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GEOMETRY HELPS TO COMPARE PERSISTENCE DIAGRAMS

MICHAEL KERBER, DMITRIY MOROZOV, AND ARNUR NIGMETOV

Abstract. Exploiting geometric structure to improve the asymptotic complexity of discrete assignment
problems is a well-studied subject. In contrast, the practical advantages of using geometry for such problems

have not been explored. We implement geometric variants of the Hopcroft–Karp algorithm for bottleneck

matching (based on previous work by Efrat el al.), and of the auction algorithm by Bertsekas for Wasserstein
distance computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity
query. Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over

their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

1. Introduction

The assignment problem is among the most famous problems in combinatorial optimization. Given a
weighted bipartite graph G with (n+n) vertices, it asks for a perfect matching with minimal cost. A common
cost function is the minimum of the sum of the q-th powers of weights of the matching edges, for some q ≥ 1.
We call the solution in this case the q-th Wasserstein matching and its cost the q-th Wasserstein distance.
As q tends to infinity, the Wasserstein distance approaches the bottleneck distance, by definition the minimum
of the maximum edge weight over all perfect matchings. See [8] for a contemporary discussion of the topic
with links to applications.

We consider the geometric version of the assignment problem, where the vertices of G are points in a
metric space (X, d), and edge weights are determined by the distance function d. The metric structure leads
to asymptotically improved algorithms that take advantage of data structures for near-neighbor search. This
line of research dates back to Efrat et al. [16] for the bottleneck distance and Vaidya [23] for the 1-Wasserstein
case. Rich literature has developed since then, mainly focusing on approximation algorithms for Euclidean
metrics in low and high dimensions; see [2] for a recent summary. On the other hand, there has been no
rigorous study of whether geometry also helps in practice. Our paper is devoted to this question.

We restrict attention to one scenario that motivates our study of the assignment problem. In the field
of topological data analysis, the homological information of a data set is often summarized in a persistence

diagram. Such diagrams, themselves point sets in R
2, capture connectivity of a data set, and, specifically, how

the connectivity changes across various scales [14]. Persistence diagrams are stable: small changes in the data
cause only small changes in the diagram [10, 11]. Accordingly, the distances between persistence diagrams
have received a lot of attention in applications [1, 18, 17]: where persistence diagrams serve as topological
proxies for the input data, distances between the diagrams serve as proxy measures of the similarity between
data sets. These distances, in turn, can be expressed as a Wasserstein or a bottleneck distance between
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two planar point sets, using L∞ as the metric in the plane (see Section 2 for the precise definition and the
reduction).

Our contributions. Our contribution is two-fold. First, we provide an experimental study illuminating the
advantages of exploiting geometric structure in assignment problems: we compare mature implementations of
bottleneck and Wasserstein distance computations for the geometric and purely combinatorial versions of the
problem and demonstrate that exploiting the spatial structure improves running time and space consumption
for the matching problem. Second, by focusing on the setup relevant in topological data analysis, we provide
the fastest implementation for computing distances between persistence diagrams, significantly improving the
implementation in the Dionysus library [20]. The former prototypical implementation is the only publicly
available software for the problem. Given the importance of this problem in applications, our implementation
is therefore addressing a real need in the community. Our code is publicly available.1 This paper contains the
following specific contributions:

• For bottleneck matchings, we follow the approach of Efrat et al. [16]: they augment the classical
combinatorial algorithm of Hopcroft and Karp [19] with a geometric data structure to speed up
the search for vertices close to query points. We do not follow their asymptotically optimal but
complicated approach. We instead use a k-d tree data structure [4] to prune the search for matching
vertices in remote areas (also proposed by the authors). As expected, this strategy outperforms the
combinatorial version that linearly scans all vertices. Several careful design choices are necessary to
obtain this improvement; see Section 3.

• For Wasserstein matchings, we implement a geometric variant of the auction algorithm, an approx-
imation algorithm by Bertsekas [5]. We use weighted k-d trees, again with the goal to reduce the
search range when looking for the best match of a vertex. A data structure similar to ours appears
in [3]. We also implement, for comparison, a version of the auction algorithm that does not exploit
geometry; it achieves running times close to the geometric variant, but at the expense of quadratic
(vs linear) space complexity. Both geometric and non-geometric implementations of the auction
algorithm dramatically outperform Dionysus, albeit computing approximations rather than the
exact answers as the latter. Dionysus uses a variant of the Hungarian algorithm [22]; see Section 4.

2. Background

Assignment problem. Given a weighted bipartite graph G = (A⊔B,E), with |A| = n = |B| and a weight
function w : E → R+, a matching is a subset M ⊆ E such that every vertex of A and of B is incident to at
most one edge in M . These vertices are called matched. A matching is perfect if every vertex is matched;
equivalently, a perfect matching is a matching of cardinality n; it can be expressed as a bijection η : A → B.

For a perfect matching M , the bottleneck cost is defined as max{w(e) | e ∈ M}, the maximal weight of its
edges. The q-th Wasserstein cost is defined as (

∑

e∈M w(e)q)1/q; for q = 1, this is simply the sum of the edge
weights. A perfect matching is optimal if its cost is minimal among all perfect matchings of G. In this case,
the bottleneck or q-th Wasserstein cost of G is the cost of an optimal matching. If a graph does not have a
perfect matching, its cost is infinite.

We call a graph G = (A ⊔B,E) geometric, if there exists a metric space (X, d) and a map φ : A ⊔B → X
such that for any edge e = (a, b) ∈ E, w(e) = d(φ(a), φ(b)). In this case, we generally blur the distinction
between vertices and their embedding and just assume for simplicity that A ⊔ B ⊂ X. The motivating
example of this work is X = R

2 and d(x, y) = ‖x− y‖∞.

Persistent homology and diagrams. We are concerned with a particular type of assignment problems in
this paper. Specifically, we are interested in distances studied by the theory of persistent homology, distances
that measure topological differences between objects. In a nutshell, persistent homology records connectivity
of objects — connected components, tunnels, voids, and higher-dimensional “holes” — across multiple scales.
Persistence diagrams summarize this information as two-dimensional point sets with multiplicities. A point
(x, y) with multiplicity m represents m features that all appear for the first time at scale x and disappear at

1Bottleneck distance: https://bitbucket.org/grey narn/geom bottleneck, Wasserstein distance: https://bitbucket.org/grey
narn/geom matching
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Figure 1. An example of Gq for two persistence diagrams with 2 off-diagonal points each.
Skew edges are dashed gray, edges connecting diagonal points are dotted black.

scale y. Features appear before they disappear, so the points lie above the diagonal x = y. The difference
y − x is called the persistence of a feature. To make persistence diagrams stable, each point (x, x) on the
diagonal is counted with infinite multiplicity.

Given two persistence diagrams X and Y , their bottleneck distance is defined as

W∞(X,Y ) = inf
η:X→Y

sup
x∈X

‖x− η(x)‖∞,

where η ranges over all bijections and ‖(x, y)‖∞ = max{|x|, |y|} is the usual L∞-norm. Similarly, the q-th
Wasserstein distance is defined as

Wq(X,Y ) =

[

inf
η:X→Y

∑

x∈X

‖x− η(x)‖q
∞

]1/q

.

Why are these distances interesting? Because they are stable [10, 11, 13, Ch. VIII.3]: a small perturbation
of the measured phenomenon, for example, a scalar function on a manifold, creates only a small change in
the persistence diagram — both distances reflect this. The diagonal of a persistence diagram plays a crucial
role in stability. Small perturbations may create new topological features, but their persistence is necessarily
small, making it possible to match them to the points on the diagonal. We refer the reader to the cited
papers for an extensive discussion.

Persistence distance as a matching problem. We assume from now on that persistence diagrams
consist of finitely many off-diagonal points with finite multiplicity and all the diagonal points with infinite
multiplicity. In this case, the task of computing W∗(X,Y ) can be reduced to a bipartite graph matching
problem; we follow the notation and argument given in [13, Ch. VIII.4]. Let X0, Y0 denote the off-diagonal
points of X and Y , respectively. Let X ′

0 denote the orthogonal projections of X0 to the diagonal, that is
X ′

0 = {((x+ y)/2, (x+ y)/2) | (x, y) ∈ X0}; this set contains the points on the diagonal that are closest to X0

in L∞-distance. With Y ′

0 defined analogously, we define U = X0 ∪ Y ′

0 and V = Y0 ∪X ′

0; both have the same
number of points. For an integer q > 0, we define the weighted complete bipartite graph, Gq = (U ⊔V, U ×V ),
whose weights are given by the function

cq(u, v) =

{

‖u− v‖q
∞

if u ∈ X0 or v ∈ Y0

0 otherwise
.

Points from U and V are depicted as red squares and blue circles, respectively, in Figure 1; all the diagonal
points are connected by edges of weight 0 (plotted in dotted black). The following result is stated as the
Reduction lemma in [13, Ch. VIII.4]:

Lemma 2.1.

• W∞(X,Y ) equals the bottleneck cost of G1.

• Wq(X,Y ) equals the q-th Wasserstein cost of Gq.

Consider the weight function cq. Gq is almost geometric: distances between vertices are measured using
the L∞-metric, except that points on the diagonal can be matched for free to each other if they are not
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(a) Example of a normal dia-
gram.

(b) Example of a real diagram.

Figure 2. Examples of persistence diagrams.

matched with off-diagonal points. Can this almost-geometric structure speed up computation? This question
motivates our work.

It’s possible to simplify the above construction. We call an edge uv ∈ U ×V a skew edge if u ∈ X0, v ∈ X ′

0

and v is not the projection of u, or if v ∈ Y0, u ∈ Y ′

0 and u is not the projection of v (skew edges are shown
with dashed lines in Figure 1).

Lemma 2.2. For both bottleneck and Wasserstein distance, there exists an optimal matching in Gq that does

not contain any skew edge.

Proof. Fix an arbitrary matching M with at least one skew edge. Define the matching M ′ as follows: For
any uv ∈ M ∩X0 × Y0, add uv and u′v′ to M ′, where u′ is the projection of u. For any skew edge ab′ of M
with a the off-diagonal point (either in X0 or Y0), add aa′ to M ′. Also add to M ′ all edges of M of the form
aa′, where a is an off-diagonal point and a′ is its projection. It is easy to see that M ′ has no skew edges,
and its cost is not worse than the cost of M : indeed, the skew edge ab′ got replaced by aa′ which is strictly
smaller, and the vertices on the diagonal possibly got rearranged, which has no effect on the cost. � �

Lemma 2.2 implies that removing all skew pairs does not affect the result of the algorithm, saving roughly
a factor of two in the size of the graph.2

K-d trees. K-d trees [4] are a classical data structure for near-neighbor search in Euclidean spaces. The
input point set is split into two halves at the median value of the first coordinates. The process is repeated
recursively on the two halves, cycling through the coordinates used for splitting. Each node of the resulting
tree corresponds to a bounding box of the points in its subtree. The boxes at any given level are balanced to
have roughly the same number of points. Given a query point q, one can find its nearest neighbor (or all
neighbors within a given radius) by traversing the tree. A subtree can be eliminated from the search if the
bounding box of its root node lies farther from the query point than the current candidate for the nearest
neighbor (or the query radius). Although the worst case query performance is O(

√
n) in the planar case, k-d

trees perform well in practice and are easy to implement. In Section 3 we use the ANN [21] implementation
of k-d trees which we change to support deletion of points. For Section 4 we implemented our own version of
k-d trees to support search for a nearest neighbor with weights.

Experimental setup. All experiments were performed on a server running Debian wheezy, with 32 Intel
Xeon cores clocked at 2.7GHz, with 264 GB of RAM. Only one core was used per instance in all our
experiments.

We experimentally compare the performance both on artificially generated diagrams as well as on realistic
diagrams obtained from point cloud data. For brevity, we restrict the presentation to two classes of instances.
In the first class, we generate pairs of diagrams, each consisting of n points. The points are of the form
(a−|b|/2, a+ |b|/2) where a is drawn uniformly in an interval [0, s], and b is chosen from a normal distribution
N(0, s), with s = 100. In this way, the persistence of a point, |b|, is normally distributed, so the point set
tends to concentrate near the diagonal. This matches the behavior of persistence diagrams of realistic data

2Dionysus uses the same simplification.
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sets, where points with high persistence are sparse, while the noise present in the data generates the majority
of the points, with small persistence. We refer to this class of experiments as normal instances (Figure 2a).

To get a diagram of the second class, we sample a point set P of n points uniformly at random from either
a 4-, or a 9-dimensional unit sphere. The 1-dimensional persistence diagram of the Vietoris–Rips filtration of
P serves as our input. We use the Dipha library3 for the generation of these instances. Note that persistence
diagrams generated in this way have different numbers of points. We refer to this class of experiments as real
instances (Figure 2b). For each set of parameters (sphere dimension and number of points sampled), we have
generated 6 test instances and computed pairwise distances between all

(

6

2

)

= 15 pairs.
Our plots show the average running times and the standard deviation as error bars. For the real class, the

x-axis is labelled with the number of points sampled from the sphere, not with the size of the diagram. The
size of the persistence diagrams, however, depends practically linearly on the number of sample points, with
a constant factor that grows with dimension: the largest instance for dimension 9 is a diagram with 5762
points, while for dimension 4 the largest diagram is of size 1679.

Our experiments cover many other cases. We have tested various choices of s, the scaling parameter in the
normal class, and of the sphere dimension in the real class. We have also tried different ways of generating
diagrams, for instance, by choosing n points uniformly at random in the square [0, s] × [0, s], above the
diagonal. In all these cases, we encountered the same qualitative difference between the tested algorithms as
for the two representative cases discussed in this paper.

3. Bottleneck matchings

Our approach follows closely the work of Efrat et al. [16], based on the following simple observation. Let
G[r] be the subgraph of G that contains the edges with weight at most r. The bottleneck distance of G is the
minimal value r such that G[r] contains a perfect matching. Since the bottleneck cost for G must be equal
to the weight of one of the edges, we can find it exactly by combining a test for a perfect matching with a
binary search on the edge weights.

The algorithm by Hopcroft and Karp. Efrat et al. modify the algorithm by Hopcroft and Karp [19]
to find a maximum matching. We briefly summarize the Hopcroft–Karp algorithm; [16] provides an extended
review. For a given graph G[r], the algorithm computes a maximum matching, i.e., a matching of maximal
cardinality. G[r], with 2n vertices, has a perfect matching if and only if its maximum matching has n edges.

The algorithm maintains an initially empty matching M and looks for an augmenting path, i.e., a path
in G[r] that alternates between edges inside and outside of M , with the first and the last edge not in M .
Switching the state of all edges in an augmenting path (inserting or removing them from M) augments the
matching, increasing its size by one.

The algorithm detects several vertex-disjoint augmenting paths at once. It computes a layer subgraph

of G[r], from which it reads off the vertex-disjoint augmenting paths. Both the construction of the layer
subgraph and the search for augmenting paths are realized through a graph traversal in G[r] in O(m) time,
where m is the number of edges. Having identified augmenting paths, the algorithm augments the matching
and starts over, repeating the search until all vertices are matched or no augmenting path can be found. As
shown in [19], the algorithm terminates after O(

√
n) rounds, yielding a running time of O(m

√
n) = O(n2.5).

Geometry helps. The crucial observation of Efrat et al. is that for a geometric graph G[r], the layer
subgraph does not have to be constructed explicitly. Instead one may use a near-neighbor search data
structure, denoted by Dr(S), which stores a point set S and a radius r. It must answer queries of the form:
given a point q ∈ R

2, return a point s ∈ S such that d(q, s) ≤ r. Dr(S) must support deletions of points in
S. As the authors show, if T (|S|) is an upper bound for the cost of one operation in Dr(S), the algorithm
by Hopcroft and Karp runs in O(n1.5T (n)) time for a graph with 2n vertices. For the planar case, Efrat
et al. show that one can construct such a data structure (for any Lp-metric) in O(n log n) preprocessing
time, with T (n) = O(log n) time per operation. Thus, the execution of Hopcroft–Karp algorithm costs only
O(n1.5 log n).

3http://dipha.googlecode.com
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Figure 3. Illustration of the exact computation step: the exact bottleneck distance must be
realized by a point in B (circles) in an annulus around A (crosses). The width of the annulus
is determined by the approximation quality. In this example, there are 6 candidate pairs.

Naively sorting the edge weights and binary searching for the value of r takes O(n2 log n) time. But this
running time would dominate the improved Hopcroft–Karp algorithm. In order to improve the complexity of
the edge search, the authors use an approach, attributed to Chew and Kedem [9], for efficient k-th distance
selection for a bi-chromatic point set under the L∞-distance; see [16, Sec.6.2.2] for details.

With this technique, the computation of a maximum matching dominates the cost of finding the k-th
largest distance, giving the runtime complexity of O(n1.5 log2 n) for computing the bottleneck matching.
Using further optimizations [16, Sec.5.3], they obtain a running time of O(n1.5 log n) for geometric graphs in
R
2 with the L∞-metric.
It is not hard to see that the analysis carries over to the case of persistence diagrams (also mentioned

in [13, p.196]). Let G1 = (U ⊔ V, U × V ) be the graph defined in Lemma 2.1. In the algorithm, Dr(S) is
initialized with the points in V , which are subsequently removed from it. We additionally maintain a set S′

of diagonal points contained in S. When the algorithm queries a near neighbor of a diagonal point of U , we
return one of the diagonal points from S′ in constant time, if S′ is non-empty. The overhead of maintaining
S′ is negligible. We summarize:

Theorem 3.1. The bottleneck distance of two persistence diagrams can be computed in O(n1.5 log n).

Our approach. Our implementation follows the basic structure of Efrat et al., reducing the construction of
layered subgraphs to operations on a near-neighbor data-structure Dr(S). But instead of the rather involved
data structure proposed by the authors, we use a simpler alternative: we construct a k-d tree for S. When
searching for a point at most r away from a query point q, we traverse the k-d tree, pruning from the search
the subtrees whose enclosing box is further away from the query than the current best candidate. When a
point is removed from S, we mark it as removed in the k-d tree; in particular, we do not rebalance the tree
after a removal. We also keep track of how many points remain in each subtree, so that we can prune empty
subtrees from the subsequent searches. The running time per search query can be bounded by O(

√
n) per

query, with n the number of points originally stored in the search tree. We remark that using range trees [12],
the worst-case complexity could be further reduced to O(log n).

Initial tests showed that the naive approach of precomputing and sorting all distances for the binary search
dominates the running time in practice. Instead of implementing the asymptotically fast but complicated
approach of Efrat et al., we compute a δ-approximation of the bottleneck distance, which we can then
post-process to compute the exact answer. Let dmax denote the maximal L∞-distance between a point in
U and a point in V in G1. First, we compute, in linear time, a 3-approximation of dmax as follows. We
pick an arbitrary point in U , find its farthest point v0 ∈ V , and find a point u0 ∈ U farthest from v0. Then,
‖u0 − v0‖∞ ≤ dmax ≤ 3‖u0 − v0‖∞ (from the triangle inequality). Setting t = 3‖u0 − v0‖∞, the exact
bottleneck distance o must be in [0, t] and we perform a binary search on [0, t] until we find an interval (a, b]
that satisfies (b− a) < δ · a. We return b as the approximation. It is easy to see that b ∈ [o, (1 + δ)o).

At each iteration of the binary search, we reuse the maximum matching constructed before (if the true
distance is below the midpoint of the current interval (a, b], we remove edges whose weight is greater than
(a+ b)/2, otherwise the whole matching can be kept).

To get the exact answer, we find pairs in U × V whose distance is in the approximation interval, (a, b].
For such a pair (u, v), v lies in an L∞-annulus around u with inner radius a and outer radius b. So we find
for every u ∈ U the points of V in the corresponding annulus and take the union of all such pairs as the
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Figure 4. Running times of the bottleneck distance computation on normal data (left) and
real data (right) for varying number of points.

candidate set. In the example in Figure 3, points in U are drawn as crosses, points in V as circles, and there
are 6 candidate pairs.

We compute the candidate pairs with similar techniques as used for range trees [12]. Specifically, we
identify all pairs (u, v) whose x-coordinate difference lies in (a, b]. We can compute the set Cx of such pairs in
O(n log n+ |Cx|) time by sorting U and V by x-coordinates. For each pair (u, v) in Cx, we check in constant
time whether ‖u− v‖∞ ∈ (a, b] and remove the pair otherwise. We then repeat the same procedure using
the y-coordinates. To compute the exact bottleneck distance, we perform binary search on the vector of
candidate distances.

Let c denote the number of candidate pairs. The complexity of our procedure is not output-sensitive in c
because |Cx|+ |Cy| can be larger than c — so too many pairs might be considered. Nevertheless, we expect
that when using a sufficiently good initial approximation, both |Cx|+ |Cy| and c are small, so our method
will be fast in practice.

Experiments. We compare the geometric and non-geometric bottleneck matching algorithms. We set
δ = 0.01 and compute the approximate bottleneck distance to the relative precision of δ, using k-d trees for the
geometric version and constructing the layered graph combinatorially in the non-geometric version. Figure 4
shows the results for normal and real instances. We observe that the geometric version scales significantly
better, and runs faster by a factor of roughly 10 for the largest displayed normal instance with 25000 points
per diagram. We note that the memory consumption of the geometric and non-geometric versions both scale
linearly, and the geometric version is larger by a factor of roughly 4 throughout. For 25000 points, about
60MB of memory is required.

We used linear regression to fit curves of the form cnα to the plots of Figure 4 (left). For the non-geometric
version, the best fit appeared for α = 2.3, roughly matching the asymptotic bound of Hopcroft–Karp. For
the geometric version, we get the best fit for α = 1.4; this shows that despite the pessimistic worst-case
complexity, the algorithm tends to follow the improved geometric bound on practical instances.

The above experiment does not include the post-processing step of computing the exact bottleneck distance.
We test the geometric version above that yields a 1% approximation against the variant that also computes
the exact distance from the initial approximation, as explained earlier in this section. Our experiments show
that the running time of the post-processing step is about half of the time needed to get the approximation.
Although there is some variance in the ratio, it appears that the post-processing does not worsen the
performance by more than a factor of two.

Figure 5 compares our exact (geometric) bottleneck algorithm with Dionysus, the only publicly available
implementation for computing bottleneck distance between persistence diagrams. Dionysus simply sorts the
edge distances in increasing order and performs a binary search, building the graphs G[r] and calling the

7
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Figure 5. Comparison of our exact geometric bottleneck algorithm with Dionysus for
normal (left) and real (right) input.

Edmonds matching algorithm [15] from the Boost library to check for a perfect matching in G[r]. Already
for diagrams of 2800 points, our speed-up exceeds a factor of 400.

4. Wasserstein matchings

Auction algorithm. The auction algorithm of Bertsekas [5] is an asymmetric approach to finding the
maximum weight matching. One half of the bipartite graph is treated as “bidders”, the second half as
“objects.” Initially, each object j is assigned zero price, pj = 0, and each bidder i extracts a certain benefit,
bij , from object j. Since we are interested in the minimum cost matching, we use the negation of the weights
in the previous section as the bidder–object benefits, bij = −w(i, j) = −d(i, j)q. (If the edge (i, j) is not in
the graph, bij = −∞.)

The auction proceeds iteratively. In each iteration, every bidder without an assignment chooses an object
with the maximum value, defined as the benefit minus the current price of the object, vij = (bij − pj). Each
such bidder is willing to increase the price of the chosen object by an increment, ∆pij , that would make the
value of the object equal to the second best choice. When multiple bidders choose the same object j, the
one willing to pay the highest increment, i = argmaxi ∆pij , wins. The objects are assigned to the winning
bidders, who increase their prices by the winning increments. For technical reasons, the changed prices are
increased further by some parameter ǫ. The algorithm stops when each bidder is assigned an object.

Small values of ǫ give a better approximation of the exact answer; on the other hand, the algorithm
converges faster for large values of ǫ. Bertsekas suggests ǫ-scaling procedure to overcome this problem:
running several rounds of the auction algorithm with decreasing values of ǫ, using prices from the previous
round, but an empty matching, as an initialization for the next round. Following the recommendation of
Bertsekas and Castañon [7], we initialize ǫ with the maximum weight divided by 4 and divide ǫ by 5 when
starting a new round.

It follows from the properties of the auction algorithm that, if d is the cost of the matching returned by
the algorithm and ǫ satisfies nǫ < dq + (1 + δ)qdq, then d is the δ-approximation of the exact Wasserstein
distance o, that is, d ∈ [o, (1 + δ)o). We use this as a stopping criterion for ǫ-scaling procedure to guarantee
the relative error of our result.

Bidding. The computational crux of the algorithm is for a bidder to select the object of maximum value.
The brute-force approach is for each bidder to do an exhaustive search over all objects. Doing so requires a
quadratic running time per iteration. But let us consider what the search actually entails. Bidder i must find
object j = argmaxj vij . Recall vij = bij − pj = −d(i, j)q − pj . Maximizing this quantity for a fixed i, over all
j, is equivalent to minimizing d(i, j)q + pj .

8
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Figure 6. Comparison of memory consumption of geometric and non-geometric versions of
auction algorithm on normal instances.
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Figure 7. Comparison of non-geometric and geometric variants of the auction algorithm
on normal (left) and real (right) input, also with Dionysus on the real input.

The first way to quickly find this answer uses lazy heaps. Each bidder keeps all the objects in a heap,
ordered by their value. We also maintain a list of all the price changes (for any object), as well as a record
for each bidder of the last time its heap was updated. Before making a choice, a bidder updates the values of
all the objects in its heap that changed prices since the last time the heap was updated. The bidder then
selects the object with the maximum value. We note that this approach uses quadratic space, since each
bidder keeps a record of each object.

The second way to accelerate the search for the best object uses geometry and requires only linear space.
Initially, when all the prices are zero, we can find the object j that minimizes d(i, j)q + pj by performing the
proximity search in a k-d tree. But, as the prices increase, we need to augment the k-d tree to take them into
account. We do so by storing the price of each point as its weight in the k-d tree. At each internal node of
the tree we record the minimum weight of any node in its subtree. When searching, we prune subtrees if the
q-th power of the distance from the query point to the box containing all of the subtree’s points, plus the
minimum weight in the subtree, exceeds the current best candidate.

Once a bidder selects the best object, it increases its price. We adjust the subtree weights in the k-d tree
by increasing the chosen object’s weight and updating the weights on the path to the root accordingly, if the
minimal weight has changed. If the minimum does not change at some node in the path, we interrupt the
traversal to the root.
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The case of persistence diagrams requires some special care. We can distinguish between diagonal and off-

diagonal bidders and objects. Diagonal bidders bid for only one off-diagonal object, according to Lemma 2.2.
The k-d tree is only used to determine bids for off-diagonal objects (and, accordingly, store only those). We
omit further technical details.

Experiments. Figure 7 illustrates the running times of the auction algorithm on the normal data, using
lazy heaps and k-d trees. In both cases, we compute a relative 0.01-approximation. The advantage of using
geometry is evident: the algorithm is faster by roughly a factor of 6 for diagrams of 5000 points, compared to
its combinatorial counterpart. The non-geometric version only shows competitive running times because of
the described optimization with lazy heaps. This results in a severe increase in memory consumption, as
displayed in Figure 6.

Again, we compare our geometric approach with Dionysus, which uses John Weaver’s implementation4

of the Hungarian algorithm [22]. Figure 7 (right) shows the results for real instances. The speed-up of our
approach increases from a factor of 50 for small instances to a factor of about 400 for larger instances. For
the normal data sets, the speed-up already exceeds a factor of 1000 for diagrams of 1000 points; we therefore
omit a plot.

We emphasize that our test is slightly unfair, as it compares the exact algorithm from Dionysus with
the 0.01-approximation provided by our implementation. While such an approximation suffices for many
applications in topological data analysis, the question remains how much overhead would be caused by an
exact version of the auction algorithm. A naive approach to get the exact result is to rescale the input to
integer coordinates and choose ǫ such that the approximation error is smaller than 1. We plan to investigate
different possibilities to compute the exact distance more efficiently.

5. Conclusion

We have demonstrated that geometry helps to compute bottleneck and Wasserstein distances of bipartite
point sets in two dimensions. Our approach leads to a faster computation of distances between persistence
diagrams. Therefore, we expect our software to have an immediate impact on the computational pipeline of
topological data analysis.

For bottleneck matchings, an interesting question would be how our k-d tree implementation compares in
practice with the (theoretically) more time efficient, but more space demanding alternative of range trees,
and with other point location data structures.

For Wasserstein matchings, the auction algorithm offers several variants that can be of interest in practical
applications. First, a weighted version of the algorithm allows to assign integer weights to the input points
and to match integer fractions of the same bidder to different objects [6]. While this case can be easily reduced
to the unweighted case, we expect the weighted version to perform significantly faster. This would lead to
an efficient approximation scheme for very large persistence diagrams by simply binning the input points
into clusters with multiplicity and computing the Wasserstein distance between the cluster centers. Our
preliminary implementation demonstrates that geometry also helps in this weighted setup; we will discuss the
details in a full version of this work. We also plan to investigate a parallel version of our auction algorithm.
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