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Geometry, Dynamics and Fractals 
Consider a collection of elastic wires folded according to a given pattern induced by a 
sequence of fractal plane curves. The folded wires can act as elastic springs. Therefore it 
is easy to build up a corresponding sequence of simple oscillators composed by the elastic 
springs clamped at one end and carrying a mass at the opposite end. The oscillation 
periods of the ordered sequence of these oscillators are related following a power law and 
therefore display a fractal structure. The periods of each oscillator clearly depend on the 
mechanical properties of the wire, on the mass at the end and on the boundary conditions. 
Therefore there are infinitely many possibilities to design a dynamical fractal sequence in 
opposition to the well defined fractal dimension of the underneath geometric sequence. 
Nevertheless the geometric fractal dimension of the primordial geometric curve is always 
related somehow to the dynamical fractal dimension characterizing the oscillation period 
sequence. It is important to emphasize that the dynamical fractal dimension of a given 
sequence built up after the geometry of a primordial one is not unique. This peculiarity 
introduces the possibility to have a broader information spectrum about the geometry 
which is otherwise impossible to achieve. This effect is clearly demonstrated for random 
fractals. The present paper deals with a particular family of curves, namely curves 
belonging to the Koch family. The method is tested for the simple Koch triadic and for 
random Koch curves. The method has also proved to be useful to identify the fractal 
dimension of a sequence given just one of its terms. Remarkable is the quality of 
information obtained with this technique based on very simple and basic concepts. Some of 
these aspects will be presented in this paper but much more, the authors believe, is still 
hidden behind the dynamic properties of fractal structures.  
Keywords: fractal curves, fractal dimension, random fractals, dynamical dimension, Koch 
curves 
 
 
 
 
 
 
 
 

Introduction.  
1The Hausdorff theory is the main reference to find out the 

geometric dimension of singular curves, since it is well founded on 
a rigorous analytical approach. But the determination of the 
Hausdorff dimension (Falconer, 1990) is usually very difficult since 
in general it is far from trivial to find the proper cover required by 
the Hausdorff measure theory (Hausdorff, 1919). Appendix I 
introduces a very brief account of the basic elements of the 
Hausdorff measure and the related fractal dimension as suggested in 
(Bassingthwaighte et al., 1994). In order to overcome this difficulty 
several other approximate methods have been proposed to determine 
what has been recently referred to as fractal dimension of a 
sequence of self-similar objects. We can point out the box counting 
method, mass distribution method and packing capacity, just to 
mention some examples, (Feder, 1988), (Guyet, 1996), (Bevilacqua, 
2004). All those approaches are approximate and frequently relying 
on the observation of the behavior of numerical experiments. The 
validation is usually experimental by comparison of numerical 
outcomes with well known analytical results. In principle we can not 
expect to have the same characterization with two different 
approaches.  

Those methods are very efficient when information is collected 
under the format of digital data which usually can be obtained 
directly from patterns displayed on some support. If, however, we 
are dealing with material objects particularly objects embedded into 
a 3D space, those techniques may become unsuitable. This paper 
extends and presents a more rigorous approach of a new method 
(Bevilacqua and Barros, 2007) that, besides the application as a 
numerical tool to characterize the fractal geometry of a given 
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sequence, can also be used for this same purpose through direct 
experiments performed on the object itself.  

Outline of the Method 

The method introduced here links geometry to physics, 
particularly the dynamical properties of geometrically self-similar 
structures properly ordered. Suppose that we are given some 
geometrically self-similar sequence that we will call the primordial 
sequence. It is then possible to build up a corresponding one 
consisting of harmonic oscillators after the geometry of the 
primordial.  We call this new sequence offspring sequence. The 
periods of those oscillators as function of a set of geometric and 
physical parameters are related to a power law that may characterize 
the fractal dimension of the original objects.       

Fig.1 displays the two fundamental sequences representing the 
classical Koch triadic. The offspring sequence consists of very 
simple harmonic oscillators connecting a concentrated mass at one 
of the ends of a weightless elastic structure which is clamped at the 
opposite end. The motion of the mass is determined by the boundary 
conditions which are, in principle, arbitrary. The offspring sequence 
translates the geometry into a physical phenomenon. This 
correlation is, however, not unique because the characterization of 
the physical phenomenon, the period of oscillation, for a given 
geometry, depends on material properties and boundary conditions.  
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Figure 1. Primordial and offspring sequences after the Koch triadic. 

 
A fractal offspring sequence as a matter of fact is richer than the 

primordial one since it displays not only a geometric fractal 
dimension but also fractal characteristics of different nature. 
Consider some primordial self-similar sequence of plane curves 
with a fractal dimension equal D. We claim that the periods of the 
oscillators composing the offspring sequence follow the law: 
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where the parameter B depends on D, on the geometric and material 
properties of the oscillators, on the mass mk and on the boundary 
conditions. Additionally: 
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This means that the curve defined by equation (1-b) approaches 

asymptotically a straight line with slope ( ) 21 B−  on the 

plane ( ) ( )LxTT kk λloglog 0 . In other words the governing 

equation (1) tends to a power law when k→∞.  
We will call B the dynamical dimension of the offspring 

sequence. It will be shown that even if D≠1, that is, when the 
primordial sequence displays a fractal structure the dynamical 
dimension can be made equal 1 by a proper selection of material 
properties, for instance. That is, physical properties of geometrically 
self-similar sequences may have different fractal dimensions.  

As will be shown in the sequel, equation (1-a) and, 
consequently, equation (1-b) hold for plane curves provided that 
some regularity requirements are fulfilled. 

Curves of the Class λk/L0=q-k and Nk=pk 

Let us examine a particular deterministic law of formation. 
Consider the generator term composed by p elements with length 
equal to l/q where p and q are integers. The sequence is embedded 

in a one-dimensional topological space. Suppose that the total 
number of elements in the term of order k is given by:  
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The above relations written in another form read: 
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Eliminating k we obtain: 
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where 
q

p
D

log

log=   coincides with the Hausdorff dimension for this 

particular case and also with the cluster dimension and the box 
dimension as well. 

This paper deals with the family of curves, that will be called 
Koch curves, for which the above relationships prevail, namely Nk = 
pk and λk/L0 = q-k.  

Direct Problem. 

Consider a primordial sequence of fractal objects belonging to 
the class defined above characterized by a fractal dimension D. 
Suppose for instance that the classical Koch triadic is selected as the 
reference geometry or with the present terminology, the primordial 
sequence. It is possible then to build up an offspring sequence as 
shown in Fig. 1. A single element of the offspring sequence is 
shown in Fig. 2. 
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Figure 2. Example of a harmonic oscillator corresponding to the second 
term of the offspring sequence. 

 
It is not our aim to discuss the dynamics of the oscillators that 

otherwise is very simple. It suffices to say that each oscillator is a 
three-degree-of-freedom system. The mass displacement vector 
reads w = {u,v,θ} T while the forces exerted by the boundary 
conditions on the mass can be represented by the force vector f = 
{H,V,M} T as shown in Fig. 2.. The classical equations of motion can 
be written under the form: 

 
   fKwwM =+&&  (3a) 

 
Clearly, M is the mass matrix, K is the rigidity matrix. Now the 

components of f can be chosen in such a way so as to put at least 
one of the equations (3-a) into a more convenient form. This is 
equivalent to introducing a corresponding boundary condition, that 
is, a suitable steering surface controlling the trajectory of the mass 
mk. In order to simplify some analytical developments we will 
introduce steering forces of the form f = Qw. It is not difficult to 
show that it is always possible to find a feedback matrix QI such that 
the first equation in the system (3-a) is reduced to: 
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Note that it is not necessary to determine the matrix QI 

explicitly. Certainly, this procedure can be equally used for the other 
two displacements v and θ with feedback matrices QII  and QIII  
leading to: 
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k =)(

22  and Mc k
k =)(

33θ . 

Now )(k
jjc (j=1,2,3) can be determined from the stored elastic 

energy corresponding to the respective forces H, V, M as usual. Note 
that the offspring sequence is composed of material elements, wire-
like folded structures.  The stored bending energy for the kth order 
term is:   
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where Ek is the Young Modulus of the wire material and Ik the 
moment of inertia of the wire cross section which can be functions 

of k. )(
,1

k
iiM − is the bending moment acting on the elementary 

segment   (i-1,i) as shown in Fig. 3 and Nk is the total number of 
segments in the kth order term. We are disregarding the contribution 
of shear and normal forces to the strain energy. 

Let us consider first the case represented by (3-b). Now the 
offspring sequence fits into a box L0 x h0 as can be seen in Fig.3.  

The bending moment along a segment (i-1,i) is: 
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Figure 3. Bending moment along the segment (i-1,i)  for a general term k 
of the offspring sequence. 

 
Now introducing Eq. (5) into Eq. (4), integrating over all 

segments λk and summing up we get: 
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Note that from the definition of h0 clearly zj ≤ 1for all j, and 

consequently αi(k) ≤ 1. 
The horizontal displacement then reads:  
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Introducing this expression into Eq. (3-b) we obtain:  
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where the period Tk is given by: 
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The mass attached at the free end of the oscillator is represented 
by mk. Suppose that mk, Ek and Ik vary according to the power laws: 
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where ν, γ and µ are real numbers. 

Introducing in Eq.(7) the expression for Nk given by Eq.(2) and 
after some straightforward calculations we obtain: 
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where:  DB +++−= µγν and qpD loglog=  is the classical 

fractal dimension, that coincides with the Hausdorff dimension for 

this case. IT0  is a reference period:  
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The parameter B is the dynamical fractal dimension. It coincides 

with the box and the Hausdorff fractal dimensions provided that the 
mass, the Young modulus and the diameter of the wire cross section 
are all constant, that is ν=γ=µ=0.  

Now, if the offspring sequence has a fractal characterization, 
that is, the normalized periods of the corresponding terms are 
governed by a power law, it is necessary that the equation (8-a) 
plotted on the plane Yk x Xk, with Yk = log (Tk/T0) and Xk = log 
(λk/L0), approaches a straight line whose angular coefficient is equal 
to (1-B)/2 as shown in Fig.4. Define the functional relation 

kk XY ⇔ as a continuous curve with sectionaly continuous first 

derivative, composed by straight segments connecting the 
points( ) ( )11,;, ++ kkkk YXYX . Let us prove the asymptotic behavior. 

The following lemma is proved in the Appendix II.  
Lemma. For curves belonging to the Koch  family – class of 

curves defined by Nk = pk and λk/L0 = 1/qk − the first order 
differential form of the bilinear term Ωk with respect to λk is finite for 
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Figure 4. Normalized period as function of the length ratio for a sequence 
of fractal curves. 

 
Now, recalling equation (8-a) and with Yk= log(Tk/T0) and 

Xk= log(λk/L0), the calculation of the differential ratio kk XY ∆∆  

after some simple operations gives: 
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Therefore from the lemma above and since Ωk is finite and 
different from zero we have: 
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Proposition I. As k→∞ the curve given by equation (8-a) 

approaches asymptotically a straight line with slope equal to (1-
B)/2.  

Now following the same procedure for the cases corresponding 
to equations (3-c) and (3-d) relative to the elastic energy produced 
by a vertical force and to a couple respectively, the periods of the 
offspring sequence terms are given by: 
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for the energy generated by the action of a vertical force, and  
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for the energy generated by the action of a couple.  

The behavior of the function Ψk is similar to the behavior of Ωk. 
Therefore we will skip the discussion about this term. The 
computational experiments will make it clear. Now, a similar term is 
missing for the case represented by equation (8-c) obtained with the 
energy induced only by the action of a couple. The reason is that for 
this case the bending moment is constant along the entire length of 
the wire. The sum on the left hand side of equation (4) reduces to 

2MN kkλ . 

The respective normalizing periods are: 
 

( )
00

3
002

0 IE

Lm
T II =      and       ( )

00

002
0 IE

LJ
T III =  

 
Note that J0 is the reference rotational inertia for the equation (3-

d). 
We will refer in the sequel as case I, II and III the plots 

representing respectively the curves given by equations (8-a), (8-b) 
and (8-c). Let us examine now some examples. Consider the first 9 
terms of the offspring sequence derived from the Koch triadic as 
primordial sequence. We will assume here for sake of simplicity 
ν=γ=µ=0 which makes B=D. The normalized periods (Tk/T0) 
corresponding to cases I, II and III as function of the ratio (λk/L0) are 
depicted in the Fig.5.  

 

 
Figure 5. Logarithm of the normalized period versus the logarithm of the 
relative length of the elementary segment for cases I, II and III. 
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Table 1. Slope of the last segment connecting the two last points of the 
curves in the figure 5 and the corresponding fractal dimension. 

Type of motion Slope of last two points Dynamical fractal dim. 

Case I -0.13093495 1,26187 

Case II -0.13093002 1.26186 

Case III -0.13092075 1,26186 
 
We expect the normalized periods versus the relative length to 

approach asymptotically a straight line with slope (1-D)/2 for cases I 
and II. For case III, as can be seen from the equation (8-c) the curve 
is a straight line. The exact fractal dimension of the Koch triadic is 
found to be log4/log3 or approximately 1.26186 up to the fifth 
decimal place. The values obtained from the dynamic approach are 
given in the Table I. It is also clear from Fig. 6 that the curve 
corresponding to the case I approaches asymptotically the straight 
line with slope 0.13093. Fig. 6 shows the ratio Dk/Dexact where 

kkk XYD ∆∆= . The values obtained are in agreement with the 

exact value up to the fourth decimal digit.  
 

 
Figure 6. Variation of the ratio Ddyn/Dexact. 

 
A first approximation to simulate the dynamical behavior under 

the action of the weight can be obtained by taking the mass 
proportional to the total length for each term of the sequence. That is 

( )00 / LNmm kkk λ=    or equivalently taking )1( D−=ν in the 

expression for B with Ek and Ik constants. It is easy to find that the 
term (1-B)/2 appearing in the equations (8-a,b,c) will be multiplied 
by 2. The results for this variable mass approach are shown in  Fig. 
7. As can be seen the solutions are equally good. 

 

 
Figure 7. Logarithm of the normalized period versus the logarithm of the 
relative length of the elementary segment for variable mass proportional 
to the total wire length. Cases I,II and III. 

Table 2. Slope of the last segment connecting the two last points of the 
curves and the corresponding fractal dimension. 

Type of motion Slope of last two points Dynamical fractal dim. 

Case I -0.26186467 1,26186 

Case II -0.26185975 1.26186 

Case III -0.26186467 1,26186 

Inverse Problem 

More interesting is the inverse problem. The quest is to find out 
the topological characteristics of a primordial sequence given a 
representative term of order n. Let nΘ  be such a term of the 

primordial sequence. Build up the corresponding term nΘ~  of the 

offspring sequence. Let the total length of nΘ and consequently of 

nΘ~ be LT and the projection on the horizontal axis be equal to Ln. 

The question now is to find out whether or not some fractal 
structure, if any, can be associated to the primordial sequence. 
Select first one of the uncoupled displacements, u, v, or θ 
corresponding to cases I, II and III respectively. Following a similar 
procedure as that introduced to obtain the dynamic fractal dimension 

for the direct problem, obtain first the period Tn of nΘ~ .  

The second step is to cut off successively from nΘ~  a subset 

1/
~

nΘ , 2/
~

nΘ … mn/
~Θ  to get an offspring sub-sequence with 

projections Ln, Ln/1, …Ln/m on the horizontal axis and find the periods 
Tn , Tn/1 , …Tn/m  of these new oscillators subjected to the same 
boundary conditions. Fig. 8 displays an example derived from the 
Koch triadic. If the original object belongs to a particular fractal 
primordial sequence then it is possible to show that the 
corresponding dynamic fractal dimension can be obtained from the 
offspring sub-sequence as explained above. Moreover there exists 
also a self-similar primordial sequence subjacent to the terms Ln, 
Ln/1, …Ln/m. Consider the mth order term. For case III the vibration 
period of the mth term of the offspring sequence is given by: 
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Figure 8. Samples Li, Lj,...Lk with different sizes  extracted from the original 
curve Ln. 

 
It is assumed that the rotation inertia Jm can be variable. Note 

that for this case the length of the elementary segment is λn 
corresponding to the term nΘ . Let us take nmnm JJ /σ=  where Jn 

is the rotation inertia for the original term. That is, the rotation 
inertias corresponding to the samples are proportional to Jn.  
Equation (9) can be rewritten:  
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Now Lm is a subset of the original set Ln. The subset Lm is 
scaled relatively to Ln such that Lm =  bmLn.  

 
Proposition 2. Let Lm be the horizontal projection of a sample 

cut off from a fractal curve whose horizontal projection is Ln , if Lm 
=  bmLn then Nm =ρm (bm)D

 Nn provided that the curve is a term of a 
sequence belonging to the class Nk = pk and λk/L0 = (1/q)k. The 
correction factor ρm depends strongly on the boundary conditions 
and varies within the interval 1−ε < ρm <1+ ε where ε is small for 
sufficiently large bm.  

The factor (bm)D can be interpreted as the stretching ratio, that is, 

the total length of the sample mn/
~Θ  given by λnNm divided by the 

total length of the original curve nΘ~  given by λnNn. That is, the 

ratios of the stretched curves divided by the correction factor ρm 
constitute a fractal sequence with the same dimension D as the 

curves nΘ~ , mn/
~Θ themselves. Of course, this proposition is valid for 

regular curves and for sufficiently large scales. Fractal theory of 
plane curves, and in general fractal theory, has to be seen as the 
geometric counter part of the fuzzy set theory. There are relations 
that are approximately valid or valid under certain circumstances.  

Introducing this correlation in Eq.(9) we obtain after some 
simple operations: 
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Consider now three possible cases. Constant inertia, 1/ =mnσ , 

inertia proportional to the total length of the sample,  
D
mnmmn bNN ==/σ  and inertia proportional to the projection of 

the sample on the horizontal axis, mnmmn bLL ==/σ . For those 

three cases equation (9) takes the following forms, respectively: 
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For cases I and II, the solution can be deduced following the 

steps introduced previously. Equation (7) adjusted for the present 
case, considering variable mass, reads: 
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Here the term mn /Ω  is the truncation of order m of the term 

nΩ  defined before, that is: 
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where the parameters )(niα  refer to the elements of order n. Note 

that here the integer m serves only to count the number of segments 
and has nothing to do with the mth element of the series. Equation 
(12) can now be rewritten as: 
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We introduced now the following proposition having in mind 
that the terms )(niα  are quadratic functions of the ordinates of the 

corners of the nth order element in the series: 
 

Proposition 3. Let Lm be the horizontal projection of a sample 
cut off from a fractal curve whose horizontal projection is Ln. The 
truncation of order m, i.e. mn /Ω , of the quadratic form nΩ  is 

given by 2
// mnmnmn br Ω=Ω , where nmm LLb = , and 1−ε < rn/m 

< 1+ε , ε is small and depends on the boundary conditions, provided 
that the curve is a term of a sequence belonging to the class Nk = pk 
and λk/L0 = (1/q)k. 

After propositions 2 and 3, with the mass variation given by 

nmnm mm /σ= , the equation (13) reads: 
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Now considering, as previously, the cases of constant mass 

1/ =mnσ , mass proportional to the total length of the sample,  

D
mnmmn bNN ==/σ  and mass proportional to the projection of 

the sample on the horizontal axis, mnmmn bLL ==/σ , the 

corresponding three values of B̂ are obtained: 
 

( )2
2

1ˆ += DB  , ( )1ˆ += DB  and ( )3
2

1ˆ += DB  

 
Case II is similar to case I. Proposition 3 holds for mn /Ψ  and 

nΨ  in the place of mn /Ω  and nΩ  and mns /  defined as 

2
// mnmnmn bs Ψ=Ψ  varying within the same limits as mnr / . 

Therefore, equation (15) holds for the case II with mns /  in the place 

of mnr / .   

Next let us present some numerical experiments. Consider the 
sequence of cuts of the Koch triadic as shown in Fig.8. The results 
corresponding to cases I, II and III with constant mass are depicted 
in Fig.9 and Fig.10.  

 

 
Figure 9. Assessment of the fractal identification procedure through the 
dynamical test for cases I, II and III. Successive terms scaled with 1/b=1.3. 
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Table 3. Average slope and corresponding approximated fractal. 

Type of motion Saver D 

Case I 1.63515805 1.2703 

Case II 1.63107795 1.2621 
 
The reference term corresponds to the 9th term in the primordial 

sequence and the cuts are such that two consecutive terms of the 
offspring sub-sequence scale always with the same ratio, that is 
Lm+1=bLm.  

The slopes of the interpolated straight lines Saver obtained by 
minimizing the root mean square deviations from the points derived 
from equations (11-a) and (15) properly adjusted for cases I and II 
are shown in tables III and IV. Clearly it is seen that the nonlinear 

term mnr /  and possibly ρm introduce large perturbations for case I 

causing the more significant deviation – 1.38% – from the expected 
fractal dimension in comparison with 0.34% for case II and 0.614% 
for case III with the scale factor equal to 1/1.3 as depicted in Fig. 8. 
Nevertheless even the largest deviation is quite acceptable. Note that 
for the scale factor equal 1/2.0 – Fig. 9 – the deviations fall down 
considerably, 0.669% , 0.019% and 0.264% respectively for cases 
I,II and III. The reason for this reduction is that for this particular 
scale the terms of the offspring sub-sequence are cut at very 
particular positions preserving the integrity of the Koch triadic 
generator along the length of each term.   

 

 
Figure 10. Assessment of the fractal identification procedure through the 
dynamical test for cases I, II and III. Successive terms scaled with b=1/2.0. 

 

Table. Average slope and corresponding approximated fractal. 

Type of motion Saver D 

Case I 1.62220225 1.2444 

Case II 1.63113080 1.2622 

Case III 0.62707315 1.2541 
 
Under more general conditions the offspring subsequence may 

be cut at random, that is, the extremities of a sample may not 
coincide with any particular convenient points of the preceding one. 
In any case it is important to observe that very short samples may 
introduce relatively large errors in the analysis. It is convenient to 
keep the shortest sample with a projection length Lm>0.4Ln as 
indicated by numerical experiments since the dynamical fractal 
characteristics fade out for very short lengths.   

The solutions corresponding to variable mass proportional to the 
total length and to the projection on the horizontal axis of the 

samples are presented on Figs.11-a,b for the scale factor equal to 
1.3. 

 
(a) Mass proportional to the total length 

 

 
(b) Mass proportional to the horizontal projection 

Figure 11. Assessment of the fractal identification procedure through the 
dynamical test for cases I, II and III. Successive terms scaled with 1/b=1.3. 
Variable mass proportional to the total length (a) and proportional to the 
horizontal projection (b). 

 
Clearly the most sensitive case corresponds to the horizontal 

force with deviation of the order of 5%. It is interesting that this 
disadvantage of the horizontal force for the regular deterministic 
case turns out to be a great advantage to identify random deviation 
in the formation process of the Koch curves as will be seen in the 
next section.    

Random Fractals 

In this section we will examine a simple case of random fractals 
using again the Koch triadic as the fundamental reference curve. 
The random character is very simple, nevertheless very illustrative 
to show the power of the dynamical dimension. Recall that the Koch 
triadic sequence can be built up using each preceding term to derive 
the next one.  

Consider the term of order k of the random Koch triadic as a 
support. Attach to each elementary segment λk the Koch triadic 
generator properly down scaled, that is, with a basis length equal to 
λk and elementary segments: 31 kk λλ =+ , call it Gk. 

Now the randomness introduced here is simply to allow the 
orientation of the GK’s to be taken by chance starting with the first 
term of the sequence k=1. This formation law contrasts with the 
well organized deterministic Koch triadic as introduced earlier. So 
the terms obtained are not strictly self-similar as shown in Fig.12.  

The Hausdorff dimension for this fractal sequence is the same as 
that for the deterministic, well organized, self-similar, Koch triadic 
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sequence, that is D ≈1,26186. The reason is that the outer measure 
of the cover for this sequence is undistinguishable from that used for 
the deterministic Koch triadic. Therefore the Hausdorff dimension 
does not detect the randomness of this sequence. Turning now to the 
dynamical dimensional we have at least two possibilities. Consider 
first the case III. In that case the strain energy is the same for all 
elementary segments of a given term k. Therefore the strain energy 
corresponding to any two different terms, k and k+n scales exactly 
as determined by the Hausdorff dimension. Consequently the result 
obtained with the boundary conditions corresponding to the case III 
should lead to the Hausdorff dimension.  

 

 
Figure 12. Example of three first terms of a random fractal generated by 
the Koch triadic. 

 

 
Figure 13. Logarithm of the normalized period versus the logarithm of the 
relative length of the elementary element for six random triadic sequences 
for case III. 

 
This is clearly apparent from Fig.13. Six random sequences 

were generated independently. The straight lines representing the 
logarithm of the normalized periods versus the logarithm of 0Lkλ  

coincide for all cases. The straight line slope leads to the value of 
the Hausdorff dimension within the expected approximation 
interval. Now if we plot the normalized periods corresponding to the 
case I the results are not regular as shown in Fig.14. The reason is 
that the strain energy doesn’t scale as assumed by the Hausdorff 
theory. In this case even small deviation from the classical 
deterministic triadic is detected by the perturbation on the energy 
distribution. 
 

 
Figure 14. Logarithm of the normalized period versus the logarithm of the 
relative length of the elementary element for six random triadic sequences 
for case I. 

Conclusions 

As far as we know, the concept of dynamical fractal dimension 
has not been explored before. This first attempt has shown to be 
encouraging. Although this paper deals with Koch curves, numerical 
experiments have shown that this method applies also for more 
complex curves (Barros 2007). The dynamical fractal dimension 
depends on the distribution of the elastic energy, due to bending, 
along the components of the offspring sequence. If the distribution 
is uniform the dynamic dimension coincides with the Hausdorff 
dimension. The reason is that this uniform distribution is the 
dynamical equivalent of the cover proposed by Hausdorff. For non 
uniform distributions the dynamical dimension may converge to a 
different value. If on one hand the diversification of the boundary 
conditions determines the multiplicity of dynamical dimensions on 
the other hand it may provide meaningful information for random 
fractals as shown in the previous section. This is a great advantage 
over the classical methods that are unable to provide such 
information. Another interesting outcome is that through the 
comparison of the results obtained experimentally with real objects 
– wires –  where all the energy components are present – bending, 
shear forces and normal forces – with computational results taking 
into account only the bending energy, it is possible to determine the 
contribution of shear and normal forces for the total elastic energy 
stored in the wire. Therefore we don’t see the non-uniqueness of the 
dynamical dimension as a disadvantage of the method; the point is 
that additional information has to be provided which goes together 
with the dynamical dimension.  

It is important to remark that the theory developed here 
disregard dissipative effects. The inclusion of damping introduces a 

correction factor on the frequency equals to 12 −ξ  where ξ = c/ω 

and 2c is the damping coefficient. This factor is frequency 
dependent and therefore will disturb the 
relation ( )00 LfTT kk λ= . How this new function would provide 

information about the fractal characteristics of the sequence under 
consideration deserves further investigation. Maybe some important 
information about damping effects could be obtained from the 
behavior of this new function.   

We have shown with simple examples that the fractal dimension 
of a given primordial sequence may be unrelated to the fractal 
characteristics of the offspring sequence. This means that physics is 
not always hooked up by geometry. Nature can take advantage of 
this property and human design as well. Here we have dealt with 
dynamical characterization but certainly other physical phenomena 
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could be used. Mandelbrot (1982) discussed several examples where 
fractal geometry is present in nature. Particularly in biological 
phenomena (Bassingthwaighte et alli, 1994) the investigation of the 
fractal aspects of geometry and physics could be explored.  

The theory is barely beginning so there are multiple possibilities 
to explore theoretical developments as multi-fractals and 
applications as the fractal nature of composite materials and tissue 
fibers. 
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Appendix I 

Consider a fractal object Ж. Let Bi a countable set of Borel balls 
Bi with radius r – the largest distance of two points belonging to the 

ball. Let this set to be a cover of Ж that is, Ж belongs to  ∩Bi. The 
outer measure of the cover is defined to be less or equal to the sum 
of the diameters of all balls of the cover. The s-dimensional 
Hausdorff outer measure H(s,r)  is the infimum of the all measures 
raised to the power s  of all such covers, that is:  

 

( ) ( ) 
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i

s
idiameterBrsH inf,  

 
Moreover there exists one and only one number DH , defined as 

the Hausdorff dimension of the fractal object such that: 
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Application for the Koch triadic.  

 

 
 
For this case it is easy to see that the minimal cover of a general 

term of order n consists of balls with diameter equal to λn = (L0 
/3)n Therefore: 
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Now the limit when  2r = (1/3)n → 0 is equivalent to let n → ∞. 

Let D= log4 / log3. If  s > D then H → 0 and if s < D then H →∞. 
The measure jumps from zero to infinity when s is precisely equal 
to log4/log3. According to the definition of the Hausdorff 
dimension: 
s = D = log4 / log3 is the Hausdorff dimension of the Koch triadic. 

Appendix II 

We want to show that the first derivative of the bilinear term Ωk 

with respect to λk is finite for increasing values of k. Recall that: 
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First let us write αi(k) under the form: 
 

( )  3 2
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2
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where: 

 
( ) 21,1 iiii zzz += −−   and   ( ) 21.1 −− −=∆ iiii zzz  

 
Introducing equation (A1) in the expression for  Ωk we get: 
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Clearly 1   and    1  ,1 ≤∆≤ − iii zz . 

 

 

Figure A1. Mean value 1.iiy − and difference i1,i∆y − . 

 
Consider first the second term on the right hand side of equation 

(A2). By definition ∆yi-1,i = yi – yi-1 as shown in Fig.A1 and 
therefore it is possible to write: 

 
1th            wi ,1,1,1 ≤=∆ −−− iikiiiiy γλγ , 

 
from which follows: 

 

L0 L0 L0 

λ1= 1/3 , N1= 4 λ2 = 1/9, N2 = 16 λ3 = 1/27, N3 = 64 
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Introducing this expression in equation (A2 ) we get: 
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Now define the vector functions: 
 [ ])(

,1
... k(k)(k)(k)T

k
kNkNi1,-i1,20,1

zz...zz
−

=z  

 
and 

 






=
−−

)(

,1

)(

,1

)(

2,1

)(

1,0
0

......
32

1 k

kNkN

k

ii

kkT
k

h
βββββ  

 
Then the equation (A3) in vector notation reads: 
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Now since:  
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for all k and M is finite we may claim that Ωk is finite as k→∞. 

Similarly the term of order k+1 can be written as: 
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where the components of zk+1 are proportional to the ordinates of the 
corners of the curve corresponding to the term of order k+1. In 
general we may write: 
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Referring to the preceding term in the sequence as shown in 

Fig.A2 we have:   
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Figure A2. Term of order k+1 attached to the previous term of order k. MN 
= λk   Mm = mn = no = or = rN = λk+1. 

 

Note that    
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represents respectively the ordinates of the corners of the kth  

curve in the sequence and the ordinates of the added corners for the 
(k+1)th curve. It is possible then to decompose the vector zk+1 in the 
following way: 
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where U1 and U2 are Boolean matrices. 

Now, with this decomposition it is not difficult to show that the 
vector 1+kz  can be written as: 
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Now using the definition of Ωk+1 and recalling that 
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Recalling that: 
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and that R is a Boolean matrix we arrive at: 
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where R1(k,k+1) and R2(k,k+1) are finite for all k, max(R1 , R2) < M 
(finite). Finally we get: 
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Now noting that: 
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we may write: 
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Lemma. For the family of curves belonging to the class defined 

by Nk = pk and λk/L0 = 1/qk, the first differential ratio of the bilinear 
term Ωk with respect to λk is finite for increasing values of k, that is 
decreasing values of λk. 
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