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GEOMETRY OF BANACH SPACES HAVING SHRINKING
APPROXIMATIONS OF THE IDENTITY

EVE OJA

Abstract. Let a, c ≥ 0 and let B be a compact set of scalars. We introduce
property M∗(a, B, c) of Banach spaces X by the requirement that

lim sup
ν
‖ax∗ν + bx∗ + cy∗‖ ≤ lim sup

ν
‖x∗ν‖ ∀b ∈ B

whenever (x∗ν) is a bounded net converging weak∗ to x∗ in X∗ and ‖y∗‖ ≤
‖x∗‖. Using M∗(a, B, c) with max |B|+c > 1, we characterize the existence of
certain shrinking approximations of the identity (in particular, those related to
M -, u-, and h-ideals of compact or approximable operators). We also show that
the existence of these approximations of the identity is separably determined.

Introduction

Let X be a Banach space (over K = R or C) and let IX (or simply I) denote the
identity operator on X . A net (Kα) of compact operators on X is called a compact
approximation of the identity (CAI) provided Kα −→ IX strongly (i.e. Kαx −→ x
for any x ∈ X). In particular, if Kα are finite rank operators, then (Kα) is called
an approximation of the identity (AI). If moreover, K∗α −→ IX∗ strongly, then
(Kα) is called shrinking (this notion can just be regarded as a generalization of
shrinking bases). If there is an AI (resp. CAI) (Kα) with sup ‖Kα‖ ≤ 1, then X is
said to have the metric approximation property (MAP ) (resp. the metric compact
approximation property (MCAP )). In this case, we shall say that (Kα) is a metric
AI (MAI) (resp. metric CAI (MCAI)). It is known that the MCAP does not
imply the MAP [44]. In 1971, Johnson, Rosenthal, and Zippin [25] investigated
under which conditions a Banach space with a basis has a shrinking basis. In [25]
and later in [24] and [10], other cases of lifting an AI from a Banach space X to
X∗ were also considered. Johnson (see [24, Theorem 4 and its proof ]) proved that
if X has an MAI for every equivalent norm, then X has a shrinking MAI. In 1988,
Godefroy and Saphar [17] demonstrated how the geometric structure of Banach
spaces permits to lift metric approximation properties from spaces to their duals.
They showed among others that if X has an MAI (resp. MCAI) and X∗ contains
no proper norming subspace, then X has a shrinking MAI (resp. MCAI).
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In the present paper, we shall be concerned with special cases of lifting the
M(C)AP from X to X∗: we shall study the geometric structure of Banach spaces
with the M(C)AP which guarantees the existence of shrinking (compact) approx-
imations of the identity having certain important properties. The starting point
of our investigations is the following fundamental result of Kalton and Werner [28,
Theorem 2.7].

Theorem (Kalton-Werner). A separable Banach space X has a shrinking MCAI
(Kn)∞n=1 satisfying lim sup ‖IX − 2Kn‖ ≤ 1 (equivalently, lim ‖IX − 2Kn‖ = 1)
whenever X has the MCAP and property (M∗), i.e.

lim sup
ν
‖x∗ + x∗ν‖ = lim sup

ν
‖y∗ + x∗ν‖,

for every x∗, y∗ ∈ X∗ with ‖x∗‖ = ‖y∗‖ and every bounded weak∗ null net (x∗ν ) in
X∗.

(In [28], the sequential version of (M∗) is used; both versions are equivalent
whenever X is separable.)

Some insight was then given into the Kalton-Werner theorem by Lima [31] who
proved that the existence of the (Kn)∞n=1 with the above properties in a separable
Banach space X with the MCAP is in fact equivalent to its property (wM∗), i.e.

lim sup
ν
‖2x∗ − x∗ν‖ = lim sup

ν
‖x∗ν‖

whenever (x∗ν) is a bounded net converging weak∗ to x∗ in X∗. Since (wM∗) is
(seemingly) weaker than (M∗), Lima’s argument actually gives a new proof of the
Kalton-Werner theorem which is somewhat shorter and simpler than the original
one. Both these proofs rely on the separability of X . However, with a different
argument, Lima [31] also established similar results for reflexive spaces.

The following theorem is the main result of this paper (see Theorem 3.5 in
Section 3). We denote by K(X) the Banach space of compact operators on X and
by BK(X), its closed unit ball.

Theorem. Let a, c ≥ 0 and let B ⊂ K be a compact set. If max |B| + c > 1, then
the following assertions are equivalent for a Banach space X.

1◦. For every S ∈ BK(X), there exists a shrinking MAI (resp. MCAI) (Kα) such
that

lim sup
α
‖aIX + bKα + cS‖ ≤ 1 ∀b ∈ B.

2◦. X has the MAP (resp. MCAP) and

lim sup
ν
‖ax∗ν + bx∗ + cy∗‖ ≤ lim sup

ν
‖x∗ν‖ ∀b ∈ B

whenever (x∗ν) is a bounded net converging weak∗ to x∗ in X∗ and ‖y∗‖ ≤
‖x∗‖.

3◦. X has the MAP (resp. MCAP ) and, for every separable closed subspace Y
of X having the MAP (resp. MCAP ), there exists a shrinking MAI (resp.
MCAI) (Kn)∞n=1 such that

lim sup
n
‖aIY + bKn + cS‖ ≤ 1 ∀b ∈ B, ∀S ∈ BK(Y ).
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The Theorem characterizes intrinsically a large class of shrinking (C)AI, includ-
ing e.g. those (related to u-ideals) for which lim sup ‖IX − 2Kα‖ ≤ 1, studied
by Casazza, Emmanuele, Godefroy, Kalton, Li, Lima, Rao, Saphar, and Werner
([4], [9], [12], [13], [14], [15], [16], [28], [31]), those (related to h-ideals) for which
lim sup ‖IX − (1 + λ)Kα‖ ≤ 1 whenever λ ∈ C satisfies |λ| = 1 (or, more generally,
[16], lim sup ‖IX −λKα‖ ≤ µ for every λ from a given compact set Λ ⊂ K), studied
by Godefroy, Kalton, Li, and Saphar ([12], [14], [15], [16], [29]), and those related to
M -ideals of compact operators (cf. [20, p. 299], [26], [27], [34], [36]). The Theorem
also shows that the existence of these approximations of the identity is separably
determined. This fact seems to be important since special classes of approximations
of the identity have mainly been studied in separable Banach spaces using results
limited to the separable case (cf., e.g., [4], [16], and their bibliographies).

The structural property of Banach spaces described in condition 2◦ of the Theo-
rem will be called property M∗(a,B, c). Property (M∗) is the same as M∗(1, {−1}, 1)
and (wM∗) is M∗(1, {−2}, 0). In Section 1, applying, among others, techniques
from [4], [16], [27], we make a preliminary study of property M∗(a,B, c). We show,
for example, that any separable Banach space with separable dual can be equiva-
lently renormed to have property M∗(1, {b : |b + 1| ≤ r}, 0), where 0 ≤ r < 1. On
the other hand, we show that any MCAI in a Banach space X is shrinking whenever
X satisfies M∗(a,B, c) with max |B| + c > 1. The (easy) implication 1◦ =⇒ 2◦ of
the Theorem is also proved in Section 1.

The implication 2◦ =⇒ 3◦ is established in Section 2. Its proof relies on the
Simons sup-lim sup theorem. For separable X , this already completes the proof
of the Theorem. The separable version of the Theorem contains, in particular,
Lima’s and the Kalton-Werner theorems providing their new and simpler proof.
In the complex case, it also strengthens the Kalton-Werner theorem, showing that
then (Kn)∞n=1 actually satisfies lim ‖IX − (1 + λ)Kn‖ = 1 whenever |λ| = 1. The
Kalton-Werner theorem and Theorem 2.4 in [27] by Kalton immediately imply
that a separable Banach space X has the MCAP and (M∗) if and only if there
exists a shrinking MCAI (Kn)∞n=1 such that lim sup ‖IX −Kn + S‖ ≤ 1 for every
S ∈ BK(X). (This is a basic result of the theory of M -ideals of compact operators.)
The separable version of the Theorem contains this result providing its direct and
much easier proof.

In Section 3, using an inductive technical construction, we show that 3◦ =⇒ 1◦.
This completes the proof of the Theorem extending, in particular, Lima’s and the
Kalton-Werner theorems – together with their complex versions – to arbitrary (non-
separable) Banach spaces.

In Section 4, results of Sections 1-3 are applied to study special classes of ideals
of compact and approximable operators. In particular, this provides an alternative
unified and easier approach to the theories of M -, u-, and h-ideals of compact
operators (cf. [20, Chapter VI] together with [28], and [4], [16], [31]).

Let us now fix some more notation. In a Banach (or normed linear) space X , we
denote the unit sphere by SX and the closed unit ball by BX . For a set A ⊂ X ,
its norm closure is denoted by A, its linear span by span A, and its convex hull
by convA. We denote the set of all weak∗ strongly exposed points of BX∗ by
w∗-sexpBX∗ . For a set A ⊂ X∗, its weak∗ closure is denoted by A

w∗

. Further, let
πX be the canonical projection of X∗∗∗ onto X∗ (that is, πX = jX∗(jX)∗ where
jX : X −→ X∗∗ is the canonical embedding). And, finally, we denote by L(X) the
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Banach space of all bounded linear operators on X and by A(X) its subspace of
approximable operators (i.e., norm limits of finite rank operators).

1. General facts about property M∗(a,B, c)

Throughout this paper, B ⊂ K will be a compact set and a, c ≥ 0. We shall say
that a Banach space X has property M∗(a,B, c) if

lim sup
ν
‖ax∗ν + bx∗ + cy∗‖ ≤ lim sup

ν
‖x∗ν‖ ∀b ∈ B

whenever x∗, y∗ ∈ X∗ satisfy ‖y∗‖ ≤ ‖x∗‖, and (x∗ν ) is a bounded net converging
weak∗ to x∗ in X∗.

It can easily be seen that M∗(1, {−1}, 1) is precisely property (M∗) introduced by
Kalton [27] (see also [26]) and M∗(1, {−2}, 0) is property (wM∗) introduced by Lima
[31]. It will turn out that M∗(1, {b : |b+1| = 1}, 0) is the natural complex version of
(wM∗). This property easily follows from M∗(1, {−1}, 1) = (M∗). More generally,
it is straightforward to verify that (M∗) implies M∗(1, {b : |b + 1| ≤ 1 − c}, c) for
any c ∈ [0, 1].

It is well known (and easy to check) that, for example, the spaces `p, 1 < p <∞,
satisfy property (M∗) but the Lorentz sequence spaces d(w, p) do not. On the other
hand, it is straightforward to verify that d(w, p), 1 < p < ∞, satisfies property
M∗(a,B, c) for any fixed a, c > 0 such that ap + cp ≤ 1 and B = {b : |b + a| ≤
(1−ap)1/p−c}. From Lemma 1.1 below (cf. also [31, Theorem 4.2]), it will be clear
that d(w, p) and, more generally, Banach spaces with a shrinking 1-unconditional
basis enjoy property (wM∗) and, in the case of complex scalars, its complex version.

A separable Banach space X has M∗(a,B, c) if and only if it has the sequential
version of M∗(a,B, c). This can easily be checked using the fact that closed balls
in X∗ are weak∗ metrizable.

Property M∗(a,B, c) is trivially inherited by quotient spaces. It is also inherited
by subspaces. In fact, suppose that X has property M∗(a,B, c). If its subspace Y
does not have M∗(a,B, c), then

lim sup
ν
‖ay∗ν + by∗ + cw∗‖ > lim sup

ν
‖y∗ν‖

for some b ∈ B, y∗, w∗ ∈ Y ∗ with ‖w∗‖ ≤ ‖y∗‖, and a bounded net (y∗ν) converging
weak∗ to y∗ in Y ∗. By passing to a subnet, we may assume that

lim ‖ay∗ν + by∗ + cw∗‖ > lim ‖y∗ν‖.

Let x∗ν and z∗ be norm-preserving extensions of y∗ν and w∗ to X . There exists a
subnet (x∗ν(µ)) of (x∗ν) converging weak∗ to some x∗ in X∗. Clearly, x∗ extends y∗.
Using property M∗(a,B, c) of X , we get

lim
ν
‖ay∗ν + by∗ + cw∗‖ = lim

µ
‖(ax∗ν(µ) + bx∗ + cz∗)|Y ‖

≤ lim sup
µ
‖x∗ν(µ)‖ = lim

ν
‖y∗ν‖.

The contradiction proves that Y has property M∗(a,B, c).
The following simple lemma (which will be needed in Section 3 below to prove

the main result of the paper) shows that the existence of certain approximations of
the identity implies M∗(a,B, c).
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Lemma 1.1. A Banach space X has property M∗(a,B, c) whenever, for any rank
one operator S on X with ‖S‖ ≤ 1, there exists a shrinking CAI (Kα) such that

lim sup
α
‖aIX + bKα + cS‖ ≤ 1 ∀b ∈ B.

Proof. Let (x∗ν) be a bounded net converging weak∗ to x∗ in X∗. It is clearly
enough to consider the case when ‖y∗‖ < ‖x∗‖. Choose x ∈ X so that x∗(x) = 1
and ‖y∗‖ < 1/‖x‖. Denoting S = y∗ ⊗ x, we have ‖S‖ < 1 and y∗ = S∗x∗. Let
(Kα) be given by assumption. Since ‖K∗(x∗ − x∗ν)‖ −→ 0 if K is compact, we get,
for any fixed α,

lim sup
ν
‖ax∗ν + bx∗ + cy∗‖ ≤ lim sup

ν
‖(aIX∗ + bK∗α + cS∗)x∗ν‖

+ lim sup
ν
‖(bK∗α + cS∗)(x∗ − x∗ν)‖+ |b|‖x∗ −K∗αx∗‖

≤ ‖aIX + bKα + cS‖ lim sup
ν
‖x∗ν‖+ |b|‖x∗ −K∗αx∗‖,

and the conclusion follows by taking lim supα.

The idea of the proof of the next proposition comes from Theorem 2.9 of [16]
that, in turn, follows from Propositions 1.2 and 1.3 below.

Proposition 1.2. Suppose 0 ≤ r < 1 and denote B = {b : |b+ 1| ≤ r}. Then any
separable Banach space X with separable dual can be equivalently renormed to have
property M∗(1, B, 0).

Proof. According to a theorem due to Zippin [45], X is isomorphic to a subspace of
a Banach space with a shrinking basis. Since property M∗(a,B, c) is inherited by
subspaces, we may assume that X has a shrinking basis. Let (Pn)∞n=1 be the associ-
ated partial sum operators. By the proof of [4, Lemma 3.4], X can be equivalently
renormed so that supn ‖I + bPn‖ ≤ 1 for all b ∈ B. Thus the result is immediate
from Lemma 1.1.

Remark. The above renorming is no longer possible for r = 1, e.g., James space J
cannot be equivalently renormed to have property M∗(1, {−2}, 0) = (wM∗). (In
fact, it follows from [31, Proposition 4.1] and [16, Proposition 5.2 and Theorem 5.4]
that (wM∗) implies Pe lczyński’s property (u). But then, if the space happens to
be nonreflexive and to have a separable dual, it must contain an isomorphic copy
of c0.)

The proof of the following proposition is similar to the proof of the fact that X
is an M -ideal in its bidual whenever X has (M∗) (cf. [27] or [20, p. 298]) and will
therefore be omitted. We shall use Proposition 1.3 in Section 4 below.

Proposition 1.3. If a Banach space X has property M∗(a,B, c), then the natural
projection πX : X∗∗∗ −→ X∗ satisfies the inequality

‖ax∗∗∗ + bπXx
∗∗∗‖+ c‖πXx∗∗∗‖ ≤ ‖x∗∗∗‖ ∀b ∈ B, ∀x∗∗∗ ∈ X∗∗∗.

The following result is now immediate. It extends Theorem 2.9 of [16] to the
case of complex scalars.

Corollary 1.4. Let X be a nonreflexive separable Banach space for which X∗ is
separable. If 0 ≤ r < 1, then X can be equivalently renormed so that ‖IX∗∗∗ −
λπX‖ = 1 whenever |λ − 1| ≤ r (i.e. {λ ∈ K : |λ − 1| ≤ r} belongs to the Godun
set of X).
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We conclude this section by studying implications of property M∗(a,B, c) with
max |B| + c > 1 (satisfied, in particular, for (M∗) and (the complex version of)
(wM∗)). We shall see, in this case, that any M(C)AI will already be shrinking.

Let us recall that the characteristic r(V ) of a subspace V of X∗ is defined by

r(V ) = max{r ≥ 0 : rBX∗ ⊂ BV
w∗}.

Obviously, r(V ) ≤ 1.

Proposition 1.5. If a Banach space X satisfies property M∗(a,B, c) with max |B|
+ c > 1, then r(V ) ≤ 1/(max |B|+ c) < 1 for any proper closed subspace V of X∗.

Proof. One can prove Proposition 1.5 by relying on Proposition 1.3 and some results
from [16] (see Section 4 below, Theorem 4.1, proof of 1◦◦ =⇒ 1◦). However, we
prefer to give a direct proof. Put ρ = 1/(max |B| + c). Since r(V ) ≤ r(W ) if
V ⊂W , it is enough to consider the case when V = kerx∗∗ where x∗∗ ∈ SX∗∗ . We
argue by contradiction. Suppose that (ρ+ε)BX∗ ⊂ BV

w∗

for some ε > 0 and choose
x∗ ∈ X∗ with ‖x∗‖ = ρ + ε so that |x∗∗(x∗)| > ρ. Then BV contains a net (x∗ν)
converging weak∗ to x∗. Note that x∗∗(x∗ν) = 0 for all ν. Let |b| = max |B| = b sgn b
for some b ∈ B. Since sgn b x∗ν −→ sgn b x∗ weak∗ and ‖x∗‖ = ‖sgn b x∗‖, we have

lim sup
ν
‖a sgn b x∗ν + |b|x∗ + cx∗‖ ≤ 1.

But then

1 ≥ lim sup
ν
|x∗∗(a sgn b x∗ν + |b|x∗ + cx∗)| = 1

ρ
|x∗∗(x∗)| > 1,

a contradiction.

Remark. It is well known that c0 has property (M∗)(= M∗(1; {−1}, 1)). If V =
{(αn) :

∑∞
n=1 αn = 0} ⊂ `1 = c∗0, then r(V ) = 1/2.

Since property M∗(a,B, c) is inherited by subspaces and quotient spaces, Propo-
sitions 1.2 and 1.5 immediately yield Corollary 2.10 of [16] asserting that if ε > 0,
then any separable Banach space X with separable dual can be equivalently renormed
so that, for any subspace Y of a quotient space of X, whenever V is a proper closed
subspace of Y ∗, then r(V ) ≤ 1

2 + ε. Let us recall that the question about the ex-
istence of such a renorming comes from the paper [7] by van Dulst and Singer (cf.
also [11]).

Corollary 1.6. If a Banach space X satisfies property M∗(a,B, c) with max |B|+
c > 1, then X∗ contains no proper norming closed subspace, X is an Asplund space,
and

X∗ = span(w∗-sexpBX∗).

Proof. The first claim is immediate from Proposition 1.5. Since subspaces of X
inherit property M∗(a,B, c), duals of its separable subspaces (they contain sepa-
rable norming subspaces) contain no proper norming subspace and therefore they
must be separable. This means that X is an Asplund space. Finally, since X
is an Asplund space, BX∗ = convw

∗
(w∗-sexpBX∗) (cf., e.g., [38, p. 86]). Hence

span(w∗-sexpBX∗) is a norming subspace and therefore must be equal to X∗.
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Corollary 1.6 and a result of Godefroy and Saphar [17, p. 679 and p. 680] imme-
diately yield that if a Banach space X satisfying M∗(a,B, c) with max |B|+ c > 1
has an MAI (resp. MCAI), then X has a shrinking MAI (resp. MCAI). However
here the following refinement is possible.

Corollary 1.7. Let X be a Banach space satisfying property M∗(a,B, c) with
max |B|+c > 1 and let Y be a closed subspace of a quotient space of X. If Y has an
M(C)AI (Kα), then (Kα) is shrinking.

Proof. Let Kαy −→ y, y ∈ Y , and sup ‖Kα‖ ≤ 1. By the above, Y ∗ =
span(w∗-sexpBY ∗), and therefore it suffices to show that K∗αy∗ −→ y∗ whenever
y∗ ∈ BY ∗ is strongly exposed by some y. But this is implied by (K∗αy

∗)(y) −→
y∗(y) = 1 since K∗αy

∗ ∈ BY ∗ .

Corollary 1.7 will be further developed in Corollary 2.3 below.
Arguing as in [17, Corollary 4.4 and Proposition 4.3], we can derive from Propo-

sition 1.5 the following refinement of Corollary 1.7 for basic sequences.

Corollary 1.8. Let X be a Banach space satisfying property M∗(a,B, c) with
max |B| + c > 1 and let Y be a closed subspace of a quotient space of X. Let
(en) be a basic sequence in Y . If the basis constant of (en) is strictly less than
max |B|+ c, then (en) is shrinking.

2. The impact of property M∗(a,B, c)
on shrinking approximations of the identity

The next lemma is fundamental for the results of the present paper. It shows
that property M∗(a,B, c) has a special impact on shrinking approximations of the
identity.

Lemma 2.1. Let X be a Banach space with property M∗(a,B, c) and let Y be
a separable closed subspace of a quotient space of X. If Y has a shrinking CAI
(Ln)∞n=1, then there exist Kn ∈ conv{Ln, Ln+1, . . . }, n ∈ N, so that

lim sup
n
‖aIY + bKn + cS‖ ≤ 1 ∀b ∈ B, ∀S ∈ BK(Y ).

Remark. It is known (this is an extension of classical results of Grothendieck) that
whenever an Asplund space has a shrinking AI (resp. CAI), it also has a shrinking
MAI (resp. MCAI) (cf. [17, Theorem 1.5], [5] or [6, p. 246] (for the case of AI)).

The proof of Lemma 2.1 relies on the following variant of the Simons sup-lim sup
theorem. For the sake of completeness, we present here its direct easy proof (cf.
[39, Lemma 2, Theorem 3]) which does not depend on an eigenvector argument (cf.
[40]).

Theorem 2.2 (Simons). Let (xn)∞n=1 be a bounded sequence in a Banach space
X. Let G be a bounded subset of X∗ and let F ⊂ G be such that, for all x =∑∞
n=1 λnxn with λn ≥ 0 and

∑∞
n=1 λn = 1, there exists f ∈ F satisfying Ref(x) =

supg∈G Reg(x). Then

σF := sup
f∈F

lim sup
n

Ref(xn) = sup
g∈G

lim sup
n

Reg(xn) =: σG.
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Proof. Since F ⊂ G, we have σF ≤ σG. Assume, on the contrary, that σF < σG.
Then σF < lim sup Reg0(xn) for some g0 ∈ G. Hence, there are δ > 0 and a
subsequence (yn)∞n=1 of (xn)∞n=1 so that

σF + δ < inf
n

Reg0(yn).(1)

Denote σ(x) = supg∈G Reg(x), x ∈ X , and

Ck = {
∞∑
n=k

λnyn : λn ≥ 0,
∞∑
n=k

λn = 1}, k ∈ N.

Since Ck is a bounded set,

inf
z∈Ck

σ(x+ z) > −∞ ∀x ∈ X, ∀k ∈ N.

Choose inductively z1 ∈ C1, z2 ∈ C2, . . . so that

σ(2kvk + zk+1) ≤ inf
z∈Ck+1

σ(2kvk + z) +
δ

2k+1
, k = 0, 1, . . . ,

where v0 = 0 and vk =
∑k

n=1 zn/2
n. Then put v =

∑∞
n=1 zn/2

n. Since zk+1 =
2k+1vk+1 − 2k+1vk and 2kv − 2kvk =

∑∞
n=k+1 2kzn/2n ∈ Ck+1, we have

σ(2k+1vk+1 − 2kvk) ≤ σ(2kv) +
δ

2k+1
= 2kσ(v) +

δ

2k+1
, k = 0, 1, . . . .(2)

Since v ∈ C1, there exists f ∈ F satisfying Ref(v) = σ(v). From (2) (note that∑m−1
k=0 2k = 2m − 1) we immediately get that

Ref(2mvm) =
m−1∑
k=0

Ref(2k+1vk+1 − 2kvk)

≤ (2m − 1)σ(v) + δ = 2mRef(v) + δ − σ(v), m ∈ N.
Hence, using that v ∈ C1 and 2mv − 2mvm ∈ Cm+1, we have

inf
n

Reg0(yn) ≤ inf
y∈C1

σ(y) ≤ σ(v) ≤ lim sup
m

Ref(2mv − 2mvm) + δ

≤ lim sup
m

Ref(ym) + δ ≤ σF + δ.

This contradicts (1).

Remark. The above argument also yields easy proofs of the Simons additive diag-
onal lemma (cf. [40]) and the Simons inequality (cf. [39, Lemma 2] or [19, Lemma
75]).

Proof of Lemma 2.1. We first prove that, for each f ∈ BL(Y )∗ ,

lim sup
n

Ref(aIY + bLn + cS) ≤ 1 ∀b ∈ B, ∀S ∈ BK(Y ).(3)

For any A ∈ L(Y ), using the weak∗ compactness of BL(Y )∗ , we have

sup{Ref(A) : f ∈ BL(Y )∗} = ‖A‖ = sup{Re(y ⊗ y∗)(A) : y ⊗ y∗ ∈ SY ⊗ SY ∗}

= max{Ref(A) : f ∈ SY ⊗ SY ∗
w∗}.

Hence, by Theorem 2.2, it suffices to prove (3) for each f ∈ SY ⊗ SY ∗
w∗

. Consider
f = w∗- lim yν⊗y∗ν , i.e., y∗ν(Ayν) −→ f(A), A ∈ L(Y ), with yν ∈ SY , y∗ν ∈ SY ∗ . By
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passing to a subnet, we may assume that (y∗ν) converges weak∗ to some y∗ ∈ BY ∗ .
From property M∗(a,B, c), we get that

lim sup
ν
‖ay∗ν + by∗ + cS∗y∗‖ ≤ 1.

Hence, for any fixed n ∈ N,

|f(aIY + bLn + cS)| = lim
ν
|ay∗ν(yν) + b(L∗ny

∗
ν)(yν) + c(S∗y∗ν)(yν)|

≤ lim sup
ν
|(ay∗ν + by∗ + cS∗y∗)(yν)|+ lim sup

ν
|(bL∗n + cS∗)(y∗ν − y∗)(yν)|

+ |b| lim sup
ν
|(L∗ny∗ − y∗)(yν)| ≤ 1 + |b|‖L∗ny∗ − y∗‖,

which implies (3) by taking lim supn.
Let us now fix S ∈ BK(Y ). We shall show that, for any n ∈ N and for any ε > 0,

there exists K ∈ conv{Ln, Ln+1, . . . } so that

‖aIY + bK + cS‖ ≤ 1 + ε ∀b ∈ B.(4)

Since K(Y ) is separable, the existence of the required (Kn)∞n=1 will then follow by
a standard diagonal argument.

To show (4), it is clearly enough to consider the case when B is finite, say B =
{b1, . . . , bm}. If (4) is false, then applying the Hahn-Banach separation theorem in
the product space

∏m
k=1 L(Y ) equipped with the maximum norm, we get functionals

f1, ..., fm ∈ L(Y )∗ with ‖f1‖+ · · ·+ ‖fm‖ = 1 so that

sup{Re(f1, . . . , fm)(A1, . . . , Am) : (A1, . . . , Am)

∈ B((−aIY − cS, . . . ,−aIY − cS), 1 + ε)}

= −Re
m∑
k=1

fk(aIY + cS) + 1 + ε ≤ Re
m∑
k=1

fk(bkK) ∀K ∈ conv{Ln, Ln+1, . . . }

(where B(x, r) denotes the closed ball with center x and radius r). Consequently,
by (3),

1 + ε ≤
m∑
k=1

lim sup
n

Refk(aIY + bkLn + cS) ≤
m∑
k=1

‖fk‖ = 1,

which is a contradiction.

In Section 3 below, we shall need the following immediate consequence of Lemma
2.1 and Corollary 1.7.

Corollary 2.3. Let X be a Banach space satisfying property M∗(a,B, c) with
max |B| + c > 1. If a separable closed subspace Y of a quotient space of X has
an MAI (resp. MCAI) (Ln)∞n=1, then Y also has a shrinking MAI (resp. MCAI)
(Kn)∞n=1 with Kn ∈ conv{Ln, Ln+1, . . . }, n ∈ N, such that

lim sup
n
‖aIY + bKn + cS‖ ≤ 1 ∀b ∈ B, ∀S ∈ BK(Y ).

Lemma 2.1, together with the remark after it, Lemma 1.1, and Corollary 2.3
yield, for separable Banach spaces, the following characterization of the existence
of special shrinking approximations of the identity.

Corollary 2.4. The following assertions are equivalent for a separable Banach
space X.
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1◦. X has a shrinking AI (resp. CAI) and property M∗(a,B, c).
2◦. X has a shrinking MAI (resp. MCAI) (Kn)∞n=1 satisfying

lim sup
n
‖aIX + bKn + cS‖ ≤ 1 ∀b ∈ B,(5)

for every S ∈ BK(X).
3◦. For every rank one operator S ∈ BK(X), X has a shrinking AI (resp. CAI)

(Kn)∞n=1 satisfying (5).

If max |B|+ c > 1, then 1◦, 2◦, and 3◦ are equivalent to the following assertion.

1◦◦. X has the MAP (resp. MCAP ) and property M∗(a,B, c).

Remark. If X∗ is separable and has an AI, then X has a shrinking AI (this easily
follows from the principle of local reflexivity) and, as mentioned above, X even has
a shrinking MAI. If X∗ is separable and has a CAI, then X may fail to have a
shrinking CAI [18]. Moreover, there is a Banach space X failing the MCAP such
that all its duals X∗, X∗∗, . . . have the MCAP and are separable [3].

Casazza and Kalton [4] define a separable Banach space X to have the reverse
monotone approximation property (RMAP) provided X has an AI (Kn)∞n=1 with
lim ‖IX−Kn‖ = 1. Corollary 2.4 shows, in particular, that X∗ has the RMAP if X∗

is separable, has the AP, and satisfies lim sup ‖x∗n − x∗‖ ≤ lim sup ‖x∗n‖ whenever
(x∗n)∞n=1 converges weak∗ to x∗ in X∗.

Note that the equivalence 1◦◦ ⇐⇒ 2◦ of Corollary 2.4 is immediate from Lemma
1.1, Corollary 1.7, and Lemma 2.1. The special case of this equivalence for (wM∗) =
M∗(1, {−2}, 0) was established by Lima [31, Theorem 4.2] based on Milman’s con-
verse to the Krein-Milman theorem and the Choquet integral representation theo-
rem. The special case of this equivalence for (M∗) = M∗(1, {−1}, 1) is a well-known
consequence of a theorem due to Kalton [27, Theorem 2.4] and the Kalton-Werner
theorem stated in the Introduction (the proof of the Kalton-Werner theorem in [28,
pp. 144–149] consists in a technical and quite long construction which, departing
from a shrinking MCAI (Ln)∞n=1 and using (M∗) to average a certain subsequence of
(Ln)∞n=1, gives a shrinking MCAI (Kn)∞n=1 with lim ‖I − 2Kn‖ = 1). Our approach
through the Simons sup-lim sup theorem is elementary and much shorter.

3. Separably determined approximations of the identity.

The main theorem

In the present section, we prove that the existence of the approximations of the
identity related to the M∗(a,B, c)-property is separably determined (see Theorems
3.3 and 3.4 below). This together with results of previous sections will give the
main result of the present paper (Theorem 3.5).

We begin by showing that property M∗(a,B, c) is separably determined.

Proposition 3.1. If all separable closed subspaces of a Banach space X have prop-
erty M∗(a,B, c), then X has property M∗(a,B, c).

Proof. If X fails property M∗(a,B, c), then

lim sup
ν
‖ax∗ν + bx∗ + cy∗‖ > lim sup

ν
‖x∗ν‖
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for some b ∈ B, x∗, y∗ ∈ X∗ with ‖y∗‖ < ‖x∗‖, and a bounded net (x∗ν) converging
weak∗ to x∗ in X∗. By passing to a subnet, we may assume that

inf
ν
‖ax∗ν + bx∗ + cy∗‖ > δ > sup

ν
‖x∗ν‖

for some δ > 0. Choose x0 ∈ SX and ν1 so that ‖y∗‖ < |x∗(x0)| and
|(x∗ν1

− x∗)(x0)| < 1. For k = 1, 2, . . . , choose inductively xk ∈ SX and νk+1 so
that

|(ax∗νk + bx∗ + cy∗)(xk)| > δ

and

|(x∗νk+1
− x∗)(x0)| < 1/(k + 1), . . . , |(x∗νk+1

− x∗)(xk)| < 1/(k + 1).

Put Y = span{x0, x1, . . . }. Then ‖y∗|Y ‖ < ‖x∗|Y ‖ and x∗νn(y) −→ x∗(y) for all
y ∈ Y, but

lim sup
n
‖(ax∗νn + bx∗ + cy∗)|Y ‖ ≥ δ > lim sup

n
‖x∗νn |Y ‖.

This means that Y fails property M∗(a,B, c).

For the following results, let us recall that, as everywhere, a, c ≥ 0 and B ⊂ K
is a compact set.

Lemma 3.2. Let X be a Banach space and T ∈ BL(X). If X has the MAP
(resp. MCAP ) and all its separable closed subspaces Y with an MAI (resp. MCAI)
(Ln)∞n=1 have the property that whenever S ∈ BK(Y ), then there exists a sequence
(Kn)∞n=1 in conv{L1, L2, . . . } satisfying

lim sup
n
‖aT |Y + bT |YKn + cS‖ ≤ 1 ∀b ∈ B,

then, for any S ∈ BK(X), there exists an MAI (resp. MCAI) (Kα) of X such that

lim sup
α
‖aT + bTKα + cS‖ ≤ 1 ∀b ∈ B.

Remark. For the results of this section, only the case T = IX of Lemma 3.2 is
needed. The general case will be used in Section 4 below.

Proof of Lemma 3.2. We shall prove the result only in the MCAP case. The MAP
case will be evident from the proof below. We shall develop an idea from our paper
[36] (where it was used to show that M -ideals of compact operators are separably
determined).

We denote by sop the strong operator topology on L(X). We assume for con-
tradiction that the condition of the lemma is not satisfied: for some S ∈ BK(X),
there is no such MCAI. Then there are ε > 0 and a convex sop neighbourhood U0

of I = IX so that

max
b∈B
‖aT + bTK + cS‖ > 1 + ε ∀K ∈ BK(X) ∩ U0.(6)

We clearly may assume that B is finite, say B = {b1, . . . , bm}.
Let (Lα)α∈A be a net in BK(X) converging to I in the sop. We shall pick a

sequence α1, α2, . . . in A and define a separable closed subspace Y ⊂ X so that
S(X) ⊂ Y , Kn(X) ⊂ Y for all Kn := Lαn , Kny −→ y for all y ∈ Y and

max
1≤l≤m

‖(aT + blTK + cS)|Y ‖ > 1 +
ε

2
∀K ∈ conv{K1,K2, . . . }.

This will contradict the assumption and complete the proof.
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For all n ∈ N, we denote by Λn a finite ε/(4 max |B| + 1)-net in the subset
{(λ1, . . . , λn) : λk ≥ 0, λ1 + · · · + λn = 1} of `n1 . We begin by choosing any
K1 := Lα1 ∈ U0 such that ‖K1x − x‖ < 1 for all x ∈ S(BX). Let us then
assume that a convex sop neighbourhood Un−1 ⊂ Un−2 (where U−1 := U0) and
Kn := Lαn ∈ Un−1 have been chosen. We consider Sl,λ ∈ L(X), l ∈ {1, . . . ,m},
λ = (λ1, . . . , λn) ∈ Λn, defined by

Sl,λ = aT + blT (λ1K1 + · · ·+ λnKn) + cS,

select xl,λ ∈ BX so that ‖Sl,λxl,λ‖ > ‖Sl,λ‖ − ε/4, and put Cn = {xl,λ : l ∈
{1, . . . ,m}, λ ∈ Λn}. Further, let the product space L :=

∏m
l=1 L(X) be equipped

with the maximum norm and also with the product topology sop×· · ·×sop. Denote

!Fn = (1 + ε)BL − {(b1TK, . . . , bmTK) : K ∈ conv{K1, . . . ,Kn}} − {(cS, . . . , cS)}

and notice that Fn is closed in sop × · · · × sop. Since (aT, . . . , aT ) /∈ Fn (by (6)),
there exists a convex sop neighbourhood Un ⊂ Un−1 of I so that, for the convex
sop neighbourhood Vn := Un + {T − I} of T , we have (aVn × · · · × aVn) ∩ Fn = ∅,
which implies

max
1≤l≤m

‖aL+ blTK + cS‖ > 1 + ε ∀K ∈ conv{K1, . . . ,Kn}, ∀L ∈ Vn.(7)

Finally, choose Kn+1 := Lαn+1 ∈ Un such that

‖Kn+1x− x‖ <
1

n+ 1
∀x ∈ C1 ∪ · · · ∪ Cn ∪ S(BX) ∪K1(BX) ∪ · · · ∪Kn(BX).

Let us put Y = {x ∈ X : limKnx = x}. It is straightforward to check that Y is
a separable closed subspace of X , S(X) ⊂ Y , and Cn ∪Kn(X) ⊂ Y for all n ∈ N.
By definition, Kny −→ y for all y ∈ Y . Moreover, if K ∈ conv{K1,K2, . . . }, then
K ∈ conv{K1, . . . ,Kn} for some n. Hence, for some λ ∈ Λn and all l = 1, . . . ,m,
we have ‖aT + blTK + cS − Sl,λ‖ < ε/4. Therefore

max
1≤l≤m

‖(aT + blTK + cS)|Y ‖ > max
1≤l≤m

‖Sl,λ|Y ‖ −
ε

4

> max
1≤l≤m

‖Sl,λ‖ −
ε

2
> 1 +

ε

2

by (7) (recall that T ∈ Vn). As it was observed above, this completes the proof.

Theorem 3.3. Suppose that max |B| + c > 1. If a Banach space X has the
MAP (resp. MCAP ) and all its separable closed subspaces Y with the MAP (resp.
MCAP ) have the property that, for any rank one operator S ∈ BK(Y ), there exists
a shrinking CAI (Kn)∞n=1 satisfying

lim sup
n
‖aIY + bKn + cS‖ ≤ 1 ∀b ∈ B,(8n)

then, for any S ∈ BK(X), there exists a shrinking MAI (resp. MCAI) (Kα) of X
such that

lim sup
α
‖aIX + bKα + cS‖ ≤ 1 ∀b ∈ B.(8α)

Proof. First we claim that X has property M∗(a,B, c). In fact, let us consider any
separable closed subspace Y of X . By Proposition 3.1, it suffices to show that Y
has property M∗(a,B, c). Since X has the M(C)AP, Y is contained in a separable
closed subspace Z of X having the M(C)AP (the proof of this fact for the MCAP
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is the same as for the MAP (cf., e.g., [41, p. 606])). Then by Lemma 1.1, Z has
M∗(a,B, c) and consequently so does Y .

Since X has M∗(a,B, c) with max |B|+ c > 1, by Corollary 2.3, it follows from
Lemma 3.2 that, for any S ∈ BK(X), there exists an M(C)AI (Kα) satisfying (8α).
This (Kα) is shrinking by Corollary 1.7.

It is known that a Banach space X has the MAP if and only if every separable
closed subspace of X is contained in a separable closed subspace Y with the MAP (see
[23, Lemma 1 and the proof of Corollary 1] and [24, Lemma 3, (b)], or [41, p. 606]).
(The “if” part of this result relies on [32, Lemma 1] and a compactness argument
of Lindenstrauss.) We shall use this result to obtain the following theorem.

Theorem 3.4. Suppose that max |B| + c > 1. A Banach space X has, for any
S ∈ BK(X), a shrinking MAI (Kα) satisfying (8α) if and only if every separable
closed subspace of X is contained in a separable closed subspace Y having, for any
S ∈ BK(Y ), a shrinking MAI (Kn)∞n=1 satisfying (8n).

Proof. If X has, for any S ∈ BK(X), a shrinking MAI (Kα) satisfying (8α), then
X has property M∗(a,B, c) (cf. Lemma 1.1). Let us consider a separable closed
subspace of X . It is contained in a separable closed subspace Y with the MAP. By
Corollary 2.3, Y has a desired MAI (Kn)∞n=1. This proves the necessity part.

For the sufficiency, it is clear – from the result stated before Theorem 3.4 – that
X has the MAP. Further, we can apply Theorem 3.3 to get the desired (Kα). In
fact, consider any separable closed subspace Y of X with the MAP. Then Y is
contained in a separable subspace Z having, for any S ∈ BK(Z), the special MAI
given by assumption. This implies (cf. Lemma 1.1) that Z has M∗(a,B, c). And
by Corollary 2.3, Y satisfies the assumption of Theorem 3.3.

Remark. Theorem 3.4 remains valid if one replaces “for any S” by “for any rank
one S”. This is clear from its proof.

Question. We do not know whether Theorem 3.4 remains valid if one replaces MAI
by MCAI. We do not know whether it is true that X has the MCAP whenever
every separable closed subspace of X is contained in a separable closed subspace
having the MCAP. If the last assertion is true, then Theorem 3.4 remains also valid
for the MCAI case (as the above proof shows).

We have essentially proved the following (main) result.

Theorem 3.5. Suppose that max |B| + c > 1. Then the following assertions are
equivalent for a Banach space X.

1◦. For any S ∈ BK(X), there exists a shrinking MAI (resp. MCAI ) (Kα) satis-
fying (8α).

1◦◦. For any rank one operator S with ‖S‖ ≤ 1, there exists a shrinking MAI
(resp. MCAI ) (Kα) satisfying (8α).

2◦. X has the MAP (resp. MCAP) and property M∗(a,B, c).
3◦. X has the MAP (resp. MCAP) and, for every separable closed subspace Y

of X having the MAP (resp. MCAP ), there exists a shrinking MAI (resp.
MCAI ) (Kn)∞n=1 satisfying (8n) for any S ∈ BK(Y ).

Proof. The implication 1◦ =⇒ 1◦◦ is obvious. The implications 1◦◦ =⇒ 2◦, 2◦ =⇒
3◦, and 3◦ =⇒ 1◦ are immdiate from Lemma 1.1, Corollary 2.3, and Theorem 3.3,
respectively.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2814 EVE OJA

We would like to point out the next immediate corollary.

Corollary 3.6. Suppose that max |B| > 1. A Banach space X has a shrinking
MAI (resp. MCAI) (Kα) satisfying

lim sup
α
‖aIX + bKα‖ ≤ 1 ∀b ∈ B

if and only if X has the MAP (resp. MCAP ) and property M∗(a,B, 0); that is,

lim sup
ν
‖ax∗ν + bx∗‖ ≤ lim sup

ν
‖x∗ν‖ ∀b ∈ B

whenever a bounded net (x∗ν) converges weak∗ to x∗ in X∗.

The special case a = 1, B = {−2} of Corollary 3.6 was proved by Lima [31,
Theorem 4.2] for separable X and (with a different argument) for reflexive X . This
case of Corollary 3.6 gives an internal geometric characterization of the so-called
unconditional M(C)AP with adjoint operators (cf. [4], [16]). As it can be seen
from Corollary 3.6, the complex version of this unconditional M(C)AP (cf. [16]) is
intrinsically characterized by property M∗(1, {b ∈ C : |b + 1| = 1}, 0). Corollary
3.6 also applies to characterize shrinking MAI related to Lemma 2.2 of [16] through
property M∗(a,B, 0) with a > 0 and B compact. Corollary 3.6 will further be
developed in Corollary 4.5 below.

Let us finally mention the following immediate conclusion from Corollary 3.6
because it represents the general (i.e., non-separable) version of the Kalton-Werner
theorem (cf. the Introduction) giving also its extension to the complex case.

Corollary 3.7. If a Banach space X has the MAP (resp. MCAP ) and property
(M∗), then X has a shrinking MAI (resp. MCAI) (Kα) satisfying

lim ‖IX − (1 + λ)Kα‖ = 1

whenever |λ| = 1.

4. Applications to ideals of compact and approximable operators

According to the terminology in [16], a closed subspace K 6= {0} of a Banach
space L is said to be an ideal in L if there exists a norm one projection P on L∗
with kerP = K⊥ = {f ∈ L∗ : f |K = 0}. In this case, we shall say that P is an
ideal projection. If ‖Pf‖ + ‖f − Pf‖ = ‖f‖ for all f ∈ L∗, then K is called an
M -ideal. The class of M -ideals is extensively studied by many authors (see, e.g.,
the monograph [20] for results and references). If ‖I − 2P‖ = 1, then K is called
a u-ideal [4], and its complex version with ‖I − (1 + λ)P‖ = 1 whenever |λ| = 1
is called an h-ideal [16]. A deep study of u- and h-ideals was made in [16] (see
also [4], [8], [9], [14], [15], [21], [31], [35], [37]). If there are r, s ∈ (0, 1] so that
r‖Pf‖ + s‖f − Pf‖ ≤ ‖f‖ for all f ∈ L∗, then K is called an ideal satisfying the
M(r, s)-inequality. Those ideals of compact operators were recently studied in [2].
Finally, let us recall that every Banach space X is an ideal in X∗∗ with respect to
the canonical projection πX of X∗∗∗ onto X∗.

As an application of the previous sections, we shall prove the following theorem
which, in particular, yields an alternative unified approach to the theories of M -,
u-, and h-ideals of compact operators (cf. [20, Chapter VI], together with [28], and
[4], [16], [31]).
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Let a, c ≥ 0 and let B ⊂ K be a compact set. We shall need the following natural
extension of property M∗(a,B, c) from spaces to operators. We say that T ∈ BL(X)

has property M∗(a,B, c) if

lim sup
ν
‖T ∗(ax∗ν + bx∗) + cy∗‖ ≤ lim sup

ν
‖x∗ν‖ ∀b ∈ B

whenever x∗, y∗ ∈ X∗ satisfy ‖y∗‖ ≤ ‖x∗‖, and (x∗ν ) is a bounded net converging
weak∗ to x∗ in X∗.

Theorem 4.1. Let X be a Banach space, let K = A(X) (resp. K = K(X)), and
let L be a closed subspace of L(X) containing K and IX . If max |B|+ c > 1, then
the following assertions are equivalent.

1◦. K is an ideal in L with an ideal projection P such that

‖af + bPf‖+ c‖Pf‖ ≤ ‖f‖ ∀b ∈ B, ∀f ∈ L∗,

X is an Asplund space, and X∗ = span(w∗-sexpBX∗).
1◦◦. K is an ideal in L with an ideal projection P such that

‖af + bPf‖+ c‖Pf‖ ≤ ‖f‖ ∀b ∈ B, ∀f ∈ L∗,

and

‖ax∗∗∗ + bπXx
∗∗∗‖+ c‖πXx∗∗∗‖ ≤ ‖x∗∗∗‖ ∀b ∈ B, ∀x∗∗∗ ∈ X∗∗∗.

2◦. X has the MAP (resp. MCAP ) and every T ∈ BL has property M∗(a,B, c).
3◦. There exists a shrinking MAI (resp. MCAI) (Kα) such that, for any

S, T ∈ BL,

lim sup
α
‖aT + (bT + cS)Kα‖ ≤ 1 ∀b ∈ B.

4◦. There exists a shrinking MAI (resp. MCAI) (Kα) such that, for any
S ∈ BK(X) and any T ∈ BL,

lim sup
α
‖aT + bTKα + cS‖ ≤ 1 ∀b ∈ B.(9)

5◦. For any rank one operator S with ‖S‖ ≤ 1 and any T ∈ BL, there exists a
shrinking MAI (resp. MCAI) (Kα) satisfying (9).

Lemma 4.2. Let X be a Banach space and T ∈ BL(X).

(a) If, for any rank one operator S with ‖S‖ ≤ 1, there exists a net (Kα) ⊂ K(X)
such that K∗αx

∗ −→ T ∗x∗, x∗ ∈ X∗, and

lim sup
α
‖aT + bKα + cS‖ ≤ 1 ∀b ∈ B,

then T has property M∗(a,B, c).
(b) Suppose that X has the MAP (resp. MCAP ). If X and T have property

M∗(a,B, c) with max |B| + c > 1, then, for any S ∈ BK(X), there exists a
shrinking MAI (resp. MCAI) (Kα) satisfying (9).

Proof. Replacing IX by T in the proof of Lemma 1.1 gives the proof of (a).
Replacing IY by T |Y in the proof of Lemma 2.1 essentially gives the following

fact. Let Y be a closed subspace of a Banach space X and let T ∈ BL(X) have
property M∗(a,B, c). If there exists a sequence Ln : Y −→ X , n ∈ N, of compact
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operators such that L∗nx
∗ −→ (T |Y )∗x∗, x∗ ∈ X∗, then, for any compact operator

S : Y −→ X, ‖S‖ ≤ 1, there exist Kn ∈ conv{Ln, Ln+1, . . . }, n ∈ N, so that

lim sup
n
‖aT |Y + bKn + cS‖ ≤ 1 ∀b ∈ B.

We shall apply Lemma 3.2. Consider any separable closed subspace Y of X
with an M(C)AI (Ln)∞n=1 and an operator S ∈ BK(Y ). Since X satisfies property
M∗(a,B, c) with max |B| + c > 1, by Corollary 1.7, (Ln)∞n=1 is shrinking and
therefore (T |Y Ln)∗x∗ −→ (T |Y )∗x∗, x∗ ∈ X∗. By the above fact, there are Kn ∈
conv{Ln, Ln+1, . . . }, n ∈ N, so that

lim sup
n
‖aT |Y + bT |YKn + cS‖ ≤ 1 ∀b ∈ B.

An immediate application of Lemma 3.2 together with Corollary 1.7 completes the
proof of (b).

Proof of Theorem 4.1. We shall need the following well-known result of J. Johnson
[22]. Let (Kα) be a shrinking M(C)AI for X . Then, by passing to a subnet of
(Kα), one may assume that limα f(TKα) exists for all f ∈ L∗ and T ∈ L, and
P : L∗ −→ L∗ defined by

(Pf)(T ) = lim
α
f(TKα), f ∈ L∗, T ∈ L,(10)

is a norm one projection with kerP = K⊥ (this means that K is an ideal in L and
P is an ideal projection).

On the other hand, if K is an ideal in L, X is an Asplund space, and X∗ =
span(w∗-sexpBX∗), then, by [2, Proposition 3.2], X admits a shrinking M(C)AI
(Kα) and the ideal projection is unique.

1◦ =⇒ 3◦. By the above, X admits a shrinking M(C)AI (Kα) which may be
assumed to satisfy (10).

The main idea of the argument below is due to W. Werner [43, proof of Theorem
3.5] who applied it to studying inner M -ideals in unital Banach algebras. However,
we shall not employ Banach algebra techniques but follow [2, proof of Theorem
3.1].

For T ∈ L, denote by LT the operator on L defined by LT (S) = TS, S ∈ L. We
consider the set of all β = (Φ, F,H, ε), where Φ ⊂ L∗∗, F ⊂ L∗, H ⊂ L are finite
dimensional subspaces, Φ containing P ∗I, and ε > 0, directed in a natural way. As
in [2, proof of Theorem 3.1], using a version of the principle of local reflexivity, due
to Behrends [1], we have, for every β, an operator

Tβ : span(Φ ∪ {L∗∗T φ : T ∈ H, φ ∈ Φ}) −→ L
so that

TβT = T ∀T ∈ Φ ∪ L,
‖Tβφ‖ ≤ (1 + ε)‖φ‖ ∀φ ∈ Φ,

‖TTβ(P ∗I)− Tβ(P ∗T )‖ ≤ ε‖T ‖ ∀T ∈ H,
(note that P ∗T = L∗∗T (P ∗I)), and

lim
β
f(Tβ(P ∗I)) = (P ∗I)(f) ∀f ∈ L∗.

Also since

lim
α
f(Kα) = (P ∗I)(f) ∀f ∈ L∗
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(cf. (10)), after switching to the product index set {(α, β)} (with the product
ordering) and passing to convex combinations, we may assume that

‖Kα − Tα(P ∗I)‖ −→ 0.

Consider S, T ∈ BL. The above conditions easily yield that, for any b ∈ B,

lim sup
α
‖aT + (bT + cS)Kα‖ = lim sup

α
‖aTαT + (bT + cS)Tα(P ∗I)‖

= lim sup
α
‖Tα(aT + P ∗(bT + cS))‖

≤ ‖aT + bP ∗T + cP ∗S‖.

The last norm is not greater than 1. In fact, the inequality of 1◦ means that the
operator

f 7−→ (af + bPf, cPf)

from L∗ to L∗ ⊕1 L∗ has norm ≤ 1. Since its adjoint also has norm ≤ 1, we have,
in particular, that

‖aT + bP ∗T + cP ∗S‖ ≤ max{‖T ‖, ‖S‖} ≤ 1.

3◦ =⇒ 4◦ is clear because ‖S − SKα‖ = ‖(K∗α − IX∗)S∗‖ −→ 0 whenever
S ∈ K(X) and the existence of an MAI for X implies that A(X) = K(X) (the last
fact is well known and easy to prove (cf., e.g., [33], p. 32).

4◦ =⇒ 5◦ is obvious.
5◦ =⇒ 2◦ immediately follows from Lemma 4.2, (a).
2◦ =⇒ 1◦◦. We first note that πX satisfies the required inequality because X (or

equivalently IX) has property M∗(a,B, c) (see Proposition 1.3). Further, let (Lα)
denote an M(C)AI for X . According to a well-known result of J. Johnson [22] (this
is the symmetric version of the result used in the beginning of the proof of Theorem
4.1), by passing to a subnet of (Lα), one may assume that limα f(LαT ) exists for
all f ∈ L∗ and T ∈ L, and K is an ideal in L with respect to the ideal projection
P defined by

(Pf)(T ) = lim
α
f(LαT ), f ∈ L∗, T ∈ L.(11)

Let us fix b ∈ B and f ∈ L∗. For given ε > 0, we choose S ∈ BK (using (11) here)
and T ∈ BL so that

‖af + bPf‖+ c‖Pf‖ − ε ≤ (af + bPf)(T ) + cf(S).

By Lemma 4.2, (b), for S and T , there exists a shrinking M(C)AI (Kα) satisfying
(9). By the above, we also may assume that (Kα) satisfies (10). Consequently,

‖af + bPf‖+ c‖Pf‖ − ε ≤ lim
α
f(aT + bTKα + cS) ≤ ‖f‖.

Since ε is arbitrary, this finishes the proof.
1◦◦ =⇒ 1◦. It suffices to show that r(V ) ≤ 1/(max |B|+ c) for any proper closed

subspace V ofX∗ because thenX is an Asplund space andX∗ = span(w∗-sexpBX∗)
by the proof of Corollary 1.6. As in the proof of Proposition 1.5, we may assume
that V = kerx∗∗ where x∗∗ ∈ SX∗∗ . Let β = max |B| = b sgn b for some b ∈ B. We
clearly have the inequality

‖(a sgn b+ βπX + cπX)x∗∗∗‖ ≤ ‖x∗∗∗‖ ∀x∗∗∗ ∈ X∗∗∗,
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and therefore

‖IX∗∗∗ +
β + c

a sgn b
πX‖ ≤

1
a
.

By [16, Proposition 2.3], this condition implies the existence of a net (xν) in BX
converging weak∗ to x∗∗ in X∗∗ such that

lim sup
ν
‖x∗∗ +

β + c

a sgn b
xν‖ ≤

1
a
.

We now continue similarly to [16, the proof of Proposition 2.7]:

(β + c)r(V ) ≤ (β + c) inf
ν

sup
x∗∈BV

|x∗(xν)|

= a inf
ν

sup
x∗∈BV

|x∗∗(x∗) + x∗(
β + c

a sgn b
xν)| ≤ 1

by the above inequality. This completes the proof.

Remark 1. (It concerns assertions 1◦ and 1◦◦ of Theorem 4.1.) If K is an M -ideal in
L, then X is an M -ideal in X∗∗ (i.e., ‖x∗∗∗−πXx∗∗∗‖+‖πXx∗∗∗‖ = ‖x∗∗∗‖, x∗∗∗ ∈
X∗∗∗). This can be shown by quite a direct application of the 3-ball property (cf.
[30] or [20, p. 291]). Further, if X is an M -ideal in X∗∗, then X is an Asplund space
and X∗ = span(w∗-sexpBX∗) (cf., e.g., [20, pp. 126 and 127]). More generally (cf.
[2, Lemma 2.3, Proposition 2.1], relying on a different argument, one can show
that X is an Asplund space and X∗ = span(w∗-sexpBX∗) whenever K is an ideal
satisfying the M(r, s)-inequality in L for some r, s ∈ (0, 1] with r + s/2 > 1. On
the other hand, for the sake of contrast, let us point out that, e.g., K(`1) is a u-
ideal in L(`1). [In fact, the ideal projection defined by the procedure of J. Johnson
(described in the proof of 2◦ =⇒ 1◦◦), departing from the sequence of the natural
projections associated to the unit vector basis of `1, provides the u-ideal property
for K(`1) in L(`1).]

Remark 2. (It concerns assertion 2◦ of Theorem 4.1.) If X has property (M∗) =
M∗(1, {−1}, 1), then (as it is essentially shown in [27, Lemma 2.2]), every T ∈
BL(X) has property (M∗). Obviously, every T ∈ BL(X) has property M∗(a,B, 0)
whenever X has M∗(a,B, 0). It can also be shown that every T ∈ Bspan(K(X)∪{IX})
has property M∗(a, {−a}, c) whenever X has M∗(a, {−a}, c). [For a proof, let us
consider T = K + λI with K ∈ K(X) and ‖T ‖ ≤ 1. Note that |λ| ≤ 1 because,
otherwise, K would be invertible. Hence λ = reiφ with r ∈ [0, 1]. Let x∗, y∗ ∈ X∗
satisfy ‖y∗‖ ≤ ‖x∗‖ and let (x∗ν) be a bounded net converging weak∗ to x∗ in X∗.
Then, using the property M∗(a, {−a}, c) for X (which clearly implies that c ≤ 1),
we get

lim sup
ν
‖T ∗(ax∗ν − ax∗) + cy∗‖ = lim sup

ν
‖reiφ(ax∗ν − ax∗) + cy∗‖

≤ r lim sup
ν
‖ax∗ν − ax∗ + ce−iφy∗‖+ (1− r)c‖y∗‖

≤ r lim sup
ν
‖x∗ν‖+ (1 − r)‖x∗‖ ≤ lim sup ‖x∗ν‖.]

We do not know whether the last claim can be extended to all T ∈ BL(X).

In view of the above remarks, the next three Corollaries 4.3–4.5 are immediate
from Theorems 4.1 and 3.5. [Concerning condition 4◦ of Corollary 4.5, let us recall
(cf. the proof of Theorem 3.3) that if X has the MCAP, then any separable closed
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subspace of X is contained in a separable closed subspace Y of X having the MCAP.
Hence, if Y ∗ is separable for all such subspaces Y , then X is an Asplund space.]

Corollary 4.3. The following assertions are equivalent for a Banach space X.
1◦. K(X) is an M -ideal in L(X).
2◦. K(X) is an M -ideal in span(K(X) ∪ {IX}).
3◦. X has the MCAP and property (M∗).
4◦. There exists a shrinking MCAI (Kα) such that

lim sup
α
‖T (IX −Kα) + SKα‖ ≤ 1 ∀S, T ∈ BL(X).

5◦. There exists a shrinking MCAI (Kα) such that

lim sup
α
‖T (IX −Kα) + S‖ ≤ 1 ∀S ∈ BK(X), ∀T ∈ BL(X).

6◦. There exists a shrinking MCAI (Kα) such that

lim sup
α
‖IX −Kα + S‖ ≤ 1 ∀S ∈ BK(X).

7◦. For any rank one operator S with ‖S‖ ≤ 1, there exists a shrinking MCAI
(Kα) satisfying

lim sup
α
‖IX −Kα + S‖ ≤ 1.

8◦. X has the MCAP and K(Y ) is an M -ideal in L(Y ) for all separable closed
subspaces Y of X having the MCAP .

The equivalences 1◦ ⇐⇒ 4◦ and 1◦ ⇐⇒ 5◦ of Corollary 4.3 are essentially
due to W. Werner [43] and D. Werner [42], respectively. For separable X , the
equivalences 1◦ ⇐⇒ 2◦ ⇐⇒ 6◦ and 1◦ ⇐⇒ 3◦ are, respectively, due to Kalton [27]
and Kalton and D. Werner ([27], [28]). For reflexive X , the equivalence 1◦ ⇐⇒ 3◦

was established by Lima [31]. The extensions of 1◦ ⇐⇒ 2◦ ⇐⇒ 6◦ and 1◦ ⇐⇒ 3◦

to arbitrary (nonseparable) X were proved by the author, respectively, in [34] (cf.
also [20, p. 299]) and [36] using methods other than those in this paper. The
equivalence 1◦ ⇐⇒ 7◦ is new and 1◦ ⇐⇒ 8◦ is due to the author [36], where it was
proved relying on the theory of M -ideals of compact operators [20, Chapter VI].

Corollary 4.4. Let X be a Banach space and let I(X) = span(K(X) ∪ {IX}). If
r, s ∈ (0, 1] satisfy r + s/2 > 1, then the following assertions are equivalent.

1◦. K(X) is an ideal satisfying the M(r, s)-inequality in I(X).
2◦. X has the MCAP and property M∗(s, {−s}, r).
3◦. There exists a shrinking MCAI (Kα) such that

lim sup
α
‖sT (IX −Kα) + rSKα‖ ≤ 1 ∀S, T ∈ BI(X).

4◦. For any rank one operator S with ‖S‖ ≤ 1, there exists a shrinking MCAI
(Kα) satisfying

lim sup
α
‖s(IX −Kα) + rS‖ ≤ 1.

5◦. X has the MCAP and K(Y ) is an ideal satisfying the M(r, s)-inequality in
I(Y ) for all separable closed subspaces Y of X having the MCAP .

The equivalence 1◦ ⇐⇒ 3◦ of Corollary 4.4 is due to [2].
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Corollary 4.5. If max |B| > 1, then the following assertions are equivalent for a
Banach space X.

1◦. K(X) is an ideal in L(X) with an ideal projection P such that ‖aIL(X)∗ +
bP‖ ≤ 1 for all b ∈ B, X is an Asplund space, and X∗ = span(w∗-sexpBX∗).

1◦◦. K(X) is an ideal in L(X) with an ideal projection P such that ‖aIL(X)∗ +
bP‖ ≤ 1 for all b ∈ B, and ‖aIX∗∗∗ + bπX‖ ≤ 1 for all b ∈ B.

2◦. X has the MCAP and property M∗(a,B, 0); that is,

lim sup
ν
‖ax∗ν + bx∗‖ ≤ lim sup

ν
‖x∗ν‖ ∀b ∈ B

whenever a bounded net (x∗ν ) converges weak∗ to x∗ in X∗.
3◦. There exists a shrinking MCAI (Kα) satisfying

lim sup
α
‖aIX + bKα‖ ≤ 1 ∀b ∈ B.

4◦. X is an Asplund space having the MCAP and every separable closed subspace
Y of X having the MCAP satisfies the following: K(Y ) is an ideal in L(Y )
with an ideal projection P such that ‖aIL(Y )∗ + bP‖ ≤ 1 for all b ∈ B and
Y ∗ = span(w∗-sexpBY ∗).

According to a theorem of Kalton [27], if K(X) is an M -ideal in L(X) and Y is
a closed subspace of a quotient space of X , then K(Y ) is an M -ideal in L(Y ) if and
only if Y has the MCAP (see [27] for the case of separable X and [34] or [20, p.
301] for the general case). Since property M∗(a,B, c) is inherited by subspaces of
quotient spaces (cf. Section 1), this theorem and analogous results (with obvious
modifications) for ideals satisfying the M(r, s)-inequality and for u- and h-ideals
are immediate from Corollaries 4.3, 4.4 and 4.5 (cf. resp. equivalences 1◦ ⇐⇒ 3◦,
1◦ ⇐⇒ 2◦, and 1◦ ⇐⇒ 2◦ of these corollaries).

The equivalence 2◦ ⇐⇒ 3◦ of Corollary 4.5 is contained in Corollary 3.6 above
(see also bibliographical references after Corollary 3.6). The implication 1◦ =⇒ 3◦

can also be deduced from [16, Lemma 2.2] where ideal projections P satisfying
‖aI + bP‖ ≤ 1, b ∈ B, were characterized in the general setting.

Let us remark that if X is reflexive, then X is an Asplund space and X∗ =
span(w∗-sexpBX∗). The most important particular cases of Corollary 4.5 are those
concerning u-ideals and h-ideals of compact operators; that is, the cases when a = 1,
B = {−2} and a = 1, B = {−(1 + λ) : λ ∈ C, |λ| = 1}. For separable reflexive
X having the approximation property and u-ideals, the equivalence 1◦ ⇐⇒ 3◦ of
Corollary 4.5 is essentially due to Casazza and Kalton [4, Theorem 3.9]. It was
extended to reflexive X by Lima [31, Corollary 4.4]. For separable reflexive X and
both u- and h-ideals, the equivalence 1◦ ⇐⇒ 3◦ was proved in [16, Theorem 8.3,
(a)] by Godefroy, Kalton, and Saphar using the fact that the points of Fréchet
smoothness form a dense Gδ set in both X and X∗. By similar arguments, also ap-
plying the theory of hermitian operators, the equivalence 1◦◦ ⇐⇒ 3◦ was essentially
proved in [16, Theorem 8.3, (b)] for h-ideals under the separability assumption of
X∗. We would like to point out Corollary 4.6 below as an improvement of these
results.

Let us recall [16] that X is said to be a strict u-ideal in X∗∗ whenever X is a
u-ideal in X∗∗ with respect to an ideal projection P such that ranP is a norming
subspace of (X∗∗)∗. By [16, Proposition 5.2, Theorem 6.6], an Asplund space X is
a strict u-ideal (resp. an h-ideal) in X∗∗ if and only if ‖IX∗∗∗ − 2πX‖ = 1 (resp.
‖IX∗∗∗ − (1 + λ)πX‖ = 1 for |λ| = 1). From this, Corollary 4.5, and the fact that
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any MCAI for X is shrinking whenever X∗ = span(w∗-sexpBX∗) (cf. the proof of
Corollary 1.7), the following is immediate.

Corollary 4.6. The following assertions are equivalent for an Asplund space X.
1◦. K(X) is a u-ideal (resp. an h-ideal) in L(X) and X is a strict u-ideal (resp.

an h-ideal) in X∗∗.
2◦. There exists a shrinking MCAI (Kα) satisfying limα ‖IX − 2Kα‖ = 1 (resp.

limα ‖IX − (1 + λ)Kα‖ = 1 for |λ| = 1).
If, in addition, X∗ = span(w∗-sexpBX∗), then 1◦ and 2◦ are equivalent to the
following assertions.
1◦◦. K(X) is a u-ideal (resp. an h-ideal) in L(X).
2◦◦. There exists an MCAI (Kα) satisfying limα ‖IX − 2Kα‖ (resp. limα ‖IX −

(1 + λ)Kα‖ = 1 for |λ| = 1).

Corollaries 4.3–4.6, with the obvious modifications (see Theorem 4.1 and recall
that A(X) = K(X) whenever X has an MAI), remain valid for the space A(X)
instead of K(X). The A(X) versions of these corollaries together with Theorem 3.4
yield the next results (from which in Corollary 4.9, one also needs the observation
that the equality ‖IX∗∗∗− (1+λ)πX‖ = 1 with |λ| = 1 for X is shared by subspaces
of X) about separably determined ideals of approximable operators.

Corollary 4.7. Let X be a Banach space. Then A(X) is an M -ideal in L(X) if
and only if every separable closed subspace of X is contained in a separable closed
subspace Y for which A(Y ) is an M -ideal in L(Y ).

Corollary 4.8. Let X be a Banach space and let I(X) = span(A(X) ∪ {IX}).
If r, s ∈ (0, 1] satisfy r + s/2 > 1, then A(X) is an ideal satisfying the M(r, s)-
inequality in I(X) if and only if every separable closed subspace of X is contained
in a separable closed subspace Y for which A(Y ) is an ideal satisfying the M(r, s)-
inequality in I(Y ).

Corollary 4.9. Let X be an Asplund space which is a strict u-ideal (resp. an h-
ideal ) in X∗∗. Then A(X) is a u-ideal (resp. an h-ideal) in L(X) if and only if
every separable closed subspace of X is contained in a separable closed subspace Y
for which A(Y ) is a u-ideal (resp. an h-ideal) in L(Y ).

Question. We do not know whether Corollaries 4.7–4.9 hold for compact operators
(cf. the Question after Theorem 3.4).
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