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Geometry-coupled reactive fluid transport at the fracture
scale: application to CO2 geologic storage

S . KIM 1 AND J. C. SANTAMARINA2

1Department of Civil and Environmental Engineering, Western New England University, Springfield, MA, USA;
2Division of Physical Science and Engineering, KAUST, Thuwal, Saudi Arabia

ABSTRACT

Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with

potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws

for dissolution reactions in calcite and anorthite are combined with the Navier-Stokes law and advection–diffusion

transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions,

species concentration, and fracture morphology. Results are summarized as a function of two dimensionless parame-

ters: the Damk€ohler number Da which is the ratio between advection and reaction times, and the transverse Peclet

number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along

the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is

low (low transverse Peclet number and Da > 10�1). At high flow velocities, diffusion fails to homogenize the con-

centration field across the fracture (high transverse Peclet number Pe > 10�1). When the reaction rate is low as in

anorthite reservoirs (Da < 10�1), reactant species are more readily transported toward the outlet. At a given Peclet

number, a lower Damk€ohler number causes the flow channel to experience a more uniform aperture enlargement

along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d > 30, the system

response resembles the solution for 1D reactive fluid transport. A decreased length-to-aperture ratio slows the diffu-

sive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into

consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.
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INTRODUCTION

Carbon dioxide (CO2) injection into geological forma-

tions, either for enhanced oil recovery or for CO2 geologi-

cal storage, triggers a complex cascade of interconnected

events that may include CO2 advection (Saripalli &

McGrail 2002; Nordbotten et al. 2005; Ennis-King &

Paterson 2007), buoyancy (Bachu & Adams 2003; Bielin-

ski et al. 2008; Okwen et al. 2010), convection of CO2-

dissolved water (Weir et al. 1996; Riaz et al. 2006; Has-

sanzadeh et al. 2007; Kneafsey & Pruess 2010), mutual

diffusion and dissolution between CO2 and the water

phase and salt precipitation (Gaus et al. 2005; Berne et al.

2010; Espinoza & Santamarina 2010; Li et al. 2011), vis-

cous fingering of CO2 (Homsy 1987; Fenghour et al.

1998; Cinar et al. 2009), and capillary trapping of the

CO2 phase by the water-saturated porous formation

(Juanes et al. 2006; Kopp et al. 2009; Saadatpoor et al.

2009; Kim 2012). Furthermore, water acidification follows

CO2 dissolution and triggers reactions with minerals in the

formation as well as with the cement around wells (Li

et al. 2008; Solomon et al. 2008; Szymczak & Ladd

2009; Espinoza et al. 2011).

Reactive fluid transport generates positive feedbacks

through hydro-chemo-mechanical couplings that may lead

to emergent phenomena such as the formation of dissolu-

tion wormholes (Golfier et al. 2002; Berrezueta et al.

2013; Elkhoury et al. 2013; Hao et al. 2013; Mangane

et al. 2013) and shear fractures in compression (Shin et al.

2008; Shin & Santamarina 2009). The mineral dissolution

rate is scale dependent, and pseudo-kinetic issues must be

considered when upscaling geochemical equilibrium
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(Binning & Celia 2008; Li et al. 2008). Studies of reactive

fluid transport in the context of CO2 injection have

addressed the geological formation (Flukiger & Bernard

2009; Molins et al. 2012; Hao et al. 2013; Ovaysi & Piri

2013, 2014; Steefel et al. 2013), consequences on well-

bores (Raoof et al. 2012; Brunet et al. 2013; Cao et al.

2013; Patel et al. 2014), and changes in fracture properties

and injectivity (Wang & Gu 2011; Jafari Behbahani et al.

2012; Smith et al. 2012; Deng et al. 2013).

This study develops a geometry-coupled numerical

model to study reactive fluid transport at the fracture

scale, including the ensuing interactions between reactions,

transport, and pore enlargement. Note that previous

coupled models have explored hydro-chemical conditions

but have not captured geometric changes, e.g. Li et al.

(2008) and Binning & Celia (2008); pore enlargement is

a precursor for fully coupled hydro-chemo-mechanical

coupling. In particular, we implement all reactions needed

to analyze CO2-rich water transport under conditions that

would develop in the context of CO2 geologic storage

and enhanced oil recovery in fractured media. The goal is

to advance our understanding of the flow of CO2-dis-

solved water at the fracture scale as water rich in total car-

bonic acid H2CO3* and hydrogen ions H+ traverses the

fracture. We summarize transport patterns in terms of key

dimensionless numbers to facilitate the analyses of fracture

networks subjected to reactive fluid transport and ensuing

pore enlargements. Kinetic rates are analyzed first followed

by a 2D numerical simulation study of CO2-dissolved

water injection.

KINETIC RATES

CO2 dissolution in water

Injected carbon dioxide CO2 dissolves in the formation

water or brine to sequentially form aqueous carbon dioxide

CO2(aq) and carbonic acid H2CO3, which eventually dissoci-

ates into bicarbonate ions HCO�3 and hydrogen ions H+

(see details in the Appendix A). Assuming that the reaction

rate is linearly proportional to the concentration of reactants

(Eqs A.1 to A.3 in Appendix A), the following kinetic laws

are obtained:

d[CO2ðgÞ�
dt

¼ �kg½CO2ðgÞ� þ kaq½CO2ðaqÞ� ð1Þ

d[CO2ðaqÞ�
dt

¼ kg½CO2ðgÞ� � kaq½CO2ðaqÞ�

� kCO2
½CO2ðaqÞ� þ kH2CO3

½H2CO3�
ð2Þ

d[H2CO3�
dt

¼ kCO2
½CO2ðaqÞ� � kH2CO3

½H2CO3�

� k12½H2CO3� þ k21½HCO�3 �½Hþ�
ð3Þ

d[Hþ�
dt

¼ d[HCO�3 �
dt

¼ k12½H2CO3� � k21½HCO�3 �½Hþ�

ð4Þ

where square brackets around species indicate species con-

centrations. Rate constants ki in Eqs 1–4 are summarized

in Table 1.

We can numerically examine the evolution of species

concentrations with these kinetic rate laws. For instance,

the solution of differential Eqs 1–4 (using fourth-order

Runge–Kutta method) shows that the concentration of

hydrogen ions in water [H+] converges to 10�3.28 mol l�1

and the acidity level drops to pH � 3.28 at steady state

(under a partial pressure of PCO2 = 10 MPa and tempera-

ture T = 40°C).

Mineral dissolutions

Geological formations typically considered for CO2 storage

are sandstones and carbonates (Bachu et al. 1994). Then,

we analyze two representative minerals: calcite CaCO3 (fast

dissolution) and anorthite CaAl2Si2O8 (slow dissolution).

Dissolution rates in the presence of CO2-dissolved water

are analyzed next.

Calcite Dissolution

Three concurrent chemical reactions take place when

calcite is in contact with CO2-acidified water, each with its

own rate constant ki and equilibrium constant Keq

(Plummer et al. 1978):

CaCO3ðsÞ þHþ!k1 Ca2þ þHCO�3 ; logKeq ¼ 1:85 ð5Þ

CaCO3ðsÞþCO2ðaqÞþH2O!
k2
Ca2þþ2HCO�3 ;

logKeq¼�4:50
ð6Þ

CaCO3ðsÞ!
k3
Ca2þþCO2�

3 ; logKeq ¼�8:48 ð7Þ

The first reaction consumes one mole of H+ and pro-

duces one mole of Ca2+ and one mole of HCO�3 (Eq. 5).

The second reaction consumes one mole of CO2(aq) in

exchange for one mole of Ca2+ and two moles of HCO�3
(Eq. 6). The last reaction (Eq. 7) has much smaller rate

and equilibrium constants, and it is ignored in the numeri-

cal simulation (note: Rate constants are listed in Table 1).

The overall dissolution rate Rd is estimated as follows

(transition state theory—Lasaga 1984; Li et al. 2008):

Rd ¼ k1½Hþ� þ k2½CO2ðaqÞ�
� �

1� X

Ktot

� �

;

whereX ¼ ½Ca
2þ�2½HCO�3 �

3

½Hþ�½CO2ðaqÞ�

ð8Þ

Note that Ω at equilibrium is equal to the overall equilib-

rium constant; log Ktot = 1.85–4.50 = �2.65 (refer to

Eqs 5 and 6; Table 1).

© 2015 John Wiley & Sons Ltd, Geofluids, 16, 329–341
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Anorthite Dissolution

We adopt the model by Li et al. (2006) to represent the

dissolution of anorthite. The reaction consumes eight

moles of H+ to produce one mole of Ca2+, two moles of

Al3+, and two moles of H4SiO4:

CaAl2Si2O8ðsÞþ8Hþ!
kH

Ca2þ þ 2Al3þ þ 2H4SiO4 ð9Þ

Again, the overall dissolution rate is described as a func-

tion of rate constants, concentrations of reactant species,

and saturation:

Rd ¼ kH½Hþ�1:5 þ kH2OþkOH½OH��0:33
� �

1� X

Ktot

� �

;

whereX ¼ ½Ca
2þ�½Al3þ�2½H4SiO4�2

½Hþ�8
ð10Þ

Rate constants and equilibrium constant are compiled in

Table 1. We disregard the term kOH[OH�]0.33 during the

numerical simulation because both the rate constant and

the concentration of hydroxide [OH�] are negligible.

Figure 1 compares the overall ‘local’ mineral dissolution

rate Rd for a fixed concentration of the total carbonic acid

H2CO3* at [H2CO3*] = 1 mol l�1. Results show that the

concentration of hydrogen ions [H+] controls the reaction

rate of calcite when pH≤~4 (thereafter, the high concentra-

tion of total carbonic acid [H2CO3*] takes control), and

the reaction rate of anorthite when pH≤~6. The reaction

rate of calcite is several orders of magnitude higher than

that of anorthite when 2 < pH < 7 (Fig. 1).

NUMERICAL SIMULATION OF REACTIVE
FLUID FLOW

The coupling between hydro-chemical phenomena during

the transport of reactive CO2-acidified water through a

pore or fracture in a mineral system is investigated next.

We start by identifying the governing dimensionless ratios.

Table 1 Parameters used in simulations.

CO2 kinetic

kg 5 9 10�3 sec�1 (1) Rate constant of CO2(g) ? CO2(aq)

kaq kg / KH
(1) Rate constant of CO2(g)  CO2(aq)

kCO2
0.135 sec�1 (2) Rate constant of CO2(aq) ? H2CO3

kH2CO3 72.982 sec�1 (2) Rate constant of CO2(aq)  H2CO3

k12 107 sec�1 (3) Rate constant of H2CO3 ? H+
+ HCO�3

k21 4.1 9 1010 sec�1 (3) Rate constant of H2CO3  H+
+ HCO�3

KH 10�1.64 (2) Henry’s constant at 40°C

Calcite fracture plane Anorthite fracture plane

[H+]inlet 10�6–10�3 mol l�1 [H+]inlet 10�6–10�3 mol L�1

[H2CO3*]inlet 10�3–1 mol l�1 [H2CO3*]inlet 10�3–1 mol l�1

[Ca2+]inlet 1.36 9 10�3 mol l�1 (4) [HCO�3 ]inlet 6.68 9 10�4 mol l�1 (4)

[HCO�3 ]inlet 6.68 9 10�4 mol l�1 (4) [OH�]inlet 1.50 9 10�11 mol l�1 (4)

[OH�]inlet 1.50 9 10�11 mol l�1 (4) [Ca2+]inlet 2.11 9 10�4 mol l�1 (4)

[Cl�]inlet 2.72 9 10�3 mol l�1 (4) [Al3+]inlet 3.51 9 10�8 mol l�1 (4)

[H4SiO4]inlet 9.67 9 10�13 mol l�1 (4)

[Cl�]inlet 4.22 9 10�4 mol l�1 (4)

[H+]initial 1.0 9 10�8 mol l�1 (5) [H+]initial 1.0 9 10�8 mol l�1 (6)

[H2CO3*]initial 1.0 9 10�5 mol l�1 (5) [H2CO3*]initial 1.0 9 10�5 mol l�1 (6)

[Ca2+]initial 1.59 9 10�3 mol l�1 (5) [HCO�3 ]initial 4.47 9 10�4 mol l�1 (6)

[HCO�3 ]initial 4.47 9 10�4 mol l�1 (5) [OH�]initial 1.0 9 10�6 mol l�1 (6)

[OH�]initial 1.0 9 10�6 mol l�1 (5) [Ca2+]initial 4.35 9 10�4 mol l�1 (6)

[Cl�]initial 2.72 9 10�3 mol l�1 (5) [Al3+]initial 3.51 9 10�8 mol l�1 (6)

[H4SiO4]initial 9.67 9 10�13 mol l�1 (6)

[Cl�]initial 4.22 9 10�4 mol l�1 (6)

k1 0.745 mol m�2 sec�1 (7) kH 3.4 9 10�4 mol m�2 sec�1 (8)

k2 8.6 9 10�4 mol m�2 sec�1 (7) kH2O 1.8 9 10�12 mol m�2 sec�1 (8)

Ktot 10�2.65 (7) Ktot 1021.7 (8)

v0 10�3–1 cm sec�1 Inlet velocity

g 10�3 Pa�s Viscosity of fluid

qf 1100 kg m�3 Density of fluid

Ss 0.06 m2 g�1 (9) Specific surface of calcite and anorthite

Mm 100 g mol�1 Molar mass of calcite

277 g mol�1 Molar mass of anorthite

Vm 3.7 9 10�5 m3 mol�1 Molar volume of calcite

10.1 9 10�5 m3 mol�1 Molar volume of anorthite

D 2.0 9 10�9 m2 sec�1 Average diffusion coefficient for all species

Rate constants are computed for temperature T = 40°C. References are from: (1) Sposito (1994), (2) Stumm et al. (1996), (3) Zhang (2008); species concentra-

tions are examples computed for (4) pH = 3.18, (5) pH = 8 and Ktot = 10�2.65, (6) pH = 8 and Ktot = 1021.7; (7) Renard et al. (2005); Wigand et al. (2008);

Algive et al. (2009), (8) Li et al. (2006), (9) Gaus et al. (2005).

© 2015 John Wiley & Sons Ltd, Geofluids, 16, 329–341
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Dimensionless ratios

Consider a reactive fluid advecting with velocity v

[m sec�1] through a rock fracture driven by a pressure dif-

ference between inlet and outlet boundaries at a distance l

[m] from each other. Reactant species are transported

toward the mineral surface by molecular diffusion so that

the fracture aperture d [m] and the diffusion coefficient D

[m2 sec�1] determine the characteristic time for transverse

diffusion. Mineral dissolution at the fracture surface pro-

duces species that are carried away by both advection

(downstream) and diffusion (in all directions).

Three dimensionless ratios capture the interplay between

governing processes. The Damk€ohler number Da is the

ratio between the advection time and the chemical reaction

time (Fredd & Fogler 1998).

Da ¼ tadvection
treaction

¼ jl

v
ð11Þ

where the kinetic rate j [1/sec] = kr�Ss�Mm is a function

of the rate constant for mineral dissolution kr
[mol m�2 sec�1], the mineral specific surface Ss [m

2 g�1],

and the mineral molar mass Mm [g mol�1]. The Peclet

number compares the time for either transverse Pe┴ or

longitudinal Pe==diffusion to the time for longitudinal

advection (Golfier et al. 2002):

Pe? ¼ t?diffusion
tadvection

¼ d2v

4lD
and Pe== ¼ t

==
diffusion

tadvection
¼ lv

D
ð12Þ

Simulation method—environment

Consider the plane across a rock fracture with length l

much longer than the aperture d, that is, l ≫ d, sub-

jected to reactive fluid transport by the forced advection

of CO2-acidified water. The problem is simulated using

the moving mesh function in COMSOL to reproduce the

fracture enlargement due to chemical reaction (COMSOL

2008). Figure 2 summarizes the simulation scheme. Flow

satisfies the Navier-Stokes law (Equation A in Fig. 2);

species experience both advective and diffusive transport

(Equation B in Fig. 2). Mineral dissolution occurs at the

interface between the fluid and the fracture walls with

dissolution rate Rd as predicted by Eq. 8 (calcite) or

Eq. 10 (anorthite). In the fracture, species undergo

homogeneous reactions as predicted by Eqs 1–4. The

moving mesh function adjusts the mesh outward accord-

ing to the volume of dissolved mineral Rd�(υs υ�1)�Vm

[m sec�1], where (υs υ
�1) denotes the stoichiometric ratio

of dissolved mineral to reactant species and Vm

[m3 mol�1] is the molar volume of the mineral (Equation

C in Fig. 2).

Equations A, B, and C in Fig. 2 are fully coupled within

the finite-element formation (linear system solver: Direct

(PARDISO)—COMSOL 2008). The model consists of

1,608 triangular elements with maximum resolution

around the inlet. A constant fluid injection velocity v0 is

imposed at the inlet of the fracture plane (Fig. 2). Note

that Reynolds number Re = qv0l/g needs to be checked

to ensure that laminar flow conditions apply (values remain

within 10�2 ≤ Re ≤ 101 in this study). The nonpervious

rock blocks that define the fracture are fixed in the far

field, that is, zero-strain boundaries, and the fracture planes

move out in accordance with mineral dissolution. Species

concentrations at the inlet remain constant and correspond

to CO2 and H2O in thermodynamic equilibrium. The

initial concentration of all species in the fracture plane cor-

responds to the system in thermodynamic equilibrium and

satisfies electro-neutrality at pH = 8. Numerical computa-

tions continue until the total simulation time equals 10

—16
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Fig. 1. Reaction rate log(kd/[mol m�2 sec�1])

for the dissolution of calcite CaCO3 and

anorthite CaAl2Si2O8 at a temperature

T = 40°C and for a fixed concentration of

total dissolved carbon dioxide [H2CO3*]

= 1 mol l�1. For comparison, the reaction

rate is also plotted for kaolinite

Al2Si2O5(OH)4 as a representative clay

mineral of low reactivity; in this case,

kd = kH[H
+]0.4 + kOH[OH�]0.3, where kH =

2.79 9 10�11 mol m�2 sec�1 and kOH = 3.51

9 10�16 mol m�2 sec�1 at T = 40°C (Li et al.

2006).
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times the advection time 10�l/v0 and involve more than

1000 time steps. All parameters used for numerical simula-

tions are summarized in Table 1.

Validation

There is no analytical solution for reactive fluid transport

in a two-dimensional pore. Instead, we compare the analyt-

ical solution for one-dimensional geometry with 1D

numerical results obtained using the formulation described

above. The governing equation for the one-dimensional

transport of a reactive fluid is:

@c

@t
¼ D

@2c

@x2
� v

@c

@x
� jc ð13Þ

For a single reactant species at an initial concentration c

(x,0) = 0 for x > 0 and boundary conditions c(0,t) = c0
and c(∞,t) = 0 for t ≥ 0, the solution for the variation of

the species concentration in space and time is (Boudreau

1997) as follows:

c

c0
¼ 1

2
expðn2Þ exp �n1ð Þerfc 2n1 � s

2
ffiffiffi

s
p

� �	

þ expðn1Þerfc
2n1 þ s

2
ffiffiffi

s
p

� �

�

where b2 ¼ v2

4D2
þ j

D

� �

; n1 ¼ bx; n2 ¼
vx

2D
;

s ¼ ðv
2 þ 4jDÞt

D

ð14Þ

Figure 3 shows that the 1D numerically computed con-

centrations are in agreement with the analytical results with

minor derivations near the outlet. Two outlet boundary

conditions are simulated to compare the finite-length

numerical system with the infinite-length analytical solu-

tion: (i) free flux and (ii) fixed outlet concentration c(l,

t) = 0. Numerical results bound the theoretical solution

Inlet, v0 [cm s—1]

Fixed

concentration:

[H+], [H2CO3*], etc

Diffusion

advection

Mineral surface (CaCO3 or CaAl2Si2O8)

Mineral surface (CaCO3 or CaAl2Si2O8)

Initial concentration (H+, H2CO3*, Ca
2+, HCO3

—, OH—, Cl—, etc)

Products

reactants

Length = l

Aperture= d

(A) Momentum transport (Navier-Stokes):

~~~~~~
~

))(( FvvIpvv
t

v T +⎥⎦
⎤

⎢⎣
⎡ ∇+∇+−⋅∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂ ηρρ 02

~

=∇−∇⋅+
∂
∂

ii
i cDcv
t

c

(B) Mass transport (local advection-diffusion):

(C) Chemical reaction at mineral surface:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ω
−⋅==⋅⎟

⎠
⎞

⎜
⎝
⎛ −∇ ∑

tot

idii
K

ikRncvcD 1][
~~

λ

d
s

m RV
t

d

υ
υ

=
∂
∂

Mass consumption of mineral:

Movement of mesh:

Fig. 2. Numerical simulation scheme and governing equations for reactive fluid flow through a rock pore/fracture. Physics models used in COMSOL: (A)

incompressible Navier-Stokes (g: dynamic viscosity of fluid, q: density of fluid, ~v: velocity field, p: pressure, ~F: volume force field such as gravity; gravity is

disregarded in the simulation), (B) advection and diffusion (ci: concentration of species i, D: coefficient of molecular diffusion), and (C) moving mesh (Rd:

overall dissolution rate of mineral at the wall, ki: reaction rate of reactant species i, [i]: concentration of reactant species i, Ω: ionic concentration product, Ktot:

equilibrium constant, d: fracture aperture, Vm: mineral molar volume, υs / υ: stoichiometric ratio between reactant species and dissolved mineral).
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(Fig. 3B). Electro-neutrality is maintained during the

numerical simulation.

RESULTS AND DISCUSSION

Numerical simulation results for the 2D fracture case rele-

vant to CO2 geological storage are presented herein in

terms of species concentrations in space and time, the

enlargement of the rock fracture, and the morphing of the

fracture geometry. Results are obtained for different regimes

represented by dimensionless numbers Da and Pe┴.

Species concentration

For both mineralogies, a higher advection velocity (lower

Da) yields higher concentrations of residual reactant spe-

cies at the outlet due to the lower residence time. Thus,

inlet species concentrations will influence deeper into the

reservoir in anorthite. In particular:

(1) High Da (> 10�1) and Low Pe┴—Calcite. Mineral dis-

solution couples with advection and diffusion to gener-

ate a concentration gradient across and along the

pore/fracture aperture (for comparison, see Li et al.

2006). Figure 4 shows a snapshot of instantaneous

concentrations for all relevant species along a fracture

in calcite. Slow transverse diffusion and homogeniza-

tion across the aperture develops at low advection

velocity (low Pe┴) and leads to the large consumption

of reactant species near the inlet (Fig. 4A). Clearly, H+

is readily consumed, the system reaches chemical equi-

librium, and H2CO3* passes through the rest of the

fracture plane unconsumed in this calcite-dominant

environment. The residual H2CO3* at the outlet may

react with other minerals and induce additional mineral

dissolution in successive flow channels.

(2) High Da (> 10�1) and high Pe┴—Calcite. When the

advection velocity is high, diffusion fails to homoge-

nize the concentration field across the fracture (high
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Pe┴), and mineral dissolution is more uniform along

the fracture length (Fig. 4B).

(3) Low Da (< 10�1)—Anorthite. The longitudinal drop in

reactant species is much lower in the less reactive

anorthite for the same advection regimes (Fig. 5). The

low reaction rate of H+ with anorthite allows more

than two-thirds of H+ to reach the outlet unconsumed.

The fluid acidity evolves as the numerical simulation

proceeds. During the early stages of acidified fluid flow

along the rock fracture, the pH drops near the inlet

and remains at the initial pH~8 toward the outlet. The

entire pore space acidifies and the area near the outlet

converges to an asymptotic value pH~5 as advection

continues and the system becomes saturated in terms

of mineral dissolution (Fig. 6).

Variations in reactant species concentrations along the

fracture length are plotted in Fig. 7A at different normal-

ized times t/(l/v0). The evolution of unconsumed reac-

tants at the outlet is specifically explored in Fig. 7B for

different Pe┴ values. Results show the evolution toward

‘steady-state’ reactive fluid flow.

Enlargement

The rock fracture aperture increases as the reactive fluid

passes through the fracture plane (Figs 4 and 5). The

effect of advective velocity and reactivity is explored in

Figs 8 and 9. Results show that pore enlargement

decreases along the flow path as reactants become con-

sumed (primarily next to the fluid–rock interface) and
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aqueous species concentration approaches equilibrium. In

all the cases, the normalized enlargement Dd/d in anorthite

is three orders of magnitude smaller than that of calcite at

comparable times and flow regimes (Fig. 8—note: Steady-

state conditions were reached with less than 2 pore vol-

umes of flow through in all these cases).

Figure 9 compiles the observed evolving morphology in

terms of dimensionless numbers, Da and Pe┴. At a given

Pe┴, a lower Da causes the flow channel to experience a

more uniform enlargement of the aperture along the

fracture.

Time to reach quasi-steady-state condition

The time to reach quasi-steady-state concentration at the

outlet tqc is determined when species concentrations at the

outlet c reach 95% of the equilibrium values c∞ at t = ∞

(refer to Fig. 7B). Figure 10A,B indicates that the time to

reach quasi-steady state tqc for a fracture l/d = 10 is related

to the advection time l/v0 through Da and Pe┴ numbers.

The dimensionless time t/(l/vo) equals the number of pore

volumes that have traversed the fracture. At Pe � 1, homog-

enization is diffusion-controlled and can be reached without
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flow, hence t/(l/vo)?0. Near Pe � 1 (depends on Da),

counter-flow diffusion delays the time to reach quasi-steady

state, and the largest number of pore volumes is required to

steady state: t/(l/vo) approaches � 2 (Fig. 10A,B). Finally,

mineral dissolution and channel enlargement combine to

extend the time to quasi-steady-state conditions beyond the

advection time when Pe ≫ 1, and the number of pore

volumes required exceeds t/(l/vo) = 1.

Initial fracture slenderness

Finally, let us examine the effect of fracture slenderness by

varying the length-to-aperture ratio l/d; we keep Da

constant by changing the initial aperture d. When the ratio

l/d is large l/d ≥ 30, transverse diffusive transport homog-

enizes species concentrations across the fracture, and

centerline concentrations resemble the one-dimensional

theoretical solution for the same advection velocity

(Fig. 11). For the same length l, a wider aperture d slows

the transverse diffusive transport of reactant species to the

mineral surface (tdiff � d2/D), and higher reactant concen-

trations remain along the centerline (Fig. 11). Therefore,

scaling must take into consideration both the fracture

length and its slenderness (see also Li et al. 2008).

Let us examine a fracture network subjected to reactive

fluid transport. If the length-to-aperture ratio of single

fractures is large (i.e. l/d ≥ 30), species concentration

resembles a 1D problem in each fracture. Then, if Pe ≫ 1

and Da � 1, fracture morphology evolves uniformly

within each fracture (Fig. 9) and can be modeled with a

uniform aperture evolution during reactive transport. Sin-

gle fracture morphology would evolve with a pyramidal

shape outside these conditions. In all the cases, steady-state

conditions are reached with <2 pore volumes of flow
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through each fracture when constant inlet chemistry is

involved; clearly, this is not the case in a fracture network.

The situation is aggravated when highly reactive minerals

are involved, such as in calcite as compared to anorthite, as

much larger fracture enlargements will develop, other

conditions being the same. In summary, fracture network

analyses must consider both the length and slenderness

of fractures, in addition to flow conditions captured in Pe

and Da.

CONCLUSIONS

Reactive fluid transport through a rock fracture was simu-

lated taking into consideration kinetic rate laws relevant to

CO2 injection for geological storage and enhanced oil

recovery in calcite and anorthite, which affect both

reservoirs and wells. The geometry-coupled numerical sim-

ulation combines laminar flow, advective and diffusive mass

transport of species, mineral dissolution, and pore enlarge-

ment. Salient results follow.

Reactive fluid transport in a rock pore or fracture can be

described in terms of two dimensionless parameters

Damk€ohler Da and Peclet Pe numbers to take into consid-

eration reactivity, advection, and diffusion.

In highly reactive low-advection conditions (Da > 10�1

and low Pe┴—e.g. low advection velocity in calcite),

hydrogen ions H+ are readily consumed near the inlet, the

fluid becomes saturated with reaction products, and

H2CO3* traverses the rest of the fracture length uncon-

sumed. When the advection velocity increases and

Pe┴ > 10�1, diffusion fails to homogenize the concentra-

tion field across the fracture, and mineral dissolution takes

place more uniformly along the fracture length.

In low reactivity cases (Da < 10�1—anorthite), H+ is

further transported along the fracture. Low reactivity and

Da values lead to a more uniform aperture enlargement

along the length of the fracture at a given Pe┴. Therefore,

the evolving morphology of the fracture depends on Da

and Pe┴.

In general, mineral dissolution couples with pore

enlargement to extend the time to reach quasi-steady state.

In all the cases tested in this study, steady-state conditions

for a single fracture subjected to constant inlet conditions

are reached with <2 pore volumes of flow through.

Reactive fluid transport along a fracture resembles the

1D problem when the length-to-aperture ratio is large, say

l/d ≥ 30. For a given length l, an increased fracture aper-

ture d slows the diffusive transport of reactant species to

the mineral fracture surface, and higher reactant concentra-

tions remain along the centerline. Therefore, fracture

network analyses must take into consideration both the

length and slenderness of individual fractures in addition

to flow conditions captured in Pe and Da.

The numerical approach developed in this study can be

extended to 3D fracture networks. Then, this mass-con-

serving model can be coupled with mechanical equilibrium

and deformation compatibility to explore the response of

fractured rock in the subsurface.
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APPENDIX A

KINETICS—CO2 DISSOLUTION IN WATER

Injected carbon dioxide CO2 dissolves in the formation

water or brine to sequentially form aqueous carbon dioxide

CO2(aq) and carbonic acid H2CO3, which consequently

dissociates into bicarbonate ions HCO�3 and hydrogen ions

H+ (Stumm et al. 1996; IPCC 2005):

CO2ðgÞ$
kg

kaq
CO2ðaqÞ KH ¼

kg

kaq
ðA:1Þ

CO2ðaqÞ þH2O $
kCO2

kH2CO3

H2CO3 K ¼ kH2CO3

kCO2

ðA:2Þ

H2CO3 $k12ðvery fastÞ

k21
HCO�3 þHþ KH2CO3

¼ k12

k21
ðA:3Þ

The equilibrium constant K [�] for each chemical reac-

tion defines the ratio of produced to reactant species con-

centrations at equilibrium and can be expressed as a ratio

of forward to backward kinetic rates. All rate constants esti-

mated at T~40°C are summarized in Table 1; details fol-

low.

Equation A.1. The rate constant for the dissolution of

gaseous carbon dioxide is kg�5�10�3 sec�1 at T~25°C

(Sposito 1994). The rate constant for the reversed direc-

tion can be obtained from kaq = kg/KH, where KH is

Henry’s constant.

Equation A.2. The reaction rate constant for hydration

is kCO2 � 0.04 sec�1 at 25°C with activation energy

Ea = 15 kcal mol�1 and for dehydration is

kH2CO3
� 20 sec�1 at 25°C with Ea = 16 kcal mol�1

(Stumm et al. 1996). The rate constant at a given temper-

ature can be computed using Arrhenius law:

kðT Þ ¼ k25 exp �
Ea

R

1

T
� 1

298:15

� �	 


ðA:4Þ

where k25 is the rate constant at T = 25°C(= 298.15 K)

and R is the gas constant. Rate constants kCO2 and kH2CO3

are also used to calculate the equilibrium constant K in

Eq. A.2.

Equation A.3. Carbonic acid dissociation is very fast

compared to reactions in Eqs A.1 and A.2; we selected

k12 � 107 sec�1 at T~40°C (Zhang 2008). The rate con-

stant for the reversed reaction is obtained from k21 =

k12/kH2CO3
, where the equilibrium constant KkH2CO3

is

computed from K (Stumm et al. 1996):

KH2CO3
¼ K1ð1þK Þ ðA:5Þ

where K1 denotes the first acidity constant for the reaction

in which H2CO3* dissociates to bicarbonate and hydrogen

ions (the asterisk denotes the combination of both aqueous

carbon dioxide and carbonic acid). The value of the acidity

constant is K1 � 10�6.35 under standard conditions.

© 2015 John Wiley & Sons Ltd, Geofluids, 16, 329–341
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