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In this paper, we shall study differential geometric properties of bounded
domains in Cn. Here is the summary of our results.

We consider an w-dimensional complex manifold M and the Hilbert space
of square integrable holomorphic re-forms on M. After Bergman [3; 4; 5], we
define the kernel form on M (instead of the kernel function) and, under cer-
tain assumptions, we define the invariant metric of Bergman. This method of
generalizing the theory of S. Bergman (although the generalization is not
essential) allows us to define the Bergman metric on certain compact com-
plex manifolds.

Some elementary properties of the kernel form and the Bergman metric
(mostly already classical) are studied for the sake of completeness. Then we
reexamine the theorem of H. Cartan on the group of holomorphic transforma-
tions of a bounded domain from the differential geometric point of view.

We study also differential geometric properties of a manifold M which
admits a discontinuous group D of holomorphic transformations such that
M/D is compact. It should be noted that such a manifold possesses properties
similar to those of a homogeneous manifold.

Bremermann has studied the bounded domains with the following prop-
erty (P): the kernel function goes to infinity at every boundary point [8]. He
has shown that a bounded domain with the property (P) is a domain of
holomorphy and that the converse is not true. (The same result has been ob-
tained also by Sommer and Mehring [22].) Making use of this result, he has
proved that if a bounded domain is complete with respect to the Bergman
metric, then it is a domain of holomorphy. Since the kernel function is not
intrinsically defined, the property (P) is not intrinsic. We consider, therefore,
a condition which is stronger than (P) but which is intrinsic. This condition
can be roughly stated as follows: if K is the kernel form and / is a square
integrable holomorphic re-form, then (f/\J)/K goes to zero at every boundary
point. We shall prove that this condition implies the completeness of the
Bergman metric. From this result it can be proved, for instance, that every
bounded analytic polyhedron is complete with respect to the Bergman metric.

As a preparation for the above study of "completeness," we shall prove
that a manifold with the Bergman metric can be isometrically imbedded, in
a natural way, into a complex projective space (of infinite dimension, in gen-
eral).

Finally, we shall give examples of manifolds (beside the classical bounded
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domains) which admit the Bergman metric.
Before we finish this introduction, we add some remarks. The idea of

using the square integrable holomorphic re-forms can be found in [28] and
has been discussed by E. Calabi at the Summer Institute on Differential
Geometry held in Seattle in 1956. An example of algebraic manifold admitting
the Bergman metric is due to Calabi.

1. Kernel functions and invariant metrics of Bergman. In this section we
recall the definition of the kernel function and the invariant metric of a
bounded domain in the complex ra-space C" due to S. Bergman.

Let M be a bounded domain (i.e., a connected open set) in Cn with co-
ordinate system z1, • • • , z". The set F ol all holomorphic functions/ on M
which are square integrable forms a separable complex Hilbert space. Let
ho, hx, h2, ■ ■ ■   he an orthonormal basis for F. Then

cc

K(z, w) = JZ hj(z)hj(w)
i-o

is a holomorphic function in z and w, or a holomorphic function on MXM,
where M is the manifold conjugate to M, and is called the kernel function of
Bergman. Define

d2 log K(z,z)
ds2 = >.-dz"dz9.

dzadzt>

Then ds2 is a positive definite Kaehler metric on M which is invariant under
the holomorphic transformations of M. This metric, which is associated in-
trinsically with the complex structure of the manifold M, is called the Berg-
man metric.

Note that, in the above definition of F, we made use of a coordinate sys-
tem z1, • • • , 3" which is well defined throughout M. Given a complex mani-
fold M (not necessarily a bounded domain), we do not have, in general, a
coordinate system in the large. We consider, therefore, holomorphic ra-forms
instead of holomorphic functions.

2. Kernel forms. Let M he a complex re-dimensional manifold. Let F he
the set of holomorphic re-forms f on M such that

I f fA'f < ».
The vector space F is a separable complex Hilbert space with an inner prod-
uct given by

(fuh) = (-1)"2'2 f/iA/2.
J M

It should be noted that F may be finite dimensional (this is the case if M is
compact).
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Let ho, hi, hi, • • •   be a complete orthonormal basis for F. Then
CO

K(z, w) = 23 hj(z) A «i(w)
y-o

is a holomorphic 2re-form on MXM, where M is the complex manifold con-
jugate to M, and it is independent of choice of orthonormal basis. We call
K the kernel form of M.

If z is the point of M corresponding to a point z of M, the set of points
(z, z) of MXM is identified, in a natural fashion, with M. Hence, K(z, z) can
be considered as a 2re-form on M.

Theorem 2.1. The form K(z,z) is invariant under the group of holomorphic
transformations of M.

Proof. Let <6 be any holomorphic transformation of M. If ho, hx, fa, • ■ •
forms a complete orthonormal basis for F, so does cp*(ho), cp*(hx), cp*(fa), • • • ,
as it can be easily verified. Since the kernel form is independent of choice of
orthonormal basis for F, we have

K(z, z) = 2Z <t>*ifai*)) A 4>*ik®) = <P*(K(z, -z)). Q.E.D.
Let fi, fiCEF. Then, for every point z of M, there exist real numbers

(ci, d)^(0, 0) such that

cifi A 7i = Cifi A fi at 2.
If Ci =0 or d/ci k 1, then we say that/i A/i ^fiAfi at z.

Theorem 2.2.

K(z,z) =  Max/(z) A/(s).
(/,/)=i

If K(z, z) 5^0, then an n-form fCEF satisfying the above equality is unique up to
a constant factor c with \ c \ = 1 and is characterized by the following two proper-
ties:

(a) (/,/) = L
(b) (/, /') = 0 for all f'CEF which vanish at z.

Proof. Fix a point z in M and let F' be the set of re-forms f'CEF which
vanish at z. If F' = F, then our theorem is trivial. Suppose F't^F. Let ho be
an element of F which is orthogonal to F' and has the unit length. Let g be
any element of F such that g(z) ?±0. Let c be a complex number satisfying
g(z) =cho(z). Then g — cfa is in F'. Hence, F is spanned by F' and fa. Given z
in M, we can choose, therefore a complete orthonormal basis ho, fa, fa, • ■ ■
for F in such a way that fa(z) j^O, hx(z)=fa(z)= • ■ • =0. This implies im-
mediately Theorem 2.2.

From Theorem 2.2 we obtain the following
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Theorem 2.3. Let M' be a domain (connected open subset) in M and let
Km and Km> be the kernel forms of M and M' respectively. Then

KM ^ Km- on M'

in the sense that there exists a function c on M' such that Km = cKm> and 0 ^ c ̂  1
on M'.

Remark. If M—M' contains an open set (nonempty) in M, then either
KM-(z, z) >Km(z, z) or KM'(z, z) =KM(z, z) =0 for each z of M'.

On the other hand, we have the following

Theorem 2.4. If M' is a domain in M and if M—M' is an analytic sub-
variety of M of complex dimension gre—1, then

KM'(z, zj = KM(z, z)       for all z in M'.

Proof. Let / be a square integrable holomorphic re-form on M'. We shall
show that/can be extended holomorphically to M. Let z0 be any nonsingular
point of a variety M—M'. Let z1, • • • , zn be a local coordinate system in a
neighborhood U of z0 in M such that (M— M')r\U is given by z1 = • • • =z*
= 0 and Zo is the origin of the coordinate system. Let/ be written in MT\U
as follows:

/ = /W A • • • A dz",
where/* is a function holomorphic in MT\U. Let F be the plane defined by

z2 = z3 = ...=_» = 0.

Then /* is a function holomorphic on F— {z0} and can be expanded in a
Laurent series in z1 around the origin. Since/ is square integrable,

f        fdz1 A dz1

has to be finite. (It is, of course, essential here that/* is holomorphic.) From
this, we can conclude that/* is a power series in z1 around the origin. (See
the reasoning of p. 363 in [8].) Hence/ can be continued holomorphically
to 717", where M" is the union of M' and the nonsingular points of (M—M').
Since M—M" is a subvariety of M and dim (M—M") <dim (M—M'), we
can conclude our theorem by induction.

Theorem 2.5. Let M and M' be complex manifolds of complex dimension re
and re' respectively. Then

Kmxm- = (-l)nn'KM A Km:

Proof. In the above formula, the projections from MXM' onto M and
M' are omitted; Km and Km- can be considered as forms on MXM' in a
natural manner.
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Let ZoCEM and z0'CEM'. From Theorem 2.2, it follows that there exist
forms h, h! and h" on M, M' and MXM' respectively such that

(h, h) = (h', h!) = (*", h") = 1,
KM  = k A h at Zo,

Ku' = h' A h! at z0',

KMxm> = h" A h"       at (z0, zi).

If KmxM' vanishes at (zo, zi), then our theorem is trivial. If it does not van-
ish, then h" is characterized by the properties:

(«", h") =1 and (h",f") =0 for every/" vanishing at (z0, z0'). More pre-
cisely, h" defined by the above two properties is unique up to a constant
factor c with \c\ =1; however, h"/\h" is unique. It is easy to see that the
form ( — l)nn'f\h' on MXM' possesses the above two properties.

Remark. Compare the proofs of Bremermann [8] and Morita [24].
3. Invariant metric. Let M be a complex manifold of complex dimension re.

Suppose that
(A.l) Given any point z of M, there exists a square integrable holomorphic

n-formf such thatf(z) ?±0. In other words, the kernel form K(z, z) of M is differ-
ent from zero at every point of M.

Let z\ • • • , zn be a local coordinate system in M. Let

K(z, z) = K*(z, z)dzl A • • • A dz" A dz1 A • • • A dz",

where K*(z, z) is a locally defined function. Define a quadratic (hermitian)
differential form ds2 by

^ d2 log K*
ds2 = 23-dz"dzf>.

dzadz?

It can easily be shown that ds2 is independent of choice of coordinate system.

Theorem 3.1. The quadratic form ds2 is positive semidefinite and invariant
under the holomorphic transformations of M.

Proof. Let z be any point of M and let z1, ■ • • , zn be a local coordinate
system around z. Let

fa = hfdz1 A • • • A dz", j = 0, 1, 2, • • • ,
be an orthonormal basis for F such that

fa(z) ̂  0,       fa(z) = fa(z) = ■ ■ ■ = 0.
(See the proof of Theorem 2.2.) Then, from K*= 23*/^/> it follows, by a
simple calculation, that

ds2 = ( 23 dfa* ■ dhA / K*       at z.
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This shows that ds2 is positive semidefinite.
In order to prove that ds2 is invariant by a holomorphic transformation

<p of M, let w1, • ■ • , wn be a coordinate system around <p(z):

4>:w' = ^'(z1, • • • , z") j = 1, • • • , ».

Let
K = KHz1 A ■ ■ ■ A dz" = L*dw1 A • • • A dw".

From Theorem 2.1, we obtain

K*(z,z) =L*(<t>(z),$(z))-JJ,

where J is the Jacobian d<p'/dzk. Now, the invariance of ds2 follows from the
definition of ds2 and the analyticity of /.

From the proof of Theorem 3.1, we can see easily that ds2 is positive
definite if and only if the following assumption is satisfied:

(A.2) For every holomorphic vector Z at z, there exists a square integrable
holomorphic n-form f such that f(z) =0 and Z(/*)^0, where /=/*dz1A • • •
Adz".

By a holomorphic vector Z at z, we mean a complex tangent vector of the
form:

Z = JZ V(d/dzf)z,

where the f''s are complex numbers.
The metric ds2 thus obtained is Kaehlerian and is called the invariant

metric of Bergman (or the Bergman metric) of M.
As an immediate consequence of Theorem 2.5, we have the

Theorem 3.2. Let M and M' be complex manifolds satisfying (A.l and 2)
and let ds2 and ds'2 be the Bergman metrics of M and M' respectively. Then the
Bergman metric of MXM' is ds2+ds'2.

From Theorem 2.4, we obtain the following

Theorem 3.3. Let M' be a domain in M such that M—M' is an analytic
subvariety of M of complex dimension ^re —1 (where re = dim M). Then the
Bergman metric of M' is the restriction to M' of the Bergman metric of M.

Let G(M) be the group of holomorphic transformations of M with
(A. 1 and 2). Then G(M) is a closed subgroup of the group of isometries of M
with the Bergman metric. Since the group of isometries of a Riemannian
space is a Lie group with compact isotropy group at every point, we obtain
the following

Theorem 3.4. Let M be a complex manifold with (A.l and 2). Then the
group G(M) of holomorphic transformations of M is a Lie group. Moreover, the
isotropy subgroup of G(M) at every point of M is compact.
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Remark. This generalizes the theorem of H. Cartan for bounded do-
mains. It has been proved by Meyers and Steenrod [23] that the group of
isometries of a Riemannian space is a Lie group and the isotropy group at
every point of M is compact. Their proof can be nowadays simplified by the
theory of connections. The Riemannian connection gives rise to an absolute
parallelism on the space of orthonormal frames of M. The group of isometries
of M can be identified with the group of transformations leaving the absolute
parallelism of the space P of orthonormal frames of M. By this method, we
can imbed the group as a closed submanifold of P in a natural way, thus
establishing the theorem of Meyers and Steenrod. The details can be found
in [15; 16].

We shall show that the differential geometric method is effective also for
the proof of the following theorem of H. Cartan[10].

Theorem 3.5. Let M be a bounded domain in the complex n-space Cn. Let
X be a nonzero holomorphic vector field on M which generates a 1-parameter
group of global holomorphic transformations of M (i.e., X generates a 1-param-
eter subgroup of G(M)). Then the holomorphic vector field iX on M does not
generate global transformations of M.

In order to prove the above theorem, we consider a general case: let M
be a complex manifold with (A.l and 2). Assume holomorphic vector fields
X and iX on M both generate 1-parameter subgroups of G(M). Since the
Bergman metric is invariant by G(M), both X and iX are infinitesimal isom-
etries (Killing vector fields) of M.

On the other hand we have the following general

Theorem 3.6. Holomorphic vector fields X and iX are both Killing vector
fields if and only if they are parallel vector fields. (This Theorem holds for any
Kaehlerian manifold.)

Proof is a simple calculation, hence omitted.
The integral submanifold defined by X and iX is a complex 1-dimensional

flat Kaehlerian manifold. It is, moreover, complete in the sense of differential
geometry, because X and iX generate 1-parameter group of global trans-
formations. (Here, it is essential that the submanifold is flat.) Therefore, the
universal covering space of the submanifold is C.

Theorem 3.7. Let M be a complex manifold -with (A.l and 2). Assume that
one of the following conditions is satisfied.

(a). There is no parallel vector field (with respect to the Bergman metric) on
M.

(b). There is no holomorphic map of C into M except constant maps.
(c). There is a point of M where the Ricci curvature is a nonsingular Her-

mitian form.
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Then, it is impossible that nonzero holomorphic vector fields X and iX on M
generate 1-parameter subgroups of G(M).

Proof. We have shown that (a) or (b) implies the theorem. It is also obvi-
ous that (c) implies (a).

Remark. If M is bounded domain in C", then (b) is satisfied. Hence,
Theorem 3.5 is an immediate consequence of Theorem 3.7. I do not know
whether Theorem 3.7 holds without conditions (a), (b) or (c). It is not known
whether (c) is always satisfied or not, even for the classical bounded domains.
It will be shown later that (c) is satisfied in some important cases.

4. Ricci curvature and Riemannian curvature. Let if be a complex mani-
fold with (A.l and 2) and let ds2= JZgajdzadz? be the Bergman metric. Let
g = det (gaf). Then

v = (-l)"2'2goV A • • • A dz" A dz1 A • ■ • A dz"

is the volume element of the Kaehlerian manifold M.  The Ricci curvature
Raji is given by

_ d2 log g
■K<*p =-r 'dz"dz^

If the group G(M) of holomorphic transformations is transitive on M,
then

K = cv,

where c is a constant; because both K and v are invariant by G(M). Hence

ga? =   — 2?o0.

Thus, we obtain the following well known

Theorem 4.1. Let M be a complex manifold with (A.l and 2). If the group
of holomorphic transformations is transitive on M, then

gctf  =   —   Raff-

The following theorem is also well known [17; 21; 26].

Theorem 4.2. Let M be an arbitrary Kaehlerian manifold. If the Ricci
curvature of M is nonsingular (i.e., det (7?^) ^0) at some point of M, then the
largest connected group of isometries of M is contained in the group of holo-
morphic transformations of M.

Combining Theorem 4.1 and Theorem 4.2, we obtain

Theorem 4.3. Let M be a complex manifold with (A.l and 2) on which the
group of holomorphic transformations is transitive. Then the largest connected
group of isometries of M is the same as the largest connected group of holomorphic
transformations of M.
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In order to calculate the Riemannian curvature of a complex manifold M
with (A.l and 2), we set

L = log K*        (where K = K*dzx A • ■ • A dz" A dz1 A ■ • ■ A dz").

We use the following notations:

La = dL/dz",       Lf = dL/dzf>,       L~» = d2L/dzadz»,       K* = 6K*/dza, etc.

Then the metric tensor and the Riemannian curvature tensor are given by

gaj   =   LaJ,

Raff-ib   =   —  LaJyl  +   Zj i^LaylLjir-

A straightforward (but long) calculation shows that

1        *   * *    *
Raht   =   gctfgyi  + _«» gPy   — ——  (K   Kajjyl   ~   Ka-,Kjj),

K*1
El-,** **** **

—- g"(K   Kayl  ~   KayKl) (K   K»T  ~   K^KT).
K**

As in §2, we denote by 7? the set of square integrable holomorphic re-forms
on M. Let z be any point of M and let F'(z) he the set of elements of F which
vanish at z. Then F'(z) is a closed subspace of F and the orthogonal comple-
ment to F'(z) is a complex 1-dimensional subspace of F. Let ra0 be a basis for
this 1-dimensional subspace with (ho, Ao) =1. Then ho is unique up to a con-
stant c with \c\ =1.

Let F"(z) he the set of elements of F'(z) such that df* =0 at z, where/*
is defined by/=/*oVA • ■ ■ Adz". This definition is independent of choice of
coordinate system. The orthogonal complement to F"(z) in F'(z) is a com-
plex re-dimensional subspace. Let hi, ■ ■ ■ , h„ he an orthonormal basis of this
w-dimensional subspace. An easy calculation shows that (see §3)

JZ gajdzadip = IJZ dhkdhk) / K*       at z.

Let z1, • • • , z" he a normal coordinate system at z; i.e., ga$ = baf (Kronecker
delta) at z in terms of this coordinate system. Then, applying a unitary
transformation to the basis hi, ■ ■ • , A„, we may assume that

* *
dhk/dz' = h0-Sjk        at z (j, k = 1, ■ ■ • , ra).

It follows, by a straightforward calculation, that

RaPyi  =   — (  Zj    hjayhjfs J   / K    + (8ap8yi + 8as8pj)

at z with respect to a normal coordinate system at z, where
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h*ay = d2h* / dzadz~<,       h*pi = d2h*/dzf>dzs.

Let u = 23"-i ua(d/dza)z be a holomorphic tangent vector at z with unit
length:

23 gapu'uP = 1.

The holomorphic sectio..al curvature S(u) with respect to u is defined by

siu) = 23 RaJyluail^ums.

From the above expression of the Riemannian curvature form, it follows that

Theorem 4.4. Let M be a complex manifold with (A.l and 2). Then the
holomorphic sectional curvature of M is not greater than 2 and (n+l)gap — Ra~j>
is a positive semidefinite hermitian form.

The second half of Theorem follows from the above expression of the
Riemannian curvature and from Rap= 23g7^«0T*-

Remark. For a bounded domain in C", the holomorphic sectional curva-
ture is less than 2 [5] and (n + l)ga~ji—Ra]i is positive definite. It is very likely
that most of domains have the negative sectional curvature.

5. Discontinuous groups. Let ds2 be the Bergman metric of a complex
manifold M with (A.l and 2). Let D be a properly discontinuous group of
holomorphic transformations of M, i.e.,

(i) If z and z' are points of M not congruent modulo D, then there are
neighborhoods U oi z and U' of z' such that UP\sU' is empty for all 5 in D.

(ii) For every z0 in M, the isotropy group D(z0) of D is finite and there
exists a neighborhood F of z0, stable by D(zo), such that the relations

sCE D,       z G F   and   s(z) G V

imply sCED(zo).
Since the group G(M) of holomorphic transformations of M is closed in

the group of isometries of M, it can be shown that D is properly discontinuous
if and only if D is discrete and closed in G(M).

We shall mainly consider the case M/D is compact. In this case, we shall
call D a uniform discontinuous group. If M/D is compact, then G(M)/D is
compact; the converse is true if G(M) is transitive on M.

The quotient space M/D is a manifold if and only if no element of D
except the identity has fixed point in M. In general, M/D is a so-called V-
manifold [25]. If M/D is compact, it is an algebraic variety imbedded in a
projective space [2; 12; 19].

Theorem 5.1. If D is a uniform discontinuous group of holomorphic trans-
formations on a complex manifold M with (A.l and 2), then M is a complete
Kaehlerian space with respect to the Bergman metric.
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Proof. If M/D is a manifold without singularities, then the theorem is
obvious. However, the theorem is true in the general case. Let zx, z2, ■ ■ ■,
Zk, ■ • • be a Cauchy sequence in M. Let Xi, x2, • • ■ , x*, • • ■ be its image
in M/D. Since M/D is compact, the image sequence converges to a point x0
in M/D. Let yi, y2, • • • be the set of points in M which are projected into
x0. Let 7V(yO be the e-neighborhood (e is a small positive number) of yi satis-
fying the condition (ii). Let N(yj) be the e-neighborhood of yk (k = 2, 3, • • ■).
Then N(yj) satisfies also (ii). It can be easily shown that N(yj)r\N(yj) is
empty if j is different from k. Hence, there exist integers/ and mo such that,
for m>m0, zm is in N(y,). Since 7V(y;) is a finitely ramified covering of the
e-neighborhood of x0, the sequence zx, z2, ■ ■ •  converges to y,-.

Theorem 5.2. Under the same assumption as in Theorem 5.1, det (Ra~jj) is
different from zero at some point of M.

Proof. We shall give a proof here under an additional assumption that
M/D is a manifold without singularities. In a general case, we need the meth-
od of Bailey [l ]. Let K he the kernel form of M and let v he the volume ele-
ment of the Kaehlerian manifold M. Let J he a positive function on M defined
by

(_l)»2/2#   =   JV_

Since both K and v are invariant by D, so is J. Hence, / is a well defined func-
tion on M/D. From

dd log K* = dd log v* + dd log /,

it follows that the cohomology class of p= — ( — iyi2JZRajsdzaAdz11 is equal
to that of _=( — l)V2JZgaisdzaAdzl!. Since (co)n is not cohomologous to zero,
(p)n is not cohomologous to zero. (Here, co and p are considered as forms on
M/D rather than on M.) The latter is represented by a 2 re-form

(-(.-l)1'2)"' det (7^)oV A- ■ ■ Adz" Adz1 A- • ■ Adz".

This proves our theorem.

Theorem 5.3. Under the same assumption as in Theorem 5.1, the largest
connected group of isometries of M is the same as the largest connected group of
holomorphic transformations of M.

Proof. An immediate consequence of Theorem 5.2 and Theorem 4.2.

Theorem 5.4. Under the same assumption as in Theorem 5.1, if admits no
Killing vector field (nor holomorphic vector field) commuting with D.

Proof. Note that if M/D is a manifold, Theorem asserts the nonexistence
of Killing vector field on M/D.

Evidently, every vector field on a compact manifold generates a 1-
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parameter group of global transformations. Therefore, any vector field on M
commuting with D generates a 1-parameter group of global transformations
of AI, if M/D is a compact manifold. An argument similar to the one used in
the proof of Theorem 5.1 shows that this is true without the assumption that
M/D is a manifold with no singularities.

In order to simplify the language, we shall use the expression "a vector
field on M/D" in place of "a vector field on M commuting with D." Since
every holomorphic vector field on M/D generates a 1-parameter group of
global holomorphic transformations of M, it is a Killing vector field (i.e.,
infinitesimal isometries). We shall prove, therefore, only the nonexistence of
Killing vector field on M/D.

Let X be a Killing vector field on M/D. By Theorem 5.3, X is a holo-
morphic vector field. Since iX is also a holomorphic vector field on M/D, it
generates a 1-parameter group of global holomorphic transformations of M.
Therefore, iX is a Killing vector field on M. Theorem 3.7 and Theorem 5.2
show that X is a zero vector field.

Corollary. If M/D is a compact manifold, then the group of isometries of
M/D is finite.

Proof. An element of G(M) induces a transformation of M/D if and only
if it is in the normalizor N(D) of D in G(M). Let G°(m) be the connected com-
ponent of the identity of G(M). Since D is discrete in G(M), N(D)(~\G°(M)
consists of those elements which commute with every element of D. Therefore,
every Killing vector field on M/D induces a Killing vector field on M which
commutes with D. By Theorem 5.4, there is no Killing vector field on M/D.
The group of isometries of M/D is therefore discrete; on the other hand, it is
compact. Hence, it is finite.

Theorem 5.5. Under the same assumption as in Theorem 5.1, the center of
the group G(M) of holomorphic transformations is discrete. More generally, the
center of any subgroup of G(M) which contains D is discrete.

Proof. Let G' be a subgroup of G(M) containing D. The center of G' com-
mutes with D. Hence it is discrete by Theorem 5.4.

Remark. Compare Theorem 5.5 with the following [20]:
Let M be a complex manifold with (A.l and 2) and assume G(M) to be

transitive on M. If G' is a subgroup of G(M) transitive on M, then the center of
G' is discrete. This fact can be proved as follows. Let X be an infinitesimal
transformation of M generating a 1-parameter subgroup of the center of G'.
Since iX commutes with every element of G', iX generates a 1-parameter
group of holomorphic transformations of M. In fact, let z0 be any, but fixed
point of M and suppose that exp (itX)zo is defined for \t\ <e. Let z be any
point of M and let cp be an element of G' such that cp(z0) =z. Then exp (itX)z
can be defined and is equal to c6(exp (itX)zo) for |/| <«. Therefore, both X
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and iX are Killing vector fields. By Theorem 3.7 and Theorem 4.1, X has to
be a zero vector field.

Remark. If M/D is compact, then G(M)/D is compact; hence G(M) is
unimodular. (In general, a locally compact group admitting a uniform dis-
crete subgroup is unimodular) (x). If G(M) is transitive and M/D is compact,
then if is symmetric in the sense of E. Cartan by a theorem of Hano[l4] .

We shall study the curvature again under the assumption that if/7? is
compact. Let J be a real valued function defined by (see §5)

(_1)n2/2£ = Jv_

From

d2 loe /
&<*f> = ~Z—~*— Raii>

dzadz»

we obtain

ra = AJ - R,

where 7?= JZga^R<tf is the scalar curvature. Since each term in the above
equality is invariant by D, the equality holds on M/D. If A/2:0 on if or ^0
on M, then J is constant by Theorem of E. Hopf [29]. Hence

Theorem 5.6. Under the same assumption as in Theorem 5.1, if the scalar
curvature R satisfies

either R ^ — re    everywhere on M,
or R S — re    everywhere on M,

then Rafi = — ga]i, consequently R= — ra.

Remark. It can be also shown that the mean of 7? is equal to — ra in the
following sense:

/R v = - ra X (volume of M/D).
M/D

6. Domain of holomorphy and Bergman metric. Let if be a bounded
domain in C". Then the conditions (A.l and 2) are obviously satisfied. Let
M* he the envelope of holomorphy of M. Bremermann has proved [8] that
the Bergman metric of M can be extended to a Kaehlerian metric of M*.
Hence

Theorem 6.1. 7/ a bounded domain M in C" is complete with respect to the
Bergman metric, then it is a domain of holomorphy.

Remark. Bremermann has shown also that the converse is not true.

(') The author was informed of this fact by H. C. Wang.
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The following theorem of Siegel [27] is now an immediate consequence of
Theorem 5.1 and Theorem 6.1.

Theorem 6.2. Let M be a bounded domain in C". If there exists a proper
discontinuous group D of holomorphic transformations of M such that M/D is
compact, then M is a domain holomorphy.

Every homogeneous Riemannian space is complete. From Theorem 5.1
and Theorem 6.1, we obtain, therefore, the following

Theorem 6.3. If M is a homogeneous bounded domain in C", then M is a
domain of holomorphy.

In the above three theorems, the assumption that M is a "bounded
domain in C"" can be replaced by the one that M is a domain in a Stein mani-
fold and satisfies (A.l and 2). It is of interest to find the proof of these theo-
rems which does not make use of the fact that M is imbedded in a Stein
manifold.

7. Infinite dimensional projective spaces. Let H be a separable complex
Hilbert space with orthonormal coordinate system f = (f°, fl, f2, • • • ). Let
f and f' be points in H both different from zero. We say that they are equiva-
lent if there exists a complex number a such that f =fflf. The quotient space
of if— {o} by this equivalence relation is the projective space P(H). Let
S(H) be the unit sphere in H with center at 0. Then P(H) is a quotient space
of S(H). The topology of S(H) as a subspace of H induces a topology on the
quotient space P(H). Then S(H) is a principal fibre bundle over P(H) with
circle group.

Since S(H) is a subspace of a metric space H, S(H) itself is a metric space.
The metric on S(H) induces a metric on P(H) as follows: if x and x' are points
in P(H) (i.e., x and x' are fibres in S(H)), distance (x, x') =inffe»j'e»' distance
(f, £"')• As H is complete and S(H) is closed, S(H) is a complete metric space.
From the compactness of the fibre ( = circle group) of S(H), it follows that
P(H) is also complete.

We shall define another metric on P(H) which is a generalization of the
canonical Kaehler metric on finite dimensional projective space.

A continuous map c of the real line R into H given by the equation
f'=f''(0 is said to be differentiable at t = 0 if each $>'(t) is differentiable at
t = 0 and if 23l°'l 2< °° > where a' = (d£'/dt)t=o. A continuous map c of R into
P(H) is said to be differentiable at t = 0 if there exists a differentiable map c'
of R into S(H) such that poc' = c, where p is the projection of S(H) onto
PiH)-

Let x be a point of P(H) and let C(x) be the set of continuous maps
c: R-^P(H) differentiable at / = 0 with c(0)=x. Two elements cx and c2 of
C(x) are, by definition, tangent to each other at x, if there exist c{ and
ci:R-^S(H)  differentiable  at  t = 0  with   (i)   ci (0) =ci (0),   (ii)   (dcx'/dt)M
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= (dc2 /dt) «_o, (iii) p o cx = cx and p o c2 = c2. We identify elements of C(x)
tangent to each other; each equivalence class is a tangent vector to P(77) at
x and the tangent space to P(U) at x will be denoted by TX(P(H)).

Let x be a point of P(H) and let f0 be a point of 5(77) representing x.
The subspace of 77 consisting of vectors orthogonal to f 0 will be denoted by
Tx since it depends only on x. Then

E=T, + Cfo,
where Cfo is the 1-dimensional subspace spanned by fo-

Let x£Tx(P(H)) and let c: R-*S(H) with c(0)=f0 represent x. If c is
given by f = f (t), then (dJj/dt)t=o considered as an element of 77, lies in Tx and
depends only on x, as it can be easily verified. Thus, we obtain a mapping
from TX(P(H)) into Tx. It is not difficult to see that this mapping is a vector
space isomorphism of TX(P(H)) onto Tx.

Now, consider the quadratic differential form o'er2 on 5(77) defined by

d<r2 = jz dwi< - (jZfmazpdf").
As in the case of finite dimensional projective space, this quadratic differen-
tial form can be projected onto the base space P(H). We shall denote by the
same symbol o'er2 the quadratic form on P(H) obtained in this manner. From
the Schwarz's inequality, it follows that da2 is positive definite.

Let c he a differentiable curve in P(H), i.e., a differentiable map of a
closed interval [a, b] into P(H). Then the length L(c) of c is defined as follows.
Let c' be a curve in 5(77) such that p o c' = c and let f = f(f) be the equation
of c'. Then

w:^? _}-(*» _0(**_T*
Let Xi and x2 be points of P(H). The distance d(xi, xj) between xi and x2 is
defined, as in the classical case, by

d(xi, xj) = inf L(c),

where inf is taken over all differentiable curves joining Xi and x2. Then P(H)
is a metric space.

We shall see that uniform structure on P(H) defined by the metric da2
is the same as the one defined by the metric induced from that of 5(77). Let
xGf (77) and f0G5(77) with p(£j) =x. By a proper choice of basis in 77, we
may assume that fo = (l, 0, 0, • • - ). Then, on the tangent space at x, da2
is reduced to

#-?1 + d{2df2 + ■■■ .

This shows that the metric o'er2 and the metric induced from that of 5(77) give
the same distance for a pair of points infinitesimally near to each other. It
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follows that two metrics give rise to the same uniform structure on P(H).
Hence P(H) is complete with respect to the generalized Kaehler metric da2.

Remark. Let Xi and x2 be any points of P(H). Then, by a proper choice
of basis in H, we may assume that points (1, 0, 0, • • • ) and (l/(a2 + l)1/2,
a/(a2 + l)1/2, 0, • • • ) in S(H) represent Xi and x2 respectively, where OSa
S °° • The distance between Xi and x2 defined by two metrics is given by

(2 - 2/(a2 + l)»/«)i/2        (induced from the metric of S(H))

Arctan a (defined by da2).

If we make the change of parameter by a = tan t, then we obtain

2 sin t/2        and        t.

This shows clearly that two metrics are almost identical in a small domain.
We summarize the results of this section in the following

Theorem 7.1. Let H be a separable complex Hilbert space and let P(H) be
the projective space induced from H (i.e., a point of P(H) is a 1-dimensional
subspace of H). As P(H) is a quotient space of the unit sphere S(H) in H such
that S(H) is a principal fibre bundle over P(H) with circle group, P(H) is
complete with respect to the metric induced from that of S(H), (S(H) being a
subspace of a metric space H). The Kaehler metric da2 on P(H) (which is a
natural generalization of the canonical Kaehler metric in a finite dimensional
projective space) give the same uniform structure as the previously defined metric.
In particular, P(H) is complete with respect to the Kaehler metric da2.

8. Imbedding of complex manifolds into P(H). Let M be a complex
manifold and let F be the Hilbert space of square integrable holomorphic
w-forms in M. Let H be the Hilbert space dual to F. Let z\ • • • , z" be a
local coordinate in M and let z be a point of M where this coordinate system
is valid. Let j' be a mapping which sends z into an element j'(z) of H defined
by

(/OO,/) = /*«        for/ = /W A • • • A dz" G F.
This mapping j' depends on local coordinate. Evidently, j'(z) is different
from zero for all z if and only if M satisfies (A.l). Assume that M satisfies
(A.l). Let p' be the natural projection of if—{o} onto P(H). It follows
easily that j = p' oj' is independent of local coordinate and is well defined
all over M. The map j: M^P(H) is continuous and, moreover, complex
analytic in an obvious sense. (The definition of complex analyticity of a
mapping can be given in a similar way as the definition of differentiability
given in §7.)

We define the the invariant quadratic differential form ds2 on a complex
manifold M with (A.l). A simple calculation shows that
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Theorem 8.1. The quadratic differential form ds2 of M with (A.l) is in-
duced from the canonical Kaehler metric da2 of P(H) by j; ds2=j*(da2).

In the same way as in the finite dimensional case, we can define the
differential 5/ ol j as a linear mapping of the tangent space to if at z into the
tangent space to P(H) at/(z). Then, it is easy to see that

Theorem 8.2. The differential 8j of j is nonsingular at every point of M if
and only if M satisfies (A.2).

The above two theorems give us a geometric interpretation of the Berg-
man metric. If M satisfies (A.l and 2), then/ is an isometric immersion of M
intoP(U).

Remark. Observe that/ preserves the distance between a point of M and
a point infinitesimally close to it; but the distance between two points z and
z' of if is not less than the distance between/(z) and/(z'), and not necessarily
equal.

If if satisfies (A.l and 2), then/ is locally one-one in the sense that for
every point of M, there is a neighborhood for it such that / maps this neigh-
borhood one-to-one into P(H). It is, however, not necessarily injective in the
large.

Let z and z' be any points of M. Let F'(z) and F'(z') be the set of ele-
ments/of F which vanish respectively at z and z'. If M satisfies (A.l), then
F'(z) and F'(z') are subspaces of F of codimension 1. If T^z) is contained in
F'(z'), then it is necessarily equal to F'(z'); this implies that/(z) is equal to
/(_')• It follows that if if satisfies (A.l) and/ is injective, then if satisfies

(A.3). If z and z' are two distinct points of M, then there is a square integra-
ble holomorphic n-form f such that f(z) ?±0 andf(z') =0.

It is easy to see that, conversely, if M satisfies (A.3), then if satisfies
automatically (A.l) and/ is injective. Therefore, if if is a complex manifold
satisfying (A.2 and 3), then j is an isometrical imbedding of M into P(H).

9. A sufficient condition for M to be complete. We have seen previously
(§6) that if a bounded domain in C" is complete with respect to the Bergman
metric, then it is a domain of holomorphy. But the converse is not true. In
this section, we shall give a sufficient condition for a complex manifold M
with (A.l and 2) to be complete with respect to the Bergman metric and shall
prove that every bounded analytic polyhedron in C" is complete.

Let if be a complex manifold satisfying (A.l and 2) and F the space of
square integrable holomorphic re-forms on M. Let K be the kernel form of
M. If/GT7, we shall mean by (fAf)/K a function gon if such that/A/=g7£.
Notice that

0?k(}A])/K< (/,/).
Theorem 9.1. A complex manifold M with (A.l and 2) is complete with

respect to the Bergman metric if the following condition is satisfied.
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(A.4)(2). For every infinite sequence S of points of M which has no adherent
point in M and for each fCE F, there exists a subsequence S' of S such that

lims- (fAf)/K = 0.

Proof. Suppose M is not complete. Let 5 be a Cauchy sequence in M
which has no limit point in M. Let j be the natural map of M into P(H)
defined in the preceding section. Since 5 is a Cauchy sequence, j(S) is also a
Cauchy sequence in P(H). From the completeness of P(H) it follows that
j(S) has a limit point x0 in P(H). By a proper choice of basis in H, we may
assume that x0 is represented by a point f0 = (1, 0, 0, ■ ■ • ) oi H. Take the
dual basis h0, fa, fa, ■ • •  in F. Then

lims (fa A fa)/K = 1.
Let S' be any subsequence of 5. Then, j(S') and j(S) have the same limit point
in P(H). Hence

lims- (Ao A fa)/K = 1.

This completes the proof of our theorem.
Let D be a domain in C" and let/,, q = l, • • • , k, be k holomorphic func-

tions on D. Let Af be a connected component of the region f)q{zCED; \fq(z) \
< 1} and assume that the closure of M in C" is compact and is contained in
D. Then, we call M a bounded analytic polyhedron.

Theorem 9.2. Every bounded analytic polyhedron in Cn satisfies (A.4);
hence it is complete with respect to the Bergman metric.

We shall prove first the following

Lemma. Let M be a bounded analytic polyhedron in C". Then, for every
infinite sequence S of points of M which has no adherent point in M, there exists
a subsequence S' = {zi, z2, • • • } of S with the following property: given a posi-
tive number e and an element g of F, there exist an integer N and an element f
of F with ll/H = 1 such that | (g/f)(zf) \<eforj> N.

Proof. Notice first that g/f denotes a meromorphic function on M defined
by (g/f)f=g- Since the closure of M is compact, S has a subsequence S'
which converges to a point z0 of the boundary of M. Then |/a(zo)| =1 for
some q, say q = l for the sake of simplicity. Let Ma= [zCEM; |/i(z)| <o} for
0 <a<l. Since Ma—+M as a—*1, there exists an a such that

If       g A g   < «V8.
I J M-Ma

Let m be a positive integer such that ||a"sg||2ge2/8. Then

* Roughly speaking, the condition (A.4) means that the isometric imbedding of M into
P{H) is closed.
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Il(/i)mg||2^ f      ((-iy,2AgAg+ f  ((-D"tV"sAf
J M-Ma J Ma

< t2/8 + e2/8 = e2/4.

Let c he a positive constant such that ||c(/i)mg|| = 1. Then ce^2. Let f=c(fj)mg.
Then | g/f\ = \ l/(cj?) \ < \ t/(2f?) |. Let TV be an integer such that/ffo) > 1/2
for j>N. This completes the proof of our lemma.

Now, we shall show that M satisfies (A.4). Let 5' be a subsequence of 5
which converges to a boundary point Zo of M. Let g he any element of F. For
any positive number e, there exist an element/ of F and an integer N satisfy-
ing the assertion of the lemma. Take an orthonormal basis ho, hx,h2, • • ■ of
7? such that h0=f. Then, it is obvious that (gAg)/K^(gAgj/(fAf). Hence

(_(*y) A g(zj))/K(zh zj) ?£ e2        fori > N.

This proves that if satisfies (A.4).
Now, we know that
(i) Every bounded analytic polyhedron in C" satisfies (A.4).
(ii) Every bounded domain in C" satisfying (A.4) is complete with respect

to the Bergman metric.
(iii) Every bounded domain in C" which is complete with respect to the

Bergman metric, is a domain of holomorphy.
(iv) Every domain of holomorphy M in C" can be approximated by a

sequence of analytic polyhedron Mj in such a way that

Mj C Mj+i,       Mj C M   and    M = lim Mj.

The converse of (iii) is not true as stated in §6. The converse of (i) is not
true (see Theorem 9.3). I do not know whether the converse of (ii) is true
or not; it is very likely that the converse of (ii) holds.

It should be remarked [13] that every domain of holomorphy is complete
with respect to some Kaehler metric.

The method of proof of the lemma is very similar to that used by Bremer-
mann [8] who has shown that the kernel function goes to the infinity at every
boundary point of an analytic polyhedron. As we have remarked before, the
kernel function is not intrinsically defined. Moreover, the above theorem
implies Bremermann's result: i.e., let/ be dzxA ■ • • Adz" in (A.4), where
z1, • ■ • , z" is the Euclidean coordinate system in C".

We shall generalize Theorem 9.2 as follows.
Let D he a domain in C" and let/,, (q = 1, • • • , k), he a real analytic func-

tion on D which can be written in the following form:
CO

Ji = 2-i JqijQi,
i=i

where each fqj is holomorphic on D and the sum is convergent uniformly on
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every compact set in D. Let M be a connected component of the set

{zCED; \fq(z)\   <1 for q= 1, ■ ■ • , k]
and assume that the closure of M in C" is compact and is contained in D.
Then, we shall call M a generalized analytic (bounded) polyhedron. It is clear
that every analytic polyhedron is a generalized analytic polyhedron.

Theorem 9.3. Every bounded generalized analytic polyhedron in Cn satis-
fies (A.4); hence it is complete with respect to the Bergman metric.

Proof. Given an infinite sequence S described in (A.4), let S' be a sub-
sequence which converges to a boundary point Zo of M. Then |/3(z0)| =1 for
some q, say q = l. Consider a unitary transformation:

fi = 23 aiifu,
fi = /L, aafii,

where (at/) is an (infinite) unitary matrix. By a proper choice of (ffl»y), we
may assume that // (z0) = 1 and fi (z0) =fi (z0) = • • • 0. In the proof of the
preceding lemma, we replace fx by fi. Then the same argument is valid and
proves our theorem.

We conjecture that the completeness with respect to the Bergman metric
implies (A.4). In order to make this conjecture plausible, we shall prove the
following

Theorem 9.4. Let M be a complex manifold with (A.l and 2). If the group
of holomorphic transformations is transitive on M, then M satisfies (A.4).

Proof. Let 5 be an infinite sequence of points of M which has no adherent
point in M. Given a positive number e, we can choose a subsequence S'
= {zi, Zi, • • • ) of S such that N(zx)r\N(zf) is empty for i^j, where N(zj) is
the e-neighborhood of z}- with respect to the Bergman metric. (Here, we make
use of the completeness of M.) Let z1, • • • , z" be a coordinate system valid
in N(zx). Let c6y be a holomorphic transformation of M such that cpj(zf) =zx,
(j = 2,3, ■ ■ ■ ). Then cpJ-(N(zj)) = N(zx) and z1, ■ • • , zn can be considered also
as a coordinate system in N(z,-). (We write z\ ■ • • , z" instead of cp*(zl), • ■ ■ ,
cp*(z")). Put

K = K,*dzl A ■ • ■ A dz"       in N(zf).

Since K is invariant by cp,- and the coordinate system z1, • • • , z" in Af(zi) is
mapped into the coordinate system z1, • • ■ , z" in N(z„) by <p,-, we have that
K* = cp*(K*). In particular,

Ki*(zu zx) = Ki*(zi, li) = • • • .

Let/ be an element of F. Put
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<*/ = ((-l)1'2)"2 f       /A/.
J N(zj)

Since / is square integrable, _/—»0 as j—* oo. Put

/=//.zlA--- Adz"       in N(Zj).

Then (seep. 117 of [6])
|/*(Zj)|2 = caj,

where c is a constant independent of/. Hence/*(zy)—>0 as/—*a>. This proves
our theorem.

Theorem 9.5. Lei* if be a complex manifold with (A.l and 2). If M admits
a proper discontinuous group D of holomorphic transformations such that M/D
is compact, then M satisfies (A.4).

Proof. For the sake of simplicity, we shall assume that M/D has no singu-
lar point. In the general case, we use the argument in the proof of Theorem
5.1. Let 5 be an infinite sequence of points of if which has no adherent
point. Let p he the projection of if onto M/D. We can choose a subsequence
5'= {zi, z2, ■ • • } of 5 such that p(zi), p(zj), ■ ■ ■ converges to a point x0.
Let z1, • • • , z" he a coordinate system in a neighborhood N(xj) of x0. Choos-
ing 5' and N(xj) properly, we can find a neighborhood N(zj) of Zj in such a
way that p maps N(zj) homeomorphically onto N(xj) and that N(zj)C\N(zj)
is empty for i?*j. We shall denote also by z\ • ■ • , z" the coordinate system
in 7V(zy) induced from the system z1, • • • , z" in N(xj) by p. Put

K = Kfdz1 A • • ■ dz" Adz1 A ■ ■ • Adz"       in N(zj).

It Kx^a>0 on 7V(zO, then 7C*^a>0 on 7V(z,) as K is invariant by D. By
a reasoning similar to that in Theorem 9.4, we can show that, for any/G7"\
f?(zi)—*Q as/—>oo, where ff(zj) is defined in the same way as in Theorem 9.4.
This completes the proof.

10. Examples.
(A). Bounded domains in a Stein manifold. Let V be an re-dimen-

sional Stein manifold and K(V) the canonical complex line bundle over V,
i.e., the bundle of holomorphic re-forms on F. As assured by Theorem A of
Cartan-Serre, K(V) admits a sufficiently many holomorphic cross-sections,
i.e., holomorphic re-forms on F. They are, however, not square integrable in
general. Let if be a bounded domain in F. Then, every holomorphic re-form
on F is square integrable on if. It can be easily shown that

Theorem 10.1. Every bounded domain in a Stein manifold satisfies (A.l
and 2).

(B). Nonsingular hypersurfaces of degree>m+2 in Pn+x(C).

Theorem 10.2. Let M be a nonsingular hypersurface of degree >re+2 in the
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(n + l)-dimensional complex projective space Pn+x(C). Then M satisfies (A.l, 2
and 3).

We shall only indicate the outline of the proof without going into the de-
tail. We denote P„+i(C) by P„+i. Then, Cn+2— [o] can be considered, in a
natural way, as a principal fibre bundle over Pn+X with group C* (the multi-
plicative group of nonzero complex numbers). Let E be the complex line
bundle associated with this principal fibre bundle. Let K(Pn+x) be the canon-
ical complex line bundle over Pn+i- Then, by an easy calculation,

K(Pn+i) = - (n + 2)E.

(The set of complex line bundles over a complex manifold forms an abelian
group. The above notation should be understood in this sense [18].) Let r be
the degree of M. Then the line bundle given by the divisor M, denoted by
[M], is equal to rE. Let K(M) be the canonical line bundle over M. Then

K(Pn+x) = K(M) - [M]       on M.

Hence
K(M) = (r - re - 2)E\ M.

From this relation it follows that there is a natural one-to-one correspondence
between the set of holomorphic re-forms and the set of polynomials of degree
(r — n — 2) in (re + 2)-variables, provided that (r — re — 2)>0.

Let H be the set of polynomial function / defined on Cn+2. Every point
x of Cn+2 can be considered as an element of the dual space of H as follows:

(*,/) = fix).
This mapping (injective) from C"+2 into H* (the dual to H) induces a map-
ping j* of Pn+x(C) into Pn(C), where N+l is the dimension of H. Evidently,
j* is injective. Let j' be the injection map of M into P„+X(C). Then, the natu-
ral imbedding j of M into Pn(C) defined in §8 is the composed map j* oj'.
If r = n+3, then j=j'.

(C). Examples of Stein manifolds which are not complete with
respect to the Bergman metric. Let Af be a bounded domain in the
complex plane C It is always a domain of holomorphy. If Af is complete
with respect to the Bergman metric, then let AF be M—ax, • ■ ■ , ak, where
Oi, • • • , ak are points of Af. By Theorem 3.3, Af is not complete. The exam-
ple of Bremermann [8] is a typical one of this category.

More generally, let Af be a domain in C" which is complete with respect
to the Bergman metric. It is a domain of holomorphy. Let Af be the zeros
of a holomorphic function / defined on Af. Then, Af—AF is a domain of
holomorphy. Since Af is a subvariety of Af, the Bergman metric of Af—Af
is the restriction of that of Af by Theorem 3.3. Hence Af — AF is not complete.

Let Af be a nonsingular hypersurface of degree >re+2 in Pn+i(C). Since
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M is compact, M is complete with respect to the Bergman metric. Let if' be
if — i7P>5, where 5 is a hyperplane in Pn+i(C); i.e., M' is an affine algebraic
manifold. Then M' is a Stein manifold as it can be easily seen. Again, by
Theorem 3.3, M' is not complete.
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