flat-
tened patch embeddings. Each query and key token is asso-
ciated with the patch ray (Plücker coordinates). Therefore,
the input to the GBT encoder is patch-level feature tensor of
shape (V * 16 * 16, 768) along with the patch ray
tensor of shape (V * 16 * 16, 6). Note, the patch ray
tensor is the same across all 8 GBT encoder layers, while
the learnable weight γ is different for each layer.

The output of the GBT encoder module {[fe]ki } is a ten-
sor of shape (V * 16 * 16, 768) which is the set-
latent representation of the scene. Each output token [fe]

k
i

summarizes the appearance and the geometry of the scene
incorporating both local and global features. These output
tokens are used as the memory for the GBT decoder module
to decode ray queries as described below.

c) Geometry-biased ray decoding. To render an image,
we construct Q ray queries using the query camera pose pq

and use the GBT decoder to predict the RGB color for each
pixel. The GBT decoder contains a stack of 4 geometry-
biased transformer decoder layers, followed by a shallow
MLP. Similar to encoder, each decoder layer consists of 12
MHA heads biased with ray distances, 768-d latent dimen-
sions and GELU activation. The MLP consists of 2 ReLU
activated hidden layers (256-d, 64-d) and a sigmoid acti-
vated output (0-1 normalized RGB values).

The decoder’s query tokens consist of harmonic ray
embeddings h((dj ,mj)) and the Plücker coordinates
(dj ,mj) for each query ray. Similar to the encoder, we use
15 frequencies which results in a harmonic ray embedding
tensor of shape (Q, 180). These are projected to a 768-d
feature space (GBT decoder’s input dimension) via a linear
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Table 6. Evaluation of novel view synthesis. Given V = 2 input views, we evaluate the reconstruction quality (PSNR ↑ and LPIPS ↓) of
each method on the CO3Dv2 [18] dataset. GBT denotes our proposed approach, and GBT-nb is an ablation.

10 training cat.
Apple Ball Bench Cake Donut Hydrant Plant Suitcase Teddybear Vase Mean

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

pixelNeRF [32] 18.21 0.36 17.74 0.35 17.59 0.38 17.22 0.38 18.51 0.35 18.44 0.31 19.39 0.36 20.71 0.37 17.74 0.41 19.17 0.34 18.47 0.36
NerFormer [18] 20.11 0.34 16.63 0.37 15.09 0.55 17.23 0.48 20.07 0.36 18.11 0.35 18.37 0.53 19.69 0.46 15.73 0.51 17.79 0.39 17.88 0.43
ViewFormer [11] 20.53 0.25 18.35 0.31 16.58 0.3 17.66 0.33 18.88 0.29 17.93 0.22 18.04 0.31 21.11 0.26 15.87 0.32 21.23 0.21 18.62 0.28

GBT-nb 22.13 0.3 19.83 0.33 18.69 0.36 20.2 0.35 21.0 0.32 21.16 0.24 21.17 0.31 23.02 0.3 19.52 0.35 22.35 0.28 20.91 0.31
GBT 22.96 0.27 21.45 0.28 19.1 0.33 20.71 0.32 21.78 0.29 21.82 0.23 21.29 0.29 23.41 0.28 19.93 0.32 22.28 0.26 21.47 0.29

Table 7. Evaluation of novel view synthesis. Given V = 6 input views, we evaluate the reconstruction quality (PSNR ↑ and LPIPS ↓) of
each method on the CO3Dv2 [18] dataset. GBT denotes our proposed approach, and GBT-nb is an ablation.

10 training cat.
Apple Ball Bench Cake Donut Hydrant Plant Suitcase Teddybear Vase Mean

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

pixelNeRF [32] 23.07 0.24 22.26 0.25 19.94 0.29 21.18 0.28 23.02 0.24 22.62 0.21 21.86 0.26 23.78 0.27 21.35 0.29 23.38 0.22 22.25 0.26
NerFormer [18] 22.03 0.26 18.16 0.33 17.09 0.5 19.53 0.43 23.1 0.29 21.1 0.27 20.62 0.46 21.48 0.43 18.29 0.44 18.73 0.37 20.01 0.38
ViewFormer [11] 22.66 0.23 20.11 0.29 18.06 0.28 19.05 0.31 20.79 0.27 19.62 0.2 18.94 0.29 22.18 0.25 17.57 0.29 22.2 0.21 20.12 0.26

GBT-nb 22.53 0.28 20.59 0.32 19.5 0.34 20.77 0.34 22.15 0.3 21.24 0.23 21.83 0.3 23.43 0.29 19.85 0.34 23.0 0.26 21.49 0.30
GBT 25.5 0.23 23.35 0.26 20.64 0.3 22.34 0.3 23.55 0.27 23.18 0.21 22.46 0.27 24.65 0.26 21.22 0.3 24.06 0.25 23.10 0.26

layer. The keys and values tokens (i.e. memory) pertain to
the set-latent representation output by the GBT encoder, i.e.
a tensor of shape (V * 16 * 16, 768).

The GBT decoder outputs a tensor of shape (Q, 768)
that consists of decoded ray features for each target pixel.
Finally, the MLP predicts a tensor of shape (Q, 3) con-
taining the RGB colors for each queried pixel. During train-
ing, we compute L2 reconstruction loss on Q = 7168 pre-
dicted pixel colors, and at inference we predict the colors
for Q = 256 × 256 rays which is reshaped to yield the im-
age tensor of shape (3, 256, 256).

C.2. Ablations

We also propose 3 ablations of GBT in the paper:

GBT-fb (fixed bias). This variant employs a fixed γ = 1
weight in all the geometry-biased transformer layers as op-
posed to learning the weight γ. During training this model
requires lesser memory overhead since the gradients for γ
are no longer computed. At inference, the compute over-
head is similar to GBT.

GBT-nb (no bias). In this variant, we remove the
geometry-biased transformer layers in the encoder and de-
coder, and replace them with regular transformer layers (im-
plemented in PyTorch). During training and inference, this
model incurs lesser computational overhead than GBT since
the ray distances are no longer computed. However, this
comes at the cost of quality, which corroborates the need to
account for geometry during attention.

SRT*. This variant is closest to SRT, wherein we no
longer use geometric bias, nor Plücker ray representations.
Rays are represented using the origin o and direction d as
r = (o,d). While the compute overhead is similar to GBT-
nb, this model is the least performing among all the variants
which demonstrates the benefits of our design choices.

Appendix D. Experimental Details

D.1. Training & Inference

Training. We perform mixed-precision training with
2×NVIDIA A6000 (48GB) GPUs with a batch size of
B = 6 scenes. For each scene in a batch, we randomly
sample V = 3 input views and Q = 7168 rays from an
arbitrary query viewpoint. The predicted pixel RGB color
for each query ray is supervised using an L2 reconstruction
loss with respect to the ground truth pixel in the query view-
point. The training is performed till loss convergence which
is about 1.6Mil iterations for GBT and about 2Mil iterations
for GBT-nb trained on all 10 categories (about 9-10 days).

Inference. At inference we are provided with V posed in-
put images and a query camera pose pq . We generate a
batch ofH×W = 256×256 query rays that are decoded in
a single forward pass. The inference time for a single query
image with V = 3 input views for GBT is 0.09s (∼ 11 FPS),
and for GBT-nb is 0.025s (∼ 40 FPS). Compared to GBT,
the prior methods exhibit more runtime - pixelNeRF takes
7.3s (∼ 0.13 FPS), NerFormer takes 2.7s (∼ 0.37 FPS), and
ViewFormer takes 0.68s (∼ 1.5 FPS), using default param-
eters (1×A6000 GPU).
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D.2. Dataset Splits

We use the CO3Dv2 dataset [18] that contains multi-
view images along with camera pose annotations of 51
object categories. We select 10 categories to train our
models - [apple, ball, bench, cake, donut,
hydrant, plant, suitcase, teddybear,
vase]. Additionally, we choose 5 heldout categories -
[backpack, book, chair, mouse, remote],
which are used to evaluate the generalization of methods.
All images are cropped and resized to 256 × 256 (the
camera parameters are modified accordingly).

CO3Dv2 provides three dataset splits -
fewview train, fewview dev, and fewview test.
Since the fewview test ground-truth has been redacted
for online evaluation, we use fewview train for train-
ing and fewview dev for testing. We use all available
views in each scene in fewview train split for training.

For computing metrics on the fewview dev split, we
evaluate the models on 32 randomly selected views for the
first 10 scenes in each category. We set random seed such
that the input and query viewpoints are consistent across
all methods. For the viewpoint distance experiment in
Fig. 6, we evaluate the average PSNR over 80 sequences
across categories for each of 200 query views, with the
50th, 100th, 150th views being the input views.

Appendix E. Attention Visualization
We plot the attention maps for GBT and GBT-nb in Fig.

9-13. Overall, the incorporation of geometric bias results in
more concentrated attention towards the geometrically valid
regions. For instance, see the attention maps for GBT and
GBT-nb in the two hydrant examples in Fig. 9. We hypoth-
esize that concentrated attention toward the relevant context
improves the quality of the rendered images.
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Figure 9. Attention maps for held out objects in teddybear, vase and hydrant categories.

14



Figure 10. Attention maps for held out objects in apple, cake and backpack categories.
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Figure 11. Attention maps for held out objects in ball, bench and book categories.
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Figure 12. Attention maps for held out objects in donut, remote and suitcase categories.
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Figure 13. Attention maps for held out objects in chair, mouse and plant categories.

18


	1 . Introduction
	2 . Related Work
	3 . Approach
	3.1 . Preliminaries
	3.1.1 Ray representations
	3.1.2 Scene Representation Transformers

	3.2 . Geometry-biased Transformer (GBT) Layer
	3.3 . Learning Novel View Synthesis with GBTs

	4 . Experiments
	4.1 . Setup and Training Data
	4.2 . Results
	4.3 . Analysis

	5 . Discussion
	A . Additional Random Results
	B . Classwise metrics for Table 2
	C . Architectural Details
	C.1 . GBT
	C.2 . Ablations

	D . Experimental Details
	D.1 . Training & Inference
	D.2 . Dataset Splits

	E . Attention Visualization

