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GEOMETRY OF COMPLEX MANIFOLDS SIMILAR TO
THE CALABI-ECKMANN MANIFOLDS

DAVID E. BLAIR, GERALD D. LUDDEN & KENTARO YANO

In [4] Calabi and Eckmann showed that the product of two odd-dimensional
spheres $??*! x §%*! (p,q > 1) is a complex manifold. As S$??*! x §%+*! is
not Kaehlerian, the fundamental 2-form 2 of the Hermitian structure is not
closed. However, df2 does have a special form on $??*!' x §%*!; in fact,
S2p+1 ¢ §%*1 admits two nonvanishing vector fields which are both Killing and
analytic, and whose covariant forms determine £. Our purpose here is to
study complex manifolds whose complex structures are similar to the complex
structure on S?P*! X §%*L

In § 1 we review the geometry of the Calabi-Eckmann manifolds. In §2
we give some elementary properties of vector fields on a Hermitian manifold,
and introduce the notion of a holomorphic pair of automorphisms and of a
bicontact manifold. § 3 continues the author’s paper [2] on the differential
geometry of principal toroidal bundles for the present case. In § 4 we discuss
bicontact manifolds and, in particular, the integrable distributions of a bi-
contact structure on a Hermitian manifold. Finally in § 5 we give some results
on the curvatures of a Hermitian manifold admitting a holomorphic pair of
automorphisms.

1. The Hermitian structure on the Calabi-Eckmann manifolds

The construction of the complex structure on $??*! x $§%*! which we will
give is due to Morimoto [6]. It is well known that an odd-dimensional sphere
§?P*1 carries a contact structure, i.e., a nonvanishing 1-form 7 such that
7 A\ (dp)? # 0. Let G be the standard metric on S??*'. Then there exist on
S+ (see e.g. [8]) a contact form 7, a vector field &, and a tensor field ¢ of
type (1, 1) such that

2 =1, ¢§=0, 5op=0, = —-14+7RE¢,
G, X) =9X), GlpX,pY)=GX,Y) — p(X)n(Y),

i.e., $?P*! carries an almost contact metric structure. For a contact structure
7 N\ (dp? # 0, ¢, & and G may be chosen such that dy(X, Y) = G(pX, Y),
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as happens in the sphere example. Moreover, the contact metric structure on
§?7+! is normal, i.e.,

[p,0] + dp® & =0,

where [, ¢] is the Nijenhuis torsion of . Thus $??*! carries a normal contact
metric or Sasakian structure.

Now let (p,&,7,G) and (3,&,7,G) be Sasakian structures on S$??*' and
S?a+1 respectively. Then define an almost complex structure J on S?2*! X §24+!
by

JX, X) = (pX — 7(X)&, pX + 7(X)8) ,

and let g be the product metric. Then direct computations show [6] that
JP= —1, g(J(X, X),J(Y,Y)) = g(X, X),(Y,Y)) and, using normality, that
[J,J] = 0. Thus §%?*+! x S2¢*! js a Hermitian manifold.

Defining the fundamental 2-form Q of the Hermitian structure by

we find that

RQ=dp+dij+9N7,

where we view 7 and 7 as 1-forms extended to the product. Thus the funda-
mental 2-form {2 of the Hermitian structure on §??*! X §%*! satisfies

dQ=dy A7 —n Ady.

Finally we remark that from the Hopf fibration #’: $*?*' — PC? of an odd-
dimensional sphere as a principal circle bundle over complex projective space,
we obtain a natural fibration z: $??*! X §%¢*!' — PC? X PC? of a Calabi-
Eckmann manifold as a principal 7% (2-dimensional torus) bundle over a pro-
duct of complex projective spaces. In fact the complex coordinates of S?7*! X
S?a+1 are essentially those of PC? X PC? together with a fibre coordinate
(4], [51.

2. Some elementary properties of vector fields
on a Hermitian manifold

Let M*® be a Hermitian manifold with complex structure J and Hermitian
metric g. Let U be an analytic vector field' on M**, i.e., &,J = 0 where &
denotes Lie differentiation.

1 More generally on an almost complex manifold a vector field U is said to be almost
analytic if yJ =0 and [J, JI(U, X) = 0 for all vector fields X.
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Proposition 2.1. If U is an analytic vector field on M*", then so is V = JU.
Proof.

0=[,JI(U,X) = —[U,X] + [V,JX] — JIV,X] — J[U,JX]
= —J@&WDNX + &NX = (DX .

Thus, if U is an infinitesimal automorphism of J, so is JU; but if U is
Killing (an automorphism of g), JU is not in general Killing. We therefore
make the following definition.

Definition. By a holomorphic pair of automorphisms we mean a unit
vector field U such that U and V = JU are infinitesimal automorphisms of
' the Hermitian structure.

Let u and v denote the covariant forms of U and V respectively. We begin
with some elementary properties of a holomorphic pair of automorphisms
,v =1J0).

Lemma 2.2. [U,V] =0.

Proof. 0= (&;HU = [U,JU] — J[U,U] = [U,V].

Lemma 2.3. duw(U,X) =0, du(V,X) =0, dv(U,X) = 0, dv(V,X) = 0.

Proof. We give the proof for-du, the proof for dv being similar. Since U
is Killing and unit, we have

du(U, X) = Vyuw)(X) — Vxu)(U) = gWyU,X) — g(W,U, U)
= '—Zg(VXU, U) =0 s

where V7 denotes the Riemannian connection of g. Similarly since [U, V] = 0
and V is also Killing, we have

du(V,X) = gWyU,X) — gWU, V) = gWyV,X) + gW,V,U) = 0.

Proposition 2.4. At each point of M*, u and v have odd rank, i.e., there
exist nonnegative integers p and q such that u N\ (du)? + 0, v N\ (dv)? # 0,
(duw)?r* = 0, (dv)?*! = 0.

Proof.  First note that (du)® = 0; for evaluating (du)® on a.J-basis con-
taining U and V each term in

(du)n(U9 V3 Xaa ] in)

vanishes by Lemma 2.3 ; here we have set X, = U, X, =JU =V and {X;}
‘a J-basis. Suppose now that at m e M*, (du)? #+ 0 and (du)?*' = 0. Then
evaluating (u A (dw)?)(U,Y,, ---,Y,,) where Y,,---,Y,, are vector fields
such that du(Y;,Y;) # 0, we have that u A (du)? #* 0. Similarly v has rank
2q + 1.

Definition. We say that a differentiable manifold M*" is bicontact if it
admits 1-forms u and » such that u A v A (dw)? A (dv)? # 0, (du)?*' =0
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and (dv)?*' = 0 with p + g 4+ 1 = n. M* is called a Hermitian bicontact
manifold if M?*" is both Hermitian and bicontact, and the 1-forms u and v are
the covariant forms of a holomorphic pair of automorphisms.

Lemma 2.5. If du is of bidegree (1, 1) with respect to the complex struc-
ture J, then so is dv.

Proof. Recall that the Nijenhuis torsion of a vector-valued 1-form 4 is
given by its action on a 1-form 4. This action is

[A,h]0 = —h®dO + hVd(@oh) — d(@oh?) ,
where for a 2-form O,
hPO)X,Y) =0hX,Y) + 6(X,hY) , h®*0)X,Y) = O(hX,hY) .

h@ is often denoted by ©® A h. Now since ¥ = —uoJ and du is of bidegree
(1, 1), we have
0=(U,JIWX,Y)
—du(JX,JY) — dv(JX,Y) — dv(X,JY) + du(X,Y)
= —dv(JX,Y) — dv(X,JY),

I

and hence dv is of bidegree (1, 1).

Remark. The above proof also shows that if du = dv, then [J,J] =0
implies that du(=dv) is of bidegree (1, 1). The authors have studied certain
manifolds admitting independent 1-forms u and v with du = dv, [1], [2].

Proposition 2.6. If M*" is Kaehlerian, then du = dv = 0.

Proof. First since V is analytic, we have

0= QDX =VyJX —V,V — IV, X +IV4V = —V,,V + V4V .

Now since V is Killing,

duX,Y) = gWyxU,Y) — gWyU,X) = g(=VxIV,Y) — g(=VyIV,X)
= gWxV,JY) + gUVyV,X) = —gW vV, X) + gUVyV,X) =0.

Similarly one can show that dv = 0.

In [9] one of the authors introduced the notion of an f-structure on a dif-
ferentiable manifold, i.e., the manifold admits a tensor field f == O of type
(1, 1) satisfying £ + f = 0 (see also [1], [7D.

Proposition 2.7. Let (M*™,], g) be an almost Hermitian manifold admitting
a nonvanishing vector field U, then U,V = JU,u,v (the covariant forms of
Uand V) and f=J + vQ@ U — u@ V define an f-structure with comple-
mented frames and rank (f) = 2n — 2 on M*™, i.e., we have
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f=—I+u®U+ oQV, fU=fV=0, uof=vof=0,
uU)=v(V) =1, wl@)=2U) =0.
The proof of this proposition is a straightforward computation and will be
omitted.

An f-structure with complemented frames (f, U, V, u, v) is said to be normal
if the tensor S defined by

S(X,Y) = [f, X, Y) + du(X, Y)U + dv(X,Y)V
vanishes. Computing S in our case gives

$SX,Y) =[J,JIX,Y) — (du x NX,Y) — (dv X NX,Y)

+ uX)(RpNY — u(Y)RyHNX + v(X)()Y — v(Y)(Zp))X .
Thus we have the following result.

Proposition 2.8. Orn a Hermitian manifold with a nonvanishing analytic
vector field U, if du is of bidegree (1, 1), then the f-structure (f, U,V ,u,v) is
normal.

It is well known (see e.g. [7]) that for a normal f-structure with comple-
mented frames, we have

gyf=0, QUMIO, 8[]1}20, gyf:'(), Byuzo, BV’U:O,

du KNf=0, dv xf=0, [U,V]=0.
Thus a straightforward computation shows that S = 0 implies [/, J] = 0.

Now if g is the Hermitian metric on M?", then

g(fX,fY) = gX,Y) — u(X)u(Y) — v(X)v(Y) ,
u(X) = g(U, X) , v(X) =gV, X),

that is, (f, g, u, v) defines a metric f-structure with complemented frames.
Finally we define the fundamental 2-forms £ and F of the structures by

2X,Y) =g(UX,Y), FX,Y)=g(X,Y).
Then a short computation gives

F=0Q—-uANwv.

3. Fibering by a holomorphic pair of automorphisms

In [2] the authors proved the following result.

Theorem. Let M?™*¢ be a compact connected manifold with a regular
normal f-structure of rank 2m. Then M*™*$ is the bundle space of a principal
toroidal bundle over a complex manifold N°*™.



268 DAVID E. BLAIR, GERALD D. LUDDEN & KENTARO YANO

Now if a complex manifold M** admits a regular analytic vector field U
(i.e., every point m ¢ M** has a neighborhood such that the integral curve of
U through m passes through the neighborhood only once), the vector field
V = JU is not necessarily regular. Thus we say that a holomorphic pair of
automorphisms is regular if both U and V are regular vector fields. Then
using the above theorem and Proposition 2.8 we can prove the following
result.

Theorem 3.1. If a compact Hermitian manifold (M*",J, g) admits a regular
holomorphic pair of automorphisms (U, V = JU) with du of bidegree (1,1),
then M*" is a principal T? bundle over a Hermitian manifold N**~*.

Proof. From the above theorem and Proposition 2.8 we obtain the desired
fibration. Thus we shall only exhibit the Hermitian structure on- N**~%. As U
and V are analytic, J is projectable and we define J/ on N**~? by

VX = n,J7X ,

where # denotes the horizontal lift with respect to the Riemannian connection
of g (in the nonmetric case one can use the pair (u, v) as a Lie algebra valued
connection form to determine # [2]) Then it is easy to check that J? = —1I.
Moreover we have

[JI, J,](X, Y) = — [”*ﬁX, ﬂ*ﬁ'Y] +:[7T*J7?X7 ”*Jﬁ'Y]
—n i lr 7 X, n, Y] — n JilraX, n, J7Y]
= r,[J,J1@X,7Y) = 0.

Finally as U and V are Killing, the metric g is projectable to a metric g on
N*»~* given by ¢(X,Y) ox = g(#X, #Y). Then

gU'X,JY)on = g(aX,JzY) = gzX,7Y) = g(X,Y)or,

and hence the structure on N?*~? is Hermitian.

We now compute the fundamental 2-form F of the f-structure (f, U, V u,v)
on M?**, First of all it is clear that F(U,X) = 0 and F(V,X) = 0. Thus it is
enough to compute F on vector fields of the form zX, #Y where X and Y are
vector fields on N?*~2,

F#X,zY) = g(fzX,7#Y) = gUzX,7Y) = g#V'X, #Y)
=gUX,Y)orn =X, Y)or,

where £’ is the fundamental 2-form on N?*~2. Hence we have F = z*{’. Now
dF = dn*Q = z*d and dF = dQ — du N\ v + u N dv, from which we
get the following result. '

Theorem 3.2. The base manifold (N**~%,J',g’) of the above fibration is
Kaehlerian if and only if
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d =du N v —u N dv

on M*",

Note also that by Proposition 2.6, d2 = 0 implies du = dv = 0 and hence
dF = 0. Thus we have the following result.

Proposition 3.3. If M*™ is Kaehlerian, then the base manifold N*"~* is
also Kaehlerian.

4. Hermitian bicontact manifolds

We begin with the following elementary result on the topology of a compact
bicontact manifold.

Theorem 4.1. Let M** be a compact bicontact manifold, and let 2p + 1
and 2q + 1 denote the ranks of the bicontact forms u and v Then the betti
numbers b,, ., and b,,,, are nonzero.

Proof. As (2p + 1) + (2q + 1) = 2n it suffices to show that b,,,, is
nonzero. We shall show that u A (du)? has nonzero harmonic part. Suppose
u A (du)? has no harmonic part, then as (du)?*' = 0, u /\ (du)? is exact, say
do. Now on a bicontact manifold u A (du)? A v A (dv)? is a volume element,
hence, since (dv)?*! = 0, we have

Oq&J.Mu/\ (dw)? Av A (dv) :jMda/\ v A (dv) :fMd(a/\ v A (dv)) =0,

a contradiction.

We shall now digress briefly to introduce the notion of a semi-invariant
submanifold [3]. Let M** be an almost complex manifold with a vector field
U and a 1-form u with u(U) =1, andset V =JU, v = —uo/J. Let¢: M — M*™
be a submanifold of M>* such that 1) the transform of a vector tangent to M
by J is in the space spanned by the tangent space of M and the vector U, 2)
V is tangent to M, and 3) uoc¢, = 0; we then say that M is semi-invariant
with respect to U. Note that U is never tangent to M, for if it were, then
U=¢U, and 1 = u(U) = u(,U) = 0, a contradiction.

Now define a tensor field ¢ of type (1, 1), a vector field &, and a 1-form 7
on M by

Je, X = tu0X — p(X)U , V =1¢¢.
We then have

=X = 0,0°X — 7(pX)U — 9(X)e,€
from which it follows that

¢F=—1+780§, 7pop=0.
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Also

—U =10V =, = 06 — 9(®U ,
giving
Thus we have the following result.

Proposition 4.2. A submanifold of M*", which is semi-invariant with
respect to U, admits an almost contact structure.

Now computing [/, J1(¢,.X, ¢, Y) we have

[J, J](l*Xa l*Y) = [*[SD, QD](X5 Y) + dy}(X’ },)[*‘S - YI(X)(BUJ)‘*Y
+ p(NRpNe X — (Rx(Y) — (Ryp(X)HU
from which we obtain the following result.

Proposition 4.3. If a submanifold is semi-invariant with respect to an
analytic vector field U on a complex manifold M, then its almost contact
structure is normal.

Returning to the bicontact case, we assume for the remainder of this section

that M*" is a Hermitian bicontact manifold as defined in §2. We define a
distribution % of dimension 2g + 1 by

U = {X|iX)u = 0,i(X)du = 0} ,

where i denotes the interior product operator. We shall show that % is inte-
grable. Let X and Y be vector fields belonging to . Then

0=dulX,Y) = Xu(Y) — Yu(X) — u((X,Y]) = —u(lX,Y]) .
Also for any Z
0 = du(X,Z2) = Xu(Z) — u(lX, Z]) = (2zu)(2) ,
and therefore
du([X,Y),2) = [X, YIu(Z) — Zu([X, Y] — u(llX, Y], Z])
= Rux,r(2) = (Bx8y — LRIW(Z) = 0.

Similarly the complementary distribution 7" = {X [i(X)v = 0, i(X)dv = 0} of
dimension 2p + 1 is integrable.
Theorem 4.4. A Hermitian bicontact manifold M*® with du of bidegree
(1, 1) is locally the product of two normal contact manifolds M**** and M*?*,
Proof. As noted above the distributions % and ¥~ are complementary and
integrable. Thus M?*" is locally the product of the respective maximal integral
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submanifolds M**! and M??*!. We shall show that the integral submanifold
M+t of 9 is semi-invariant with respect to U. Let ¢: M?¥*1 — M?* denote
the immersion, and let X be tangent to M**!, ie., ¢, X e %. Set Y = Ji, X +
(¢, X)U. Then

u(Y) = u(Je, X) + v(e, X) = —v(, X) + v, X) =0,
and
awy,Z) = du(Je, X + v(, X)U, Z) = du(Je, X, Z) = —du(c, X,JZ) =0

since du is of bidegree (1, 1). Thus Y e % so that M??*! is semi-invariant with
respect to U, and hence by Proposition 4.3 its almost contact structure is
normal. Finally as

77(X) - —‘g(Jl*Xy U) = g(l*X7 V) = 'U([*X) ’

we have that » A (dp)? # 0 on M*?*!. Similarly, M??*! is semi-invariant with
respect to ¥/, and is thus a normal contact manifold completing the proof.

Now let P and Q denote the projection maps to the tangent spaces of M?*?*!
and M?¢*! respectively. We note for later use that J(P—u®@ U) = (P —u@ U)J
as is easily verified, and hence that

JP=PI +u®@V +vQU.

We now compute the Lie derivative of P with respect to U and V. First
note that

&yP)X = [U, PX] — P[U, X] .

Thus, if X is U or V, we clearly have (8,P)X = 0. If X is orthogonal to U
but also tangent to M??*!, then PX = X and [U, X] is again tangent to M*?*!
so that

&P)X =[U,X] - [U,X]=0.

Finally, if X is orthogonal to V' and tangent to M?*¢*', then PX = 0. Let Y
be arbitrary. Then as U is Killing and P symmetric, we have

s(&P)X,Y) = —g(P[U, X],Y) = —g(WyX,PY) + g(WxU, PY)
= 8(X,VyPY) — g(X,VpyU) = g(X,[U,PY]) =0 .

Similarly 8,P = 0, and thus P and Q = I — P are projectable by the fibration
of § 3.

On the base manifold N?*~% of the fibration we define an almost product
structure as follows.
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PX ==nPiX, X =r,07X .
Then a direct computation shows that
PP=P, Q*=Q, PQ=QP =0, P+0Q0=1I.
Moreover as both the distributions % and ¥~ are integrable, [P, P] = 0 so that

[P, P1(X, Y) = 7,P'#[r,#X, 7,7Y] + [, P#X, x,P7Y]
— n, Pilx PiX, n Y] — n, Pilr, X, n PrY]
= r,[P,Pl(#X,7Y) =0 .

Thus the induced almost product structure on N**~? is integrable, and so N**~?
is locally the product of two manifolds N?? and N*.

We have already seen that J is projectable since U and V are analytic, and
that (J/ = =, J#, ¢) is a Hermitian structure on N**~2. Now let /: N°? — N**~?
denote the immersion of N?? in N**~2, and let X be a vector field on N*?. Then
using JP =PJ + u®V + v ® U, we have

Vi X = n JiPl X = n, JPal, X = n, PlalX
= n, PrV X = PVX ,

and hence N?? is an invariant submanifold of N**~? and consequently is a
Hermitian submanifold of N?"~2. Moreover, if N**~? is Kaehlerian, so is N??
and similarly N%. Also, if each of the induced structures on N?? and N*? are
Kaehlerian, so is the structure on N?*~%, Thus using Theorems 3.1 and 4.4
and Proposition 3.2 we have

Theorem 4.5. Let M** be a regular Hermitian bicontact manifold with du
of bidegree (1,1). Then the base manifold N**~? of the induced fibration is
locally the product of two Hermitian manifolds. Moreover, N**~? is locally the
product of two Kaehler manifolds if and only if the fundamental 2-form £2 on
M satisfies dQ = du N\ v — u N\ dv.

5. Curvature

In this section we give some results on the curvature of a Hermitian mani-
fold admitting a holomorphic pair of automorphisms.

Proposition 5.1. Let (M*",J,g) be a Hermitian manifold admitting a
holomorphic pair of automorphisms (U, V = JU). Then the sectional curvature
of a section spanned by U and V vanishes.

Proof. Since U is Killing, from g(V,U, X) — g(F xU,V) = 0 which was
derived in the proof of Lemma 2.3 it follows that 2g(F,,U, X) = 0 and hence
that /,,U = 0. Moreover as U is a unit vector field, we have 0 = g(V yU, U)
= —g(W,U, X) giving VyU = 0. Thus g(RyU,V) =0, where R is the
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curvature tensor of g, and hence the sectional curvature of a section spanned
by U and V vanishes.

" Theorem 5.2. If the Hermitian manifold M* of Theorem 3.1 has non-
negative sectional curvature, then the base manifold N**~* also has nonnegative
curvature.

Proof. First we note some relations.

[zX, #Y] = #lX, Y] + u([zX, zZYDU + »([zX, zYDV .
Since U and V are Killing, we have

8W.xzY,U) = —g@Y,V.xU) = —3du(zX,zY) ,
8V xY,V) = —g&Y,V.xV) = —idv(zX,7Y) ,

and hence
V.x#tY = #F%Y — Ydu(zX, #Y)U — Ldv(FX,zY)V ,

where I’ is the Riemannian connection of g’. Also, since [U, #X] is verti-
cal, gWyzX,zY) = gW.xU + [U, #X], #Y) = {du(#X,zY), and similarly
gW,zX,#Y) = Ldv(zX, zY).
We now compute the curvature.
g(R,;Xin?X, ﬁY) = g(VﬂxVﬁyﬁX —_— VﬁyVﬁXﬁX — V[,-,X,,ﬂ/]ﬁ'X, TT.'Y)
= gV .x(# %X — 3duzY, #X)U — Ldv(®Y, #X)V)
— Vay®V X — Vieg ayi®X, 7Y)
= g(#VVL X, 7Y) — 2du(zY, #X)g(V .U, zY)
— Ydv(zY, #X)eW iV, 7Y) — g@V, Vi X, 7Y)
— 8@V (5,1 X, 7Y) — u(lzX, zY (W yzX,zY)
— v([zX, 7Y eV y7X, zY)
= g¢RsyX,Y)or + 3du(zX,zY)* + 2dv(zX,7Y)*
since du(#X, #Y) = zXu(@Y) — #Yu#X) — u([zX, Y] = —u(lzX, zY)]).
Now for the sectional curvature K we have
_g(RiXﬁYﬁ-X5 ﬁY)

KX, 7Y) = .
X RY) = X X)g(2Y . 2Y) — 8K, 7YY

Thus, if K > 0, then g(R, 1.y 7X,#Y) < 0 and hence
—g Ry X, Y)or > 3(du(zX,zY) + dvGX, #Y)) ,

from which it follows that the sectional curvature K'(X,Y) > O.
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