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Abstract

Expression mapping (also called performance driven animation) has been a popular method to generate
facial animations. One shortcoming of this method is that it does not generate expression details such
as the wrinkles due to the skin deformation. In this paper, we provide a solution to this problem. We
have developed a geometry-driven facial expression synthesis system. Given the feature point positions
(geometry) of a facial expression, our system automatically synthesizes the corresponding expression
image which has photorealistic and natural looking expression details. Since the number of feature
points required by the synthesis system is in general more than what is available from the performer
due to the difficulty of tracking, we have developed a technique to infer the feature point motions from a
subset by using an example-based approach. Another application of our system is on expression editing
where the user drags the feature points while the system interactively generates facial expressions with
skin deformation details.

1. Introduction

Realistic facial expression synthesis has been one of
most interesting yet difficult problems in computer
graphics. There has been a lot of research in this area,
and the reader is referred to the book 16 by Parke and
Waters for an excellent survey.

Expression mapping (also called performance-
driven animation) 5, 12, 24, 16 has been a popular
method to generate facial animations. It uses a per-
former’s feature point motions to drive the feature
point motions of a different person’s face. One short-
coming of this method is that it does not produce
expression details such as wrinkles caused by skin de-
formation. The technique proposed by Liu et. al. 13

requires the expression ratio image from the performer
which sometimes can be difficult to obtain. In this pa-
per, we propose a solution which does not require ratio
images from the performer. Instead we require a set
of example expressions of the target face which are
obtained once offline. We call our system a geometry-
driven facial expression synthesis system. Given the

feature point positions (geometry) of a facial expres-
sion, our system automatically synthesizes the corre-
sponding expression image which has photorealistic
and natural looking expression details. Because the
number of feature points required by the synthesis sys-
tem is in general more than what is available from the
performer due to the difficulty of tracking, we have de-
veloped a technique to infer the feature point motions
from a subset through an example-based approach.
Another application of our system is on expression
editing where the user drags the feature points while
the system interactively generates facial expressions
with skin deformation details.

The remainder of the paper is organized as follows.
We review the related work in Section 2. From Sec-
tion 3 through Section 9, we describe the algorithm in
both 2D and 3D. In Section 3, we describe the feature
point inference. The enhanced expression mapping is
described in Section 11. In Section12, we describe the
expression editing application. The results are shown
in Section 13. Finally we conclude the paper and dis-
cuss future directions in Section 14.
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2. Related work

There has been a lot of work on facial anima-
tion 1, 23, 21, 10, 15, 17, 7, 2, 20, 4, 18. It is virtually im-
possible to enumerate all of them here. In the follow-
ing, we will discuss a few that we think are mostly
related to our work.

There has been a lot of success on speech driven fa-
cial animation 4, 3, 8. Speech driven facial animation
systems are mainly concerned about the mouth region,
while our method is mainly for facial expressions. One
interesting analogy is that speech driven animation
systems use audio signals to derive mouth images, and
our system uses feature point motions to derive the fa-
cial images. It would be interesting to combine these
two techniques together to generate speech-driven fa-
cial animations with expressions.

Toelg and Poggio 22 proposed an example-based
video compression architecture. They divided the face
into subregions. For each subregion, they used im-
age correlation to find the best match in the example
database and send the index over the network to the
receiver. Choe and Ko 6 projected facial expressions
to their manually generated muscle actuation basis.
These muscle basis coefficients can then be used to
drive a different face model.

Guenter et. al. 9 developed a system to use digi-
tal cameras to capture 3D facial animations. Noh and
Neumann 26 developed the expression cloning tech-
nique to map the geometric motions of one person’s
expression to a different person.

One effective approach to generate photorealistic fa-
cial expressions with details is the morph-based ap-
proach 2, 20, 4, 18. In particular, Pighin et al 18 used
the convex combinations of the geometries and tex-
tures of the example face models to generate photore-
alistic facial expressions. They also provided a set of
easy-to-use tools and interfaces to allow a user to in-
teractively design facial expressions. Their system was
mainly designed for offline authoring purpose and it
requires a user to manually specify blending weights to
obtain a desired expression. Our synthesis algorithm
differentiates from the work of Pighin et. al. 18 in that
our method is completely automatic. Furthermore, we
have developed a technique to infer the feature point
motions from a subset. By combining these two tech-
niques together, we can enhance the traditional ex-
pression mapping system with expression details. In
another paper, Pighin et. al. 19 used the expression
morphing model to reconstruct the 3D expressions
from a video sequence. Their system did not try to
map the facial expressions to a different face model.

Liu et. al. 13 proposed a technique, called expression
ratio image, to map one person’s expression details to

a different person’s face. Given the feature point mo-
tions of an expression, their method requires an ad-
ditional input of a different person’s image with the
same expression. In other words, their method requires
an image of someone for every different expression. In
contrast, our method can generate arbitrary number
of expressions from a small set of example images. For
the situations where no examples are available for the
target face, their method is more useful. For the situ-
ations where we are given the feature point positions
of an expression but no expression ratio images are
available for this geometry, our method is more use-
ful. For example, in expression editing applications,
when a user manipulates the face feature points, it is
unlikely that he/she can find a different person’s ex-
pression image with exactly the same expression. In
expression mapping applications, if the performer has
markers on his/her face or if there are lighting varia-
tions due to the head pose changes, the ratio images
may be difficult to create.

3. Geometry-driven expression synthesis

Given the feature point positions of a facial expres-
sion, to compute the corresponding expression image,
one possibility would be to use some mechanism such
as physical simulation 10 to figure out the geomet-
ric deformations for each point on the face, and then
render the resulting surface. The problem is that it is
difficult to model the detailed skin deformations such
as the expression wrinkles, and it is also difficult to
render a face model so that it looks photorealistic. We
instead take an example-based approach.

Given a set of example expressions, Pighin et al. 18

demonstrated that one can generate photorealistic
facial expressions through convex combination. Let
Ei = (Gi, Ii), i = 0, ...,m, be the example expressions
where Gi represents the geometry and Ii is the texture
image. We assume that all the texture images Ii are
pixel aligned. Let H(E0, E1, ..., Em) be the set of all
possible convex combinations of these examples. Then

H(E0, E1, ..., Em) = (1)

{(
m∑

i=0

ciGi,

m∑

i=0

ciIi)|
m∑

i=0

ci = 1, ci ≥ 0, i = 0, ...,m}

Pighin et al. 18 also developed a set of tools so that a
user can use it to interactively specify the coefficients
ci to generate the desired expressions.

Notice that each expression in the space
H(E0, E1, ..., Em) has a geometric component
G =

∑m

i=0 ciGi and a texture component
I =

∑m

i=0 ciIi. Since the geometric component
is much easier to obtain than the texture component,
we propose to use the geometric component to infer
the texture component.
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Given the geometric component G, we can project
G to the convex hull spanned by G0, ..., Gm, and then
use the resulting coefficients to composite the example
images and obtain the desired texture image.

One problem with this approach is that the space of
H(E0, E1, ..., Em) is very limited. A person can have
expression wrinkles in different face regions, and the
combinatorics is very high. So we subdivide the face
into a number of subregions. For each subregion, we
use the geometry which is associated with this sub-
region to compute the subregion texture image. We
then seamlessly blend these subregion images to pro-
duce the final expression image.

One potential alternative to the convex combination
is to simply use the linear space without adding con-
straints on the coefficients ci’s. The problem is that
the coefficients resulted from the linear space approx-
imation of the geometries may contain negative coef-
ficients as well as coefficients which are larger than 1.
It causes artifacts in the composited images.

We first describe our algorithm for 2D cases where
the geometry of an expression are the face feature
points projected on an image plane. In Section 9, we
extend the algorithm to 3D.

4. System overview

QP solver

Subregion

image compositing

Subregion image synthesis

Blending of

subregion images

Final

image

Feature point positions

of a new expression

Registration of
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Image alignment
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Figure 1: An overview of the geometry-driven expres-
sion synthesis system.

Figure 1 is an overview of our system. It consists of
an offline processing unit and a run time unit. The ex-
ample images are processed offline only once. At run
time, the system takes as input the feature point po-
sitions of a new expression, and produces the final ex-
pression image. In the following sections, we describe
each of the function blocks in more detail.

5. Offline processing of the example images

5.1. Feature points

(a) (b)

Figure 2: (a) Feature points. (b) Face region subdi-
vision

Figure 2(a) shows the feature points that we use in
our system. At the bottom left corner are the feature
points of the teeth area when the mouth is open. There
are 134 feature points in total. Given a face image, it
is possible to automatically compute face features 11.
Since the number of example images is very small in
our system (10 to 15 examples per person). we choose
to manually mark the feature points of the example
images.

5.2. Image alignment

After we obtain the markers of the feature points, we
align all the example images with a standard image
which is shown in Figure 3(a). The reason to create
this standard image is that we need to have the mouth
open so that we can obtain the texture for the teeth.
The alignment is done by using a simple triangulation-
based image warping, although more advanced tech-
niques 2, 12 may be used to obtain better image qual-
ity.

5.3. Face region subdivision

We divide the face region into 14 subregions. Fig-
ure 2(b) shows the subdivision. At the bottom left
corner is the subregion of the teeth when the mouth is
open. The guideline of our subdivision scheme is that
we would like the subregions to be small while avoiding
expression wrinkles crossing the subregion boundaries.
Since we have already aligned all the example images
with the standard image, we only need to subdivide
the standard image. We create an image mask to store
the subdivision information where for each pixel, its
subregion index is stored in its color channel.
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(a) (b)

Figure 3: (a) The standard image. (b) The weight
map for blending along the subregion boundaries.

6. Subregion expression synthesis

Let n denote the number of feature points. For each
example expression Ei, We use Gi to denote the 2n
dimensional vector which consists of all the feature
point positions. Let G be the feature point positions
of a new expression. For each subregion R, we use GR

i

to denote the feature points of Ei which are in or at
the boundary of R. Similarly we use GR to denote the
feature points of G associated with R.

Given GR, we want to project it into the convex
hull of GR

0 , ..., G
R
m. In other words, we want to find the

closest point in the convex hull. It can be formulated
as an optimization problem:

Minimize : (GR −
∑m

i=0 ciG
R
i )

T (GR −
∑m

i=0 ciG
R
i )

Subject to :
∑m

i=0 ci = 1 (2)

ci ≥ 0, i = 0, 1, ...,m

Denote

G = (GR
0 , G

R
1 , ..., G

R
m) (3)

and

C = (c0, c1, ..., cm)
T (4)

Then the objective function becomes

C
T GT GC − 2GRT

GC +G
RT

G
R (5)

This is a quadratic programming formulation where
the objective function is a positive semidefinite
quadratic form and the constraints are linear. Since
GR

i ’s are in general linearly independent, the objec-
tive function is in general positive definite.

There are multiple ways to solve a quadratic pro-
gramming problem 14, 25. In the past decade, a lot

of progress have been made on the interior-point
methods both in theory and in practice 25. Interior-
point methods have become very popular for solv-
ing many practical quadratic programming problems.
This is the approach that we choose to use. An inte-
rior point method works by iterating in the interior
of the domain which is constrained by the inequality
constraints. At each iteration, it uses an extension of
Newton’s method to find the next feasible point which
is closer to the optimum. Compared to the traditional
approaches, interior point methods have faster conver-
gence rate both theoretically and in practice, and they
are numerically stable. Even though an interior point
method usually does not produce the optimal solution
(since it is an interior point), the solution is in general
very close to the optimum. In our experiments, we find
that it works very well for our purpose.

6.1. Subregion image compositing

After we obtain the coefficients ci’s, we compute the
subregion image IR by compositing the example im-
ages together:

I
R =

m∑

i=0

ciI
R
i (6)

Notice that since the example images have already
been aligned, this step is simply pixel-wise color blend-
ing.

7. Blending along the subregion boundaries

To avoid the image discontinuity along the subre-
gion boundaries, we do a fade-in-fade-out blending
along the subregion boundaries. In our implementa-
tion, we use a weight map to facilitate the blending.
Figure 3(b) shows the weight map, which is aligned
with the standard image (Figure 3(a)). The thick red-
black curves are the blending regions along the bound-
ary curves. The intensity of the R-channel stores the
blending weight. We use G and B channels to store
the indexes of the two neighboring subregions, respec-
tively . Given a pixel in the blending region, let r de-
note the value of R-channel, and let i1 and i2 be the
indexes of the two subregions. Then its blended inten-
sity is

I =
r

255
∗ Ii1 + (1−

r

255
) ∗ Ii2 (7)

Notice that we do not perform blending along some
of the boundaries where there is a natural color dis-
continuity such as the boundary of the eyes and the
outer boundary of the lips.

After blending, we obtain an image which is aligned
with the standard image. We then warp the image
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back so that its feature point positions match the in-
put feature point positions, thus obtain the final ex-
pression image.

8. Teeth

Since the teeth region is quite orthogonal to the other
regions of the face, we use a separate set of examples
for the teeth region. In our current system, only a
small set of examples for the teeth region are used
since we are not focusing on the speech animations
where there are a lot of variations on mouth shapes.

9. Expression synthesis in 3D

To extend the algorithm to 3D where the feature
points are 3D positions and the expressions are 3D
meshes with or without texture maps. To compute the
sub-region blending coefficients, we use equation 3 in
the same way as before except that G and Gi are 3n
dimensional vectors. We use the same interior point
method to solve the quadratic programming problem.
The sub-region mesh compositing and blending along
sub-region boundaries are similar to the 2D case ex-
cept that we blend the 3D vertex positions instead of
the images.

10. Inferring feature point motions from a

subset

In practice, it is difficult to obtain all the feature points
in Figure 2. For example, most of the algorithms to
track face features only track a limited number of fea-
tures along the eye brows, eyes, mouths, and noses.
In the enhanced expression mapping example which
we will discuss later in the paper, we only extract 40
feature points from the performer. For the application
of expression editing which will be discussed in Sec-
tion 12, each time when a user moves a feature point,
we need to figure out what is the mostly likely move-
ment for the rest of the feature points. In this section,
we describe how to infer the motions for all the fea-
ture points from a subset. We take an example-based
approach. The basic idea is to learn how the rest of
the feature points move from the examples. In order
to have a fine-grain control which is particularly im-
portant if only the motions of a very small number of
feature points are available such as in expression edit-
ing, we divide the face feature points into hierarchies
and perform hierarchical principal component analysis
on the example expressions.

At hierarchy 0, we have a single feature point set
which controls the global movement of the entire face.
There are four feature point sets at hierarchy 1 each
controlling the local movement of facial feature re-
gions (left eye region, right eye region, nose region,

and mouth region). Each feature point set at hierar-
chy 2 controls details of the face regions, such as eyelid
shape, lip line shape, etc. There are 16 feature point
sets at hierarchy 2. Some facial feature points belong
to several sets at different hierarchies, and they are
used as bridges between global and local movement of
the face so that we can propagate vertex movements
from one hierarchy to another.

For each feature point set, we compute the displace-
ment of all the vertices belonging to this feature set
for each example expression. We then perform prin-
cipal component analysis on the vertex displacement
vectors corresponding to the example expressions, and
generate a lower dimensional vector space.

10.1. Motion propagation

In this section, we describe how to use the hierarchi-
cal principal component analysis result to propagate
vertex motions so that from the movement of a sub-
set of feature points, we can infer the most reasonable
movement for the rest of the feature points. The ba-
sic idea is to learn from the examples how the rest of
the feature points move when a subset of the vertices
move.

Let v1, v2,..., vn denote all the feature points on the
face. Let δV denote the displacement vector of all the
feature points. For any given δV and a feature point
set F (the set of indexes of the feature points belong-
ing to this feature point set), we use δV (F ) to denote
the sub-vector of those vertices that belong to F . Let
Proj(δV, F ) denote the projection of δV (F ) into the
subspace spanned by the principal components corre-
sponding to F . In other words, Proj(δV, F ) is the best
approximation of δV (F ) in the expression subspace.
Given δV and Proj(δV, F ), we say δV is updated by
Proj(δV, F ) if for each vertex that belongs to F , we
replace its displacement in δV with its corresponding
value in Proj(δV, F ).

Let us first describe how to infer the motions of all
the feature points from a single vertex motion. Assume
vertex vi has a motion and we obtain a vector δV

where δvi is equal to the displacement for vertex vi

while the rest of the vertex displacement are 0. To
propagate the vertex motion, we first find the feature
point set, F ∗, which has the lowest hierarchy among
all the feature point sets containing vi. The algorithm
proceeds as follows where for each feature point set
F , we use the flag hasBeenProcessed(F ) to denote
whether F has been processed or not. Initially we set
hasBeenProcessed(F ) to be false for all the F .

MotionPropagation(F ∗)

Begin
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Set h to be the hierarchy of F ∗.

If hasBeenProcessed(F ∗) is true, return.

Compute Proj(δV, F ∗).

Update δV with Proj(δV, F ∗).

Set hasBeenProcessed(F ∗) to be true.

For each feature set F belonging to hierarchy
h − 1 such that F ∩ F ∗ 	= ∅

MotionPropagation(F )

For each feature set F belonging to hierarchy
h+1 such that F ∩ F ∗ 	= ∅

MotionPropagation(F )

End

Similarly, we can infer the motions of all the fea-
ture points from a subset. Let us assume a subset of
the feature points: vi1 , vi2 , ..., vik

have motions. We
set the vector δV so that δvij

is equal to the displace-
ment vector for vertex vij

for j = 1, ..., k. For each

vertex vij
, we find the feature point set, F j , which

has the lowest hierarchy among all the feature point
sets containing vij

, and run MotionPropagation(F j)
(notice that now δV contains the displacement for all
vij

, j = 1, ..., k).

11. Enhanced expression mapping

Expression mapping technique (also called
performance-driven animation) 5, 12, 24, 16 is a
simple and widely used technique for facial anima-
tions. It works by computing the difference vector
of the feature point positions between the neutral
face and the expression face of a performer, and then
adding the difference vector to the new character’s
face geometry. One main drawback is that the result-
ing facial expressions may not look convincing due to
the lack of expression details.

Our technique provides a solution to this problem in
the situation where we can obtain the example images
for the new character. The example images may be
obtained offline through capturing or designed by an
artist. At the run time, we first use the geometric dif-
ference vector to obtain the desired geometry for the
new character as in the traditional expression mapping
system. Because of the difficulty of face tracking, the
number of available feature points is in general much
smaller than the number of feature points needed by
the synthesis system. So we use the technique of Sec-
tion 3 to infer the motions for all the feature points
used by the synthesis system. We then apply our syn-
thesis technique to generate the texture image based
on the geometry. The final results are more convincing
and realistic facial expressions.

12. Expression editing

Figure 4: The expression editing interface. The red
dots are the feature points which a user can click on
and drag.

Another interesting application of our technique is
on interactive expression editing. One common ap-
proach to designing facial expressions is to allow a user
to interactively modify control point positions or mus-
cle forces. The images are then warped accordingly.
Our technique can be used to enhance such systems
to generate expression details interactively.

We have developed a system that allows a user to
drag a face feature point, and the system interactively
displays the resulting image with expression details.
Figure 4 is a snapshot of the expression editing inter-
face where the red dots are the feature points which
the user can click on and drag.

The first stage of the system is a geometry genera-
tor. When the user drags a feature point, the geometry
generator infers the ”most likely” positions for all the
feature points by using the algorithm described in Sec-
tion 3. For example, if a user drags the feature point
on the top of the nose, the entire nose region will move
instead of just this single point.

We typically use 30-40 example expressions for the
feature point inference in both the expression editing
and expression mapping applications.

13. Results

We show some experimental results for two faces:
a male and a female. For each person, we capture
about 30-40 images with whatever expressions they
can make. We then select the example images, and
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the use the rest of the images as the ground truth to
test our system.

Figure 5 shows the example images for the male.
The teeth examples are shown in Figure 6. Figure 10 is
a side-by-side comparison where the images on the left
column are ground truth while the images on the right
are the synthesized results. We would like to point out
that each of the expressions in Figure 10 is different
from the expressions in the examples. But the results
from our system closely match the ground truth im-
ages. There is a small blurriness in the synthesized im-
ages because of the pixel misalignment resulted from
the image warping process.

Figure 5: The example images of the male.

Figure 6: The example images of the male’s teeth.

Figure 7 shows the example images of the female.
Figure 11 is the side-by-side comparison for the female
where the ground truth images are on the left while

Figure 7: The example images of the female.

Figure 8: The examples used for the 3D expression
synthesis.

Figure 9: The results of the 3D expression synthesis.
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the synthesized images are on the right. Again, the
synthesized results match very well with the ground
truth images.

Next we show the results of the expression mapping
enhanced with our facial expression synthesis system.
Figure 12 shows some of the results of mapping the
female’s expressions to the male. The female’s expres-
sions are the real data. The images on the right are
the results of the enhanced expression mapping. We
can see that the synthesized images have the natural
looking expression details. For clarification purpose,
we would like to point out that to map the female’s
expressions to the male, we do not need any example
expressions from the female. We only need the feature
points of the female’s expressions. This is very differ-
ent from the expression mapping in 18 which needs
example expressions for both actors and requires the
correspondence between the two sets of example ex-
pressions.

Figure 13 shows some of the expressions generated
by our expression editing system. Notice that each of
these expressions has a different geometry than the
example images. Our system is able to produce pho-
torealistic and convincing facial expressions.

To test the frame-to-frame coherence of our ex-
pression synthesis system, we have experimented with
both artificial sequences and live sequences. In the ac-
companying video, we show an expression sequence
where the geometry of each frame is a linear interpo-
lation of a few key expressions. For each frame, we
independently synthesize the expression image from
the geometry of that frame. We can see that the re-
sulting expression sequence is very smooth from frame
to frame.

We have captured a few live sequences for the male.
For each live sequence, we manually extract about 40
feature points for all the frames. For each frame, we
infer the positions for the rest of the feature points and
then use our expression synthesis system to produce
the expression image. The accompanying video shows
both the real sequences and the synthesis results.

The accompanying video also shows the results of
mapping the live sequences of the male to the female.
Again 40 feature points are used.

We have captured a 3D face model of the male by
using a laser scanner. We then use the feature point
motions of the male to drive the vertex movement of
the 3D mesh. This is done by using a simple trian-
gulation based interpolation. For each frame, we use
the synthesized expression image as the texture map
for the 3D mesh. We add the head rotations by lin-
ear interpolation. The accompanying video shows the
results.

We have also tested our system with 3D expression
synthesis. We asked an artist to create a set of 3D
facial expressions as shown in Figure 8. Figure 9 shows
some of the synthesized expressions in different poses.

Finally, the accompanying video shows the expres-
sion editing in action. The sizes of the images used
in our experiments are 600x800. Our current system
achieves 2-4 frames per second on a 2GHz PC. Be-
cause the frame rate is not high enough, we do not
perform synthesis until the mouse stops moving. When
the mouse stops moving, we sample 5 frames between
the previous mouse stop and the current mouse stop,
and synthesize the expression images for each frame
and display them on the large window on the left. At
the same time, we update the image in the small win-
dow. The main computation cost is the image com-
positing. Currently the image compositing is done in
software, and for every pixel we perform the composit-
ing operation for all the example images even though
some of the example images have coefficients close to
0. One way to increase the frame rate is to not compos-
ite those example images whose coefficients are close
to 0. Another way is to use hardware acceleration. We
are planning on exploring both approaches to improve
the performance.

14. Conclusion and future work

We have presented a geometry-driven facial expres-
sion synthesis system, and a feature point inference
technique. The combination of these two techniques
allows us to enhance the traditional expression map-
ping to generate facial expression details. This is the
first expression mapping system which is capable of
generating expression details while only requires the
feature point motions from the performer. We have
also demonstrated the expression editing application
where the user, while manipulating the geometric po-
sitions of the feature points, can see the resulting re-
alistic looking facial expressions interactively.

In the future, we are planning on improving the
computation speed by accelerating the image com-
positing module. Another area that we would like to
improve on is the image alignment so that the result-
ing images are sharper. Potential solutions include op-
tical flow techniques and better image warping algo-
rithms.

To generate expressions with various poses, we cur-
rently need to use 3D face models. Another possibility
is to extend our technique to synthesize expressions
with various poses from examples. We could poten-
tially take as input the pose parameters as well as the
feature point motions, and synthesize the correspond-
ing expression from the examples. Another area we
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would like to work on is to handle lip motions dur-
ing speech. One potential approach is to combine our
technique with the technique presented in 8. One of
our final goals is to be able to take the minimum
information, such as the feature points, poses, and
phonemes, of the performer and automatically synthe-
size the photorealistic facial animations for the target
character.
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Figure 10: Side-by-side comparison with ground
truth for the male. The left column are the ground
truth. The right are synthesis results.

Figure 11: Side-by-side comparison with the ground
truth of the female. The left column are the ground
truth. The right are synthesis results.
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Figure 12: Results of the enhanced expression map-
ping. The expressions of the female are mapped to the
male.

Figure 13: Expressions generated by the expression
editing system.
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