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GEOMETRY OF COMPLEX MANIFOLDS SIMILAR TO
THE CALABI-ECKMANN MANIFOLDS

DAVID E. BLAIR, GERALD D. LUDDEN & KENTARO YANO

In [4] Calabi and Eckmann showed that the product of two odd-dimensional
spheres S2p+1 x S2q+1 (p,q > 1) is a complex manifold. As S2p+1 x S2q+1 is
not Kaehlerian, the fundamental 2-form Ω of the Hermitian structure is not
closed. However, dΩ does have a special form on S2p+1 X S2q+1 in fact,
S2p+1 x S2q+1 admits two nonvanishing vector fields which are both Killing and
analytic, and whose covariant forms determine Ω. Our purpose here is to
study complex manifolds whose complex structures are similar to the complex
structure on S2p+1 X S2q+1.

In § 1 we review the geometry of the Calabi-Eckmann manifolds. In § 2
we give some elementary properties of vector fields on a Hermitian manifold,
and introduce the notion of a holomorphic pair of automorphisms and of a
bicontact manifold. § 3 continues the author's paper [2] on the differential
geometry of principal toroidal bundles for the present case. In § 4 we discuss
bicontact manifolds and, in particular, the integrable distributions of a bi-
contact structure on a Hermitian manifold. Finally in § 5 we give some results
on the curvatures of a Hermitian manifold admitting a holomorphic pair of
automorphisms.

1. The Hermitian structure on the Calabi-Eckmann manifolds

The construction of the complex structure on S2p+1 X S2q+1 which we will
give is due to Morimoto [6]. It is well known that an odd-dimensional sphere
S2p+1 carries a contact structure, i.e., a nonvanishing 1-form η such that
η Λ {dη)p φ 0. Let G be the standard metric on S2p+1. Then there exist on
S2p+ι (see e.g. [8]) a contact form η, a vector field ζ, and a tensor field φ of
type (1,1) such that

, X) = 7](X) , G(φX, ψY) = G(Z, Y) - η{X)η{Y) ,

i.e., S2p+1 carries an almost contact metric structure. For a contact structure
η Λ {dη)p Φ 0, φ, ξ and G may be chosen such that dη(X, Y) — G(φX, Y),
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as happens in the sphere example. Moreover, the contact metric structure on
S2p+ί is normal, i.e.,

lφ,φ\ + dη®ξ = 0,

where [φ, φ] is the Nijenhuis torsion of φ. Thus S2p+1 carries a normal contact
metric or Sasakian structure.

Now let (φ,ζ,η,G) and (φ,ξ,η,G) be Sasakian structures on S2p+1 and
S2q+ί respectively. Then define an almost complex structure / on S2p+1 X S2q+1

by

J(X, X) = (φX - η(X)ξ, φX + V(X)ξ) ,

and let g be the product metric. Then direct computations show [6] that
P = - / , g(J(X, X), J(Y, F)) = g((X, X), (Y, F)) and, using normality, that
[/,/] = 0. Thus S2p+1 x S2q+ι is a Hermitian manifold.

Defining the fundamental 2-form Ω of the Hermitian structure by

Ω((X, X), (Y, F)) = g(J(X, X), (y, F)) ,

we find that

where we view η and η as 1-forms extended to the product. Thus the funda-
mental 2-form Ω of the Hermitian structure on S2p+1 X S2q+1 satisfies

dΩ = dη Λ η - η A dη .

Finally we remark that from the Hopf fibration πf: S2p+1 -> PCP of an odd-
dimensional sphere as a principal circle bundle over complex projective space,
we obtain a natural fibration π: S2p+1 X S2q+1 -^ PCP X PCq of a Calabi-
Eckmann manifold as a principal T2 (2-dimensional torus) bundle over a pro-
duct of complex projective spaces. In fact the complex coordinates of S2p+1 X
S2q+1 are essentially those of PCP X PCq together with a fibre coordinate
[4], [5].

2. Some elementary properties of vector fields

on a Hermitian manifold

Let M2n be a Hermitian manifold with complex structure / and Hermitian
metric g. Let U be an analytic vector field1 on M2n, i.e., 2VJ = 0 where £
denotes Lie differentiation.

1 More generally on an almost complex manifold a vector field U is said to be almost
analytic if 2^7 = 0 and [7, J](Uf X) = 0 for all vector fields X.
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Proposition 2.1. // U is an analytic vector field on M2n, then so is V = JU.
Proof.

0 = [J,J](U,X) = -[U,X] + [V,JX] - J[V,X] - J[U,JX]

(2VJ)X = (2VJ)X .

Thus, if U is an infinitesimal automorphism of /, so is JU but if U is
Killing (an automorphism of g), JU is not in general Killing. We therefore
make the following definition.

Definition. By a holomorphic pair of automorphisms we mean a unit
vector field U such that U and V — JU are infinitesimal automorphisms of
the Hermitian structure.

Let u and v denote the covariant forms of U and V respectively. We begin
with some elementary properties of a holomorphic pair of automorphisms

Lemma 2.2. [U, V] = 0.
Proof. 0 = (RvDU = [U, JU] - J[U, U] = [U, V].
Lemma 2.3. du(U,X) = 0, du(V,X) = 0, dv(U,X) = 0, dv(V,X) = 0.
Proof. We give the proof for du, the proof for dv being similar. Since U

is Killing and unit, we have

du(U, X) = {Vυu)(X) - (Fxu)(U) = g(FvU, X) - g(FxU, U)

= -2g(FxU,U) = 0,

where F denotes the Riemannian connection of g. Similarly since [U, V] . = 0
and V is also Killing, we have

du(V,X) = g(FvU,X) - g(FxU, V) = g(FuV,X) + g(FxV, £/) = 0 .

Proposition 2.4. At each point of M2n, u and v have odd rank, i.e., there
exist nonnegative integers p and q such that u Λ (du)p ψ 0, v A (dv)q Φ 0,
(du)P+1 = 0, (dv)q+1 = 0.

Proof. First note that {du)n = 0; for evaluating (du)n on a ./-basis con-
taining U and V each term in

vanishes by Lemma 2.3 here we have set Xλ — U, X2 = JU =± V and {Xt}
a /-basis. Suppose now that at m <= M2n, (du)p Φ 0 and (du)p+1 == 0. Then
evaluating (u Λ (du)p)(U, Y19 , Y2p) where Y19 , Y2p are vector fields
such that du(Yi, Yό) Φ 0, we have that u A (du)p Φ 0. Similarly v has rank
2q + 1.

Definition. We say that a differentiable manifold M2n is bicontact if it
admits 1-forms u and v such that u A v A (du)p A (dv)q Φ 0, (du)p+1 — 0
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and (dv)q+1 = 0 with p + q + 1 — n. M2n is called a Hermitian bicontact
manifold if M2n is both Hermitian and bicontact, and the 1-forms u and v are
the covariant forms of a holomorphic pair of automorphisms.

Lemma 2.5. // du is of bidegree (1,1) with respect to the complex struc-
ture J, then so is dv.

Proof. Recall that the Nijenhuis torsion of a vector-valued 1-form h is
given by its action on a 1-form θ. This action is

[h,h]θ = -A ( 2 )d0 + hωd(θoh) - d{θoh2) ,

where for a 2-form θ,

(A(1)0)(Z, Y) - 0(AX, Y) + Θ(X, AY) , (A(2)Θ)(Z, Y) = Θ(AX, AY) .

A(1)θ is often denoted by θ A A. Now since v — —uoj and dw is of bidegree
(1,1), we have

0 = ([/,/]«)(*, Y)

= -du(JX,JY) - dv(JX, Y) - dv(X,JY) + du(X, Y)

== -dv(JX, Y) - dv(X,JY) ,

and hence Jv is of bidegree (1,1).
Remark. The above proof also shows that if du = dv, then [/,/] = 0

implies that du( = dv) is of bidegree (1,1). The authors have studied certain
manifolds admitting independent 1-forms u and v with du = dv, [1], [2].

Proposition 2.6. // M2n is Kaehlerian, then du = dv = 0.
Proof. First since V is analytic, we have

0 - ($vf)X = FF/Z - F , X F - /ΓFZ + / F X F - -VJXV + WXV .

Now since V is Killing,

, Y) - g(Γxί/, Y) - g(FγU,X) = g(-FxJV, Y) - s(-FF/F,Z)

F,Z) + g(JFγV,X) = 0 .

Similarly one can show that dv = 0.
In [9] one of the authors introduced the notion of an /-structure on a dif-

ferentiable manifold, i.e., the manifold admits a tensor field / Φ 0 of type
(1,1) satisfying f + / = 0 (see also [1], [7]).

Proposition 2.7. Le* (M2 n, /, g) Z?e *m almost Hermitian manifold admitting
a nonvanishίng vector field U, then U, V = /£/, w, v (the covariant forms of
U and V) and f = J + v<S)U — u®V define an f-structure with comple-
mented frames and rank (/) = 2n — 2 on M2n, i.e., we have
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u(U) = v(V) = 1 , u(V) = v(U) = 0 .

The proof of this proposition is a straightforward computation and will be
omitted.

An /-structure with complemented frames (/, U, V, u, v) is said to be normal
if the tensor S defined by

S(X, Y) = [f,f](X, Y) + du(X, Y)U + dv(X, Y)V

vanishes. Computing S in our case gives

S(X, Y) = [/, J](X, Y) - (du A J)(X, Y) - (dv A J)(X, Y)

+ u(X)(2vJ)Y - u(Y)(ZvJ)X

Thus we have the following result.
Proposition 2.8. On a Hermitian manifold with a nonvanishing analytic

vector field U, if du is of bidegree (1,1), then the f-structure (/, U, V, u, v) is
normal.

It is well known (see e.g. [7]) that for a normal /-structure with comple-
mented frames, we have

Zσf = 0 , Zσu = 0 , 2σv = 0 , Zvf = 0 , &vu = 0 , 2rv = 0 ,

duπf = O, dvπf = 0, [U, V] = 0 .

Thus a straightforward computation shows that S = 0 implies [/, /] = 0.
Now if g is the Hermitian metric on M2n, then

g(fX,fY) = g(X, Y) - u{X)u{Y) -

) , v(X) = g(V, X) ,

that is, (/, g, w, v) defines a metric /-structure with complemented frames.
Finally we define the fundamental 2-forms Ω and F of the structures by

Ω(X, Y) = g(/X, Y) , F(Z, Y) = g(fX, Y) .

Then a short computation gives

F = Ω-u Λv .

3. Fibering by a holomoiphic pair of automorphisms

In [2] the authors proved the following result.
Theorem. Let M2m+S be a compact connected manifold with a regular

normal f-structure of rank 2m. Then M2m+S is the bundle space of a principal
toroidal bundle over a complex manifold N2m.
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Now if a complex manifold M2n admits a regular analytic vector field U
(i.e., every point m e M2n has a neighborhood such that the integral curve of
U through m passes through the neighborhood only once), the vector field
V = JU is not necessarily regular. Thus we say that a holomorphic pair of
automorphisms is regular if both U and V are regular vector fields. Then
using the above theorem and Proposition 2.8 we can prove the following
result.

Theorem 3.1. If a compact Hermίtίan manifold (M2n, J, g) admits a regular
holomorphic pair of automorphisms (U, V = JU) with du of bidegree (1,1),
then M2n is a principal T2 bundle over a Hermίtian manifold N2n~2.

Proof. From the above theorem and Proposition 2.8 we obtain the desired
fibration. Thus we shall only exhibit the Hermitian structure on N2n~2. As U
and V are analytic, / is projectable and we define /' on N2n~2 by

J'X = π*JπX ,

where π denotes the horizontal lift with respect to the Riemannian connection
of g (in the nonmetric case one can use the pair («, v) as a Lie algebra valued
connection form to determine ft [2]). Then it is easy to check that J'2 = —/.
Moreover we have

V',J'](X,Y) = -[π*πX,π*πY\ +.[

= π*[J,J](πX,πY) = 0 .

Finally as U and V are Killing, the metric g is, projectable to a metric gf on
N2n-2

'X, JΎ) oπ = g(JftX, JftY) = g(πX, πY) = g'(X, Y)oπ,

and hence the structure on N2n~2 is Hermitian.
We now compute the fundamental 2-form F of the /-structure (/, U, V, u, v)

on M 2 \ First of all it is clear that F(U,X) = 0 and F(V,X) = 0. Thus it is
enough to compute F on vector fields of the form πX, πY where X and Y are
vector fields on N2n~2.

F(τtX, πY) = g(fπX, πY) = g(JπX, πY) = g(πJ'X, πY)

= gf(J'X, Y)oπ = Ω'(X, Y) oπ ,

where Ωf is the fundamental 2-form on N2n~2. Hence we have F = π*Ω'. Now
dF = dπ*Ω' = π*dΩf and dF = dΩ - du A v + u Λ dv, from which we
get the following result.

Theorem 3.2. The base manifold (N2n~2, J/,g/) of the above fibration is
Kaehlerian if and only if
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dΩ = du A v — u A dv

on M2n.
Note also that by Proposition 2.6, dΩ = 0 implies du = dv = 0 and hence

dF = 0. Thus we have the following result.
Proposition 3.3. // M2n is Kaehlerian, then the base manifold N2n~2 is

also Kaehlerian.

4. Hermitian bicontact manifolds

We begin with the following elementary result on the topology of a compact
bicontact manifold.

Theorem 4.1. Let M2n be a compact bicontact manifold, and let 2p + 1
and 2q + 1 denote the ranks of the bicontact forms u and v Then the betti
numbers b2p+1 and b2q+1 are nonzero.

Proof. As (2p + 1) + (2q + 1) = 2n it suffices to show that b2p+1 is
nonzero. We shall show that u A (du)p has nonzero harmonic part. Suppose
u A (du)p has no harmonic part, then as (du)p+ι = 0, u A (du)p is exact, say
da. Now on a bicontact manifold u A (du)p Λ v Λ (dv)q is a volume element,
hence, since (dv)q+1 = 0, we have

0 φ [ u A {dύ)p Λ M (dv)q = f daAvA (dv)q =[ d(aAvA (dv)q) = 0 ,
J M J M J M

a contradiction.
We shall now digress briefly to introduce the notion of a semi-invariant

submanifold [3]. Let M2n be an almost complex manifold with a vector field
U and a 1-form u with u(U) = 1, and set V = JU, v = — u o J. Let t: M->M2n

be a submanifold of M2w such that 1) the transform of a vector tangent to M
by / is in the space spanned by the tangent space of M and the vector U, 2)
V is tangent to M, and 3) M O ^ = 0; we then say that M is semi-invariant
with respect to U. Note that U is never tangent to M, for if it were, then
U = c%U, and 1 = u(U) = u(t^U) = 0, a contradiction.

Now define a tensor field ψ of type (1,1), a vector field f, and a 1-form ^
on M by

Jt*X = c*ΨX - η(X)U , V = c*ξ .

We then have

- ^ Z = t*φ2X - η(φX)U - η{X)c*ξ ,

from which it follows that

ψ2 = - / + y(g)£ , >?°y> = 0 .
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Also

giving

φξ = O, η(ξ) = 1 .

Thus we have the following result.
Proposition 4.2. A submanijold of M2n, which is semi-invariant with

respect to U, admits an almost contact structure.
Now computing [/, J](e^.X, c^Y) we have

, Y) + dη(X9 Y)c*ξ

from which we obtain the following result.
Proposition 4.3. // a submanijold is semi-invariant with respect to an

analytic vector field U on a complex manifold M2n, then its almost contact
structure is normal.

Returning to the bicontact case, we assume for the remainder of this section
that M2n is a Hermitian bicontact manifold as defined in § 2. We define a
distribution °ti of dimension 2q + 1 by

% = {XI i(X)u = 0, i(X)du = 0} ,

where i denotes the interior product operator. We shall show that °U is inte-
grable. Let X and Y be vector fields belonging to °tt. Then

0 = du{X9 Y) = Xu(Y) - Yu(X) - u(lX9 Π ) - -u([X, Y]) .

Also for any Z

0 = du(X,Z) = Xu{Z) - u(iX,Z\) = (β^nXZ) ,

and therefore

du&X, Y], Z) = [X, Y]u(Z) - Zu([X, Y]) - u([[X, Y], Z])

= 0 .

Similarly the complementary distribution y = {X \ i(X)v = 0, i{X)dv = 0} of
dimension 2p + 1 is integrable.

Theorem 4.4. A Hermitian bicontact manifold M2n with du of bidegree
(1,1) is locally the product of two normal contact manifolds M2p+1 andM2q+1.

Proof. As noted above the distributions % and "Γ are complementary and
integrable. Thus M2n is locally the product of the respective maximal integral



GEOMETRY OF COMPLEX MANIFOLDS 271

submanifolds M2q+1 and M2p+ι. We shall show that the integral submanifold
M2q+1 of °U is semi-invariant with respect to U. Let t\ M2q+1 —• M2n denote
the immersion, and let X be tangent to M2q+\ i.e., c^X € <&. Set Y = Jc^X +
v(c*X)U. Then

u(Y) = u(Jc*X) + vU*X) = -v(ι*X) + v(ι*X) = 0 ,

and

du(Y,Z) = duQc^X + v(c*X)U,Z) = du(Jc*X,Z) = -du(c*X,JZ) = 0

since du is of bidegree (1,1). Thus Y € °tt so that M2q+1 is semi-invariant with
respect to U, and hence by Proposition 4.3 its almost contact structure is
normal. Finally as

η{X) = -g(Jc*X, U) = g(^X, V) = v{ι*X) ,

we have that η Λ (dη)q ψ 0 on M2q+1. Similarly, M2p+1 is semi-invariant with
respect to V, and is thus a normal contact manifold completing the proof.

Now let P and Q denote the projection maps to the tangent spaces of M2p+1

and M2q+1 respectively. We note for later use that /(P—u® U) = (P — u®U)J
as is easily verified, and hence that

JP = PJ + u®V + v®U .

We now compute the Lie derivative of P with respect to U and V. First
note that

(ZϋP)X=[U,PX]-P[U9X\ .

Thus, if X is U or F, we clearly have (2^P)Z = 0. If X is orthogonal to U
but also tangent to M2p+\ then PZ = X and [C/,Z] is again tangent to M2p+1

so that

Finally, if X is orthogonal to V and tangent to M2q+1, then PZ = 0. Let Y
be arbitrary. Then as U is Killing and P symmetric, we have

= -g(P[U,X],Y) = -

- g(X, VPYU) = g(X, [U, PY]) = 0 .

Similarly 2 F P = 0, and thus P and Q = I — P are projectable by the fibration
of §3.

On the base manifold N2n~2 of the fibration we define an almost product
structure as follows.
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FX = π^PπX , QX = π^QπX .

Then a direct computation shows that

F2 = F , Q'2 = Q , FQ = QF = 0 , P' + β' = / .

Moreover as both the distributions °tt and Ψ* are integrable, [P, P] = 0 so that

[F,F](X,Y) = ^ F π t ^ fZ, TΓ̂ TΓΓ] + [τr*PτfZ, T^PTΓΓ]

— π^Pπ[π^PπX, π*πY] — π^Pπ[π*πX, π^PπY]

Thus the induced almost product structure on N2n~2 is integrable, and so N2n~2

is locally the product of two manifolds N2p and N2q.
We have already seen that / is projectable since U and V are analytic, and

that (/' = π*Jπ, g>) is a Hermitian structure on N2n~2. Now let ί: N2p->N2n~2

denote the immersion of N22> in N2n~2, and let Z be a vector field on N2p. Then
using JP = P/ + w ® F + v (x) C/, we have

= π*JPπt'*X =

and hence N2 ί ) is an invariant submanifold of N2n~2 and consequently is a
Hermitian submanifold of N2n~2. Moreover, if N2n'2 is Kaehlerian, so is N2p

and similarly N2q. Also, if each of the induced structures on N2p and N2q are
Kaehlerian, so is the structure on N2n~2. Thus using Theorems 3.1 and 4.4
and Proposition 3.2 we have

Theorem 4.5. Let M2n be a regular Hermitian bicontact manifold with du
of bidegree (1,1). Then the base manifold N2n~2 of the induced fibration is
locally the product of two Hermitian manifolds. Moreover, N2n~2 is locally the
product of two Kaehler manifolds if and only if the fundamental 2-form Ω on
M2n satisfies dΩ = du Λ v — u A dv.

5. Curvature

In this section we give some results on the curvature of a Hermitian mani-
fold admitting a holomorphic pair of automorphisms.

Proposition 5.1. Let (M2n,J,g) be a Hermitian manifold admitting a
holomorphic pair of automorphisms ([/, V = JU). Then the sectional curvature
of a section spanned by U and V vanishes.

Proof. Since U is Killing, from g(FvU,X) - g(FxU, V) = 0 which was
derived in the proof of Lemma 2.3 it follows that 2g(FvU,X) = 0 and hence
that FVU = 0. Moreover as U is a unit vector field, we have 0 = g(FxU, U)
= —g(FuU,X) giving FuU = 0. Thus g(RuvU, V) = 0, where R is the
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curvature tensor of g, and hence the sectional curvature of a section spanned
by U and V vanishes.

Theorem 5.2. // the Hermiίian manifold M2n of Theorem 3.1 has non-
negative sectional curvature, then the base manifold N2n~2 also has nonnegative
curvature.

Proof. First we note some relations.

[πX, ftY] = π[X, Y] + udπX, ftY])U + v([πX, πY])V .

Since U and V are Killing, we have

πY, U) = -g(πY,F,xU) = -\du{πX9ftY) ,

g(F,xftY, V) = -g(πY, VMXV) = -\dv{πX, πY) ,

and hence

FxxftY = πF'xY - \du(πX, πY)U - \dv{πX, πY)V ,

where P is the Riemannian connection of g/. Also, since [U, πX] is verti-
cal, g(FuπX,πY) = g{F,XΌ + [U,πX],πY) = %du(πX,πY), and similarly
g(FvπX,πY) = \dv(πX,πY).

We now compute the curvature.

, ftY) = g(ΓfχFffF7rZ - F S F Γ , ^ Z - F^^πX, πY)

= ^(F,x(7fΓr^ - $du(πY9 πX)U - \dv(jtY\ πX)V)

- F~πYπF'xX - F^xrπYΛπX, πY)

= g{πFf

xF'γX, πY) - \du(πY\ πX)g(FjίXU, πY)

(πY, πX)g{F~πXV, πY) - g{πFf

γF
f

xX, πY)

[^,τtY) - u([πX,πY])g(FuπX,πY)

- v(lftX9 ftY])g(FγπX, ftY)

= g'{R'xγX, Y) o 7Γ + idu(πX9 πY)2 + %dv(πX, πY)2

since du(πX9 ftY) = fzXu(πY) - ftYuiπX) - u([ftX, ftY]) = -u([πX9 ftY]).
Now for the sectional curvature K we have

K(πX9 ftY) = -g(R^γπX, ftY)
> ftX)g(fiY, ftY) - g(πX, ftY)2

Thus, if K > 0, then g(R,xnγftX, ftY) < 0 and hence

-έ(R'zτX9 Y)oπ> i(duQcX9τtY)2 + dv(πX9 ftY)2) ,

from which it follows that the sectional curvature K'(X, Y) > 0.
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