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A b s t r a c t .  Amari's ±l-divergences and geometries provide an important de- 

scription of statistical inference. The :t=l-divergences are constructed so that 

they are compatible with a metric that is defined by the Fisher information. In 

many cases, the =i=l-divergences are but two in a family of divergences, called the 

f-divergences, that are compatible with the metric. We study the geometries 

induced by these divergences. Minimizing the f-divergence provides geometric 

estimators that are naturally described using certain curvatures. These cur- 

vatures are related to asymptotic bias and efficiency loss. Under special but 

important restrictions, the geometry of f-divergence is closely related to the 

a-geometry, Amari's extension of the ±l-geometries. One application of these 

results is illustrated in an example. 

Key words and phrases: Divergence, contrast functional, yoke, minimum di- 

vergence estimator, geometric estimator, curvature, dual geometries, statistical 

manifold. 

I. Introduction 

The  f -d ivergence  can be viewed as an extension of the divergence measures 

described by Read and Cressie (1988) who show that many of the functions com- 

monly minimized in analyzing contingency tables belong to a family of divergence 

measures. Vos (1991) shows the close relationship between divergence measures 

and quasi-likelihood functions. The divergence associated with a quasi-likelihood 

is one member  of a family of divergence measures, called the f-divergences.  A 

given quasi-likelihood function 1 allows us to model the error distribution as a 

function of the mean while the collection of f-divergences for I allows us to model 

the skewness of the error distribution. One way to describe the f-divergence is 

via its relationship to quasi-likelihood functions and generalized linear models. 

This  is done in Vos (1991). Fur ther  discussion on generalized linear models and 

quasi-likelihood functions is given in McCullagh and Nelder (1989). 

The f-divergence can also be studied geometrically. Under weak regularity 

conditions, modeling the variance of an error distribution as a function of the 
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mean allows one to construct a Riemannian manifold. The quasi-likelihood gives 

one divergence that  is compatible with this geometric structure. The collection 

of all divergences compatible with a given Riemannian manifold is just the set 

of f-divergences. In this paper, we consider the geometric properties of the f -  

divergence. The family of f-divergences allows us to define a family of geometric 

estimators, called the minimum f-divergence estimators. We show that a natural 

way to compare these estimators is in terms of a curvature. Along with a geometric 

interpretation, this curvature appears in higher order asymptotic calculations and 

describes second order bias and efficiency loss. We also consider an important 

special class of quasi-likelihood functions where the geometry induced by a subset 

of the f-divergences is the same as Amari's a-geometries (Amari (1985, 1987)). 

The quasi-likelihood functions, together with the associated f-divergence mea- 

sures, provide a powerful family for modeling the variance and skewness of a dis- 

tribution. The role of the f-divergences in applications is illustrated through an 

example. 

2. Divergence and geometry 

Divergence measures are typically defined on a differentiable manifold S. For 

us, S will be a smooth n-dimensional Pdemannian manifold with metric (., .). A 

divergence is a smooth mapping D ( . , .  ) : S × S ~-* R for which at each point 

of S there exists a coordinate system ~ = (~1 . . . ,  r/n)~, called the divergence pa- 

rameterization, with image Af = ~(S) such that D(rh, 72) = D(~-1(~1), ~-1(~2)) 

satisfying the conditions 

(2.1) 

a) D(71,72) > 0 for all 71,72 e Af, 

equality holding if and only if 71 = 72, 

0 0 
b) gr8(71) - 07]~ 0 ~  D(71'~2) does not depend on ~2 

and the matrix (grs) is positive definite for all ~1 EAf. 

Notice that the smoothness of D and a) imply 01rD(~1,72) = 0 = 02rD(~1,72) 

when 71 = 72 where 01~ = 0/0~[  and 02r = 0 / 0 ~ .  The matrix function g~8(~1) 

given in condition b), called the metric matrix, defines a metric on the manifold 

so that S need not be Riemannian. In many applications, however, there will 

be an obvious given metric (defined by the second order moments) which need 

not be the same as the metric determined by a divergence. When the metrics 

are the same the divergence is called compatible. That  is, D is compatible with 

(.,-) if gr8 = (Or, 08) where Or = 0/07l" and 08 = 0/078. We shall only consider 

divergences compatible with the metric. 

The definition (2.1) for divergence is the same as the one given in Amari (1985). 

It is important to note that divergence has been defined differently by other au- 

thors. Eguchi (1985) defines a contrast functional p on a pair of probability mea- 

sures which is positive except when the measures agree. Eguchi (1985) also calls p 

a divergence. Rao (1987) gives yet another definition for a divergence. A related 

term is a yoke. Barndorff-Nielsen (1987) defines a yoke on a smooth manifold S 
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with coordinate chart w = ( o 2 1 , . . . , o ) n ) .  A smooth function g : S x S ~-* R is a 

yoke if for all w 

(2.2) 

a) O-~jg(wl,w2)[~l=~ 2 = O f o r j =  1 , . . . , n ,  
. L  

02 
b) Ow~Ow k g(wl, ~2)1~1=~2=~ is a positive definite matrix. 

It should be clear that Amari's definition of a divergence is a special case of the 

more general concepts of a contrast functional and yoke. Further information on 

contrast functionals can be found in Pfanzagl (1973) and Eguchi (1983) while yokes 

are discussed in Blmsild (1987). 

The divergence parameter T allows us to define a connection on S. All con- 

nections considered will be smooth, affine and torsion-free. It will be convenient 

to use a special set of vector fields to define the divergence connection on S. The 

set of v e c t o r s  {(~rp -~ O/(~Trlp} is called the T-natural basis for TpS; let 0n be the 

corresponding vector field defined on a neighborhood of p. The (primal) diver- 

gence connection can be defined in terms of these vector fields by ~7o69~ = 0. The 

components of the divergence connection must also be zero in the T-coordinate 

system Frst = (Vo~Os, Ot} = O. If g is the tangent vector field to a curve c(t) such 

that Vag = 0 on c(t), then c(t) is called a geodesic. Hence, the coordinate curves 

for the T-parameter are geodesic for V. Two connections ~7 and ~7" are dual if 

A(B, C) = (V AB, C) + (B, V*AC ) 

for all vector fields A, B, C. Hence, the components of the connection dual to 

V must be F*~t = O~g~t. In order to compare different connections, it will be 

useful to write the components of ~7 in terms of a common parameter #. If Fijk = 

(Vo~Oj,Ok) where 0i = 0 / 0 #  i, then 

(2.3) Fijk = oiTr OjTS OkTtFrst + grsOiOjT~ OkT] s 

= g 80 OjT OkT 

In (2.3) and the following, the Einstein summation convention is used. 

For a given connection V on a Riemannian manifold, we can define a tensor 

on vector fields A, B, C, D by 

R(A, B, C, D) = (VAVBC - ~ B V A C  -- ~ A B C  -- V B A C ,  D) 

called the Riemannian curvature tensor for V. Using the divergence parameter 

T, it is clear that the Riemannian curvature for V is zero everywhere. When the 

Riemannian curvature vanishes, the manifold is called flat. Hence, whenever a 

divergence can be defined on S, S must be flat in the divergence connection. By 

the properties of dual connections, if S is flat in the connection V then S is also 

flat in the dual connection V*. Further details concerning V and V* can be found 

in Amari (1985). 
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We note that  a yoke provides a metric and a pair of dual connections. The 

yoke p defines a metric by 

(2.4) -(P) Yij ~ ~ - -  

and dual connections by 

0 0 p(O1,02)[o,=o =o 

F ( p )  0 0 0 
ijk -- 00~ O~ 00 kp(Ol'O2)l°a=°2=°' 

(2.5) 
r(p). 0 0 0 

ijk = - -  0"~i2 00j2 ~kl P(01, o2)Io,=o==o 

where 0 = (01, . . . ,  ~ )  is any coordinate chart on S. When p = D and 0 is the 

divergence parameterization, it is easily verified that Yij -(p) = gij, --ijkP(P) = r~jk and 

r(p). . ijk = Fijk" The additional structure of Amari's divergence ensures that S is flat 

in the V and V* connections. 

For a given connection V, there are two functions relating elements of 

the tangent space to the manifold S. At each point ~0 the exponential map expoo (.) 

takes a neighborhood around the origin in TooS into S and its inverse expirY(.) 

takes a neighborhood of 7/0 into TooS. We shall write v(~/0,~h) for eXP~ol(Th) so 

that  g(q0, 71) is the vector in Too S "connecting" (via the V connection) the points 

7/0 and ~1. When the manifold is geodesically complete, g(., .) can, in fact, be 

defined on all S × S. When V is defined from a divergence, then exp and ~(-,-) 

can easily be defined in terms of the divergence parameter 7. It is enough to define 

the exponential map on the basis vectors e0r0 = e0/0qrlno, as 

(2.6) eXPoo (e0r0) = 70 + eer 

where e > 0 is chosen to ensure that  e&0 is in the domain of eXP,o, er = (e~) 

and e ri __ 1 if i = r and is zero otherwise. The image of exp lies in S, but the 

right-hand side of (2.6) lies in Af. Strictly speaking, the right-hand side of (2.6) 

is the ~ coordinate expression of the exponential map of the left-hand side. From 

time to time it will be convenient to refer to ~/, or sometimes #, as points in S; 

this should cause no confusion. In terms of the ~7 parameter, g(~o,~h) is defined 

by g(q0, ql) = (q~ - ~/~)Oro. For the dual divergence connection V*, we can define 

the corresponding functions exp* and g*(.,-). Notice F*(Pl,P2) is not a vector 

dual to F(Pl,P2). Both F(Pl, • ) and F*(pl, • ) have their range in TB~S; the dual 

terminology and the * notation refer to the connection used to define this map. 

We have shown that a divergence defines a connection on a manifold. To 

understand the relationship between this connection and the divergence, we study 

the divergence more closely. Let q be a divergence parameter for D(pl, P2). Fix ~o 

and define ¢(7/) -- D(~, 7/0). Since 0rO,¢(~?) = (Or, O,), ~b(~) is called a potential 

function for 7?. By Theorem 3.4 of Amari ((1985), p. 80), there is a dual parameter 

to ~ defined by 7" = Or~P(7/) and a dual potential function ¢(r/*) for q*. This dual 

potential function satisfies 

(2.7) 0r0~O(T/*) = (O r, 0 ~) and V;~0 ~ = 0 
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where 0 r = 0/07*. We also have that 7 r = 0r¢(7 *) and ¢(7) + ¢(7*) - 7r7 * = 0. 

From the properties of ¢ and ¢, it is easily checked that 

(2.8) D ( 7 1 , 7 2 )  = ¢ ( 7 1 )  Jr- ¢ (7~  ) - I] 1r 72r., 

From (2.8) we have 

(2.9) D(71,72) + D(72, 73) = D(71,73) -I- (7[ -- 7~)(7~r -- 7~r)" 

Rewriting (2.9) in parameter-free form, we have 

(2.10) D(pl,P3) = D(pl,P2) + D(p2,p3) - <v(p2,Pl),v *(P2,P3)). 

The divergence is a distance-like quantity that measures how near two points 

are. Equation (2.10) is related to the following identity for squared distances 

(2.11) I]~(p2,Pl) - ~ * (p2 , P3 ) l J 2 

= JJO'(p2,px)ll  2 + II~*(p2,p3)ll 2 - 2<~(p2,p~), ~*(p2,p~)> 

where I]~][ 2 = <~, ~}. Comparing (2.10) and (2.11) we see that the divergence be- 

haves like one half times a squared distance. Certainly, a Taylor's series expansion 

of D(71 , 72) makes it clear that 

(2.12) 1 12 D(pl,P2) ~ ~IIY(p2,pl)[ 

for Pl near P2. What (2.11) shows is that in some ways the divergence behaves 

like one half times a squared distance globally. When Y(P2,Pl) and Y*(P2,p3) are 

orthogonal, (2.10) reduces to Amari's ((1985), p. 86) Pythagorean relationship for 

divergences. 

The following proposition shows that a divergence is uniquely defined by spec- 

ifying the metric matrix and divergence parameterization. 

PROPOSITION 2.1. If  DA(Pl,P2) and DB(Pl,p2) are both compatible with 

<., .) and each has divergence parameter 7, then DA(pl,p2) = DB(pl,p2) for all 

Pl,P2 E S. 

PROOF. From (2.8) we have 

(2.13a) 

(2.13b) 

DA(71,72) ¢A(71) + ¢A(7~)  r A 
: - -  71 72 r  

DB(71 72) ¢"(71)  + ¢B(7~)  r B , = - -  7 1 7 2 r  

where q A  i s  dual to q for DA and 7 B is dual to 7 for DB. Since DA and DB are 

compatible with the same metric, 0~08¢A = COrOsOB and so 

CA(,)  - CB( , )  = g r ,  r + C1, , P  - 7 ]  = Kr 
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where Kr and C1 are constants. Since CA and 0B are potential functions, 

g~8OsCA = 7 r = g~8OsOB SO that  

¢A(7 A) - ¢B(7")  = c2 

where C2 is a constant. Subtracting (2.13b) from (2.13a) and making substitutions 

from the above equations, we obtain 

D A ( 7 1 , 7 2 )  -- DB(71,72) = C1 - t -C2,  

Setting ~1 = 72, we see that  C1 + C2 = 0. [] 

Next, we consider the relationship between a manifold with divergence D(., .) 

and a statistical manifold. Lauritzen (1987) defines a statistical manifold as a 

Riemannian manifold (S, (., .}) together with a symmetric tri-linear map T(. , . ,  .) 

called the skewness tensor. Although we also consider statistical models in which 

the moments beyond the variance have been left unspecified, we still call T(. , . ,  .) 

a skewness tensor. We have seen that  a divergence defines a pair of dual connec- 

tions; Lauritzen (1987) shows that  there is a skewness tensor defined by these dual 

connections. The relationship between the dual connections and T(. , . ,  .) is 

(2.14) T(A,  B, C) = (VAB - V~B,  C) 

for vector fields A, B, C. The definition of T(., . ,  .) in terms of the divergence is 

given in Proposition 2.2. 

PROPOSITION 2.2. Let rl be the divergence parameter for D(., .) defined on 

S. The functions (., .} and T(., . ,  .) defined by 

(2.15a) 

(2.15b) 

(On, 0~} = 01~01~D(71, ~2), 

T(Or, Os, Or) = -01rOlsOltD(71, 72) 

are symmetric tensors that make S a statistical manifold (S, (.,-), T(. , . ,  .)). 

Eguchi (1983) and Lauritzen (1987) prove this for the case where S is defined 

from a linear exponential family and 7 is the natural parameter. Their argument 

also holds for our case. 

3. f-divergence 

Prom (2.8) it is easily seen that  the dual divergence D*(~ ,7~)  = D(~2,71) 

where 71 (resp., 72) is a function of 7~ (resp., 7~), is indeed a divergence with 

divergence parameter 7*. Both D and D* are compatible with the metric (., .). It 

is natural  to ask what  other divergences are compatible with (-,-). A divergence 

compatible with a given metric will be denoted by D I and called an f-divergences 

for the following reason. 
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For many statistical inference problems, the family of probability models de- 

termine a Riemannian manifold with metric defined in terms of the Fisher infor- 

mation matrix. The estimates obtained by minimizing the likelihood divergence 

have optimal higher order asymptotic properties (Amari (1985)). Even when full 

distributional assumptions are weakened to assumptions about the first two mo- 

ments, it is often possible to define a Riemannian manifold with metric given by 

the covariance structure. In these situations, estimates are typically obtained by 

minimizing the deviance divergence; although other divergences provide equally 

good estimates in some cases (Vos (1991)). The divergence parameter for the 

likelihood divergence and the deviance divergence is the mean parameter. So in 

a statistical setting, we are given a manifold S with divergence D(pl ,  P2) that is 

compatible with the metric (., .) on S and divergence parameter # E A4. Since 

(7, Af) is another parameterization (coordinate chart) on S, there exists a diffeo- 

morphism f such that f (#)  = 77. By Proposition 2.1, we can label any divergence 

compatible with (.,-) by the diffeomorphism f : A/I ~ Af. Clearly, not all diffeo- 

morphisms will provide an f-divergence. The image of f must be the divergence 

parameter for a divergence compatible with the metric; that is, 

0]A i (~pJ 
OlrOlsDf(71,  ;]2) ---- (0r, 0s) ---- ~-~r gij  O;]s" 

f 
Each f-divergence on S determines a connection, called the f-connection ~7, and 

I 
a dual f-connection V*. The corresponding exponential and vector maps will be 

f f . f f 
~*. denoted by exp, exp , ~" and The curvature and skewness tensors for the 

f-connections will be denoted by R f and T f, respectively. 

We have already mentioned that the term divergence has been defined differ- 

ently by other authors. The same is true for f-divergence. Csiszar's f-divergence 

(1967) is a divergence in the broader sense of a contrast functional. 

Next, we consider some properties of the f-divergences and their corresponding 

geometric structure. It should be noted that  the f l -  and f2-divergences may be the 

same even when f l ¢  f2. Proposition 3.1 characterizes when two f-divergences are 

equal. Before giving this proposition we make a definition. Two parameterizations 

;] = (~r) and 4 = (4 p) on S are called affine equivalent or simply equivalent if 77 

is a nonsingular affine transformation of 4, i.e., ;]r = L~4p + K r where L = 

(L~) is a nonsingular n > n matrix and K = (K ~) C R n. The collection of 

parameterizations that are equivalent to 7 will be written [;]]. When 7 and 

are divergence parameterizations for D fl (;]1,72) and D/~ (41,42), respectively, and 

[;]] = [4]~ then 

(3.1) f [ ( . )  r . K r. = Lpf  (.) + 

Functions f l  and f2 are called equivalent if they satisfy equation (3.1) and we 

write If1] -- [f2]. Diffeomorphisms are called divergence equivalent if they define 

the same divergence. The following proposition shows that divergence equivalence 

and affine equivalence are the same. 
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3.1. / f  Df~(pl,p2) and Df2(pl,P2 ) are compatible with the 

Df~(pl,P2) = D:2(Pl,P2 ) -" ;-[fl] -- If2]. 

PROOF. Let 7 = (7 r) be the fl-divergence parameter and let ( = ((P) be the 

f2-divergence parameter. Furthermore, let Or = c9/07 r and Op = 0 /0 (  p so that 

(3.2) 0r = Or(POp and Op = apTrOr. 

If Dr1 (71,72) = Dr= ((1, (2), then the metric defined by each must be the same, so 

(3.3) (Op, 0o} = OpTr OoTs (Or, 0~). 

Since (Or, 081 = 01rOl~Dfl (71,72) and (0,, 0o) = 01pOl~Df2 ((1, (2), (3.3) can be 

rewritten as 

(3.4) 01pOl~DI= ((1, (2) = O,?]rOoT"01rO1~Dfl (71, 72). 

Using (3.2) and our hypothesis, we find 

(3.5) OlpOt~D/: ((1, (2) = ooTrooTsOl~Ot,Df, (71, ?]2) + OaopTrOlrDft (71, ?]2). 

Comparing (3.4) and (3.5), we see that 0a0p~ r -- 0 so 0pTfl = L~ and, therefore, 

~fl = L~( p + KL  The matrix L~ must be nonsingular to ensure that ~ = (7 r) is 

a diffeomorphism. Conversely, suppose [fl] = [f2] so that ?] = L( + K where L = 

(L~) is a nonsingular n x n  matrix and K = (K r) E R n. It is easily checked that the 

function defined by D((1, (2) = DI~ (L(1 + K, L(2 + K) is a divergence compatible 

with the metric and that ( is a divergence parameterization. By Proposition 2.1 

we have D~2((1,(2 ) -- D((1,(2)  and so D/2((1,(2 ) = D/~(~l,r/2). [] 

For a given f-divergence, Proposition 3.2 shows that there exists an f*- 

divergence whose f*-connection is dual to the f-connection. 

PROPOSITION 3.2. For every f-divergence Df(pl,P2), there exists an f*- 

divergence D /.  (pl, p2 ) such that 

Dr.  (Pa, P2) = D/(P2, Pl ) = D~ (Pl, P2). 

f f* 
Furthermore, V* = V. 

PROOF. The equality between the second two divergences follows from the 

definition of the dual divergence D*. For the first equality we simply define f* : 

A4 ~ A : *  by f* * -- ~v o ~ 1  o f where ~u is the divergence parameterization 

on S (for Df(pl,P2)) and q0~ is the dual parameterization. From (2.7) we have 
l 
V ~ 0 "  = 0 since 7" is the dual parameter for Df and since ?]* is the primal 

f* : :* 
divergence parameter for Dr., Vo, cq ~ = 0. Hence, V* = V. [] 
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Equation (2.12) shows that  locally an f-divergence is a squared distance and 

the defining properties of a divergence and equation (2.10) show that even globally 

an f-divergence retains some of the properties of a squared distance. The following 

proposition explores the conditions when Df  is a squared distance. 

PROPOSITION 3.3. Let Dr(. , . )  be compatible with the metric (.,.} and have 

divergence parameter ~ = (~ ) ,  dual divergence parameter ~?* = (~l*), and metric 

matrix grs = (Or, Os}. Then the following are equivalent: 

(1) D l ( n l , ~ 2 ) = D f ( ~ 2 , n l ) ,  

( 2 )  [ f * ]  : I f ] ,  

(3) g~ is constant on S, 

/ 
(4) T(.,. ,  .) = 0, 

1 r 
(5) nf(~l ,~2)  -- ~(~1 --~)grs(O~ - - ~ ) .  

We note that (1) ~ (4) holds for general yokes. 

PROOF. We prove these equivalences in the following manner: (1) <=~ (2) <=> 

(3) ¢=~ (4), (5) ~ (3) and (1) ~ (5). Proposition 3.2 shows that (1) is equivalent to 

D](~I, ~2) = D / .  (~1, ~]2), and so by Proposition 3.1, (1) ~ (2). By Proposition 3.1 

and the definition of f*, it follows that (2) is equivalent to 

(3.6) r/; = L r ~  ~ + K~ 

where (L~8) is a nonsingular n × n matrix and (/{8) E R ~. Since O~n~ = g~,  

(2) ¢~ (3) and, in fact, Lr8 -- grs- For the divergence parameter r/ we have 

Trst = Orgs,; this shows (3) ¢~ (4). Since 01rOlsDf(rh,rl2) = g~ is a function of 

~1 alone, it is easily checked that g~ in the right-hand side of (5) must be constant. 

Hence, (5) ~ (3). Now assume (1) holds. Then (3.6) holds with L~  = g~ and we 

must have 

(3.7) ( % -  - n r) = - 

Using (2.8) to write the f-divergence in terms of its potential functions, (1) implies 

(3.8) 2Df(Th, ~2) = (¢(rh) + 8 ( ~ )  - r/~r]~r) + (¢(~2) + ¢ ( ~ )  - ~ r /~ ) .  

Using the identity ¢(q) + ¢0/*) - r/r~/~ = 0, equation (3.8) can be rewritten as 

(3.9) 2Df(~l,  ~2) = (~/~ - O~)(V~r - ~ ) -  

Equations (3.7) and (3.9) give (5) and the proposition is proved. [] 
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4. Submanifotds and auxiliary manifolds 

We have considered the geometry induced by a divergence on an n-dimensional 

manifold S. Next, we consider a smooth submanifold M c S and let u : M ~ / 4  C 

~m be a parameterization for M. The tangent space TpM of M at p is spanned 

by {01, . . . ,  0m} where Oa = O/Ou a. This tangent space is a subspace of TpS since 

Oa -~ o P i / O u a O i  • Notice that  we have dropped the notational distinction between 

vectors and vector fields. A geometric structure on M can be induced from S in 

a natural manner so that  M is not only a Riemannian manifold but a statistical 

manifold as well. Since TpM C TpS, (., .) and T(.,. ,  .) are defined on TpM and the 

corresponding quantities on M are simply defined by restriction. 

We shall assume that  there exists a tubular neighborhood UM around M. 

This tubular neighborhood can be thought of as a collection of (n-m)-dimensional  

auxiliary manifolds A(p) (called, ancillary manifolds in Amari (1985)) at each point 

p E M,  UM = UpeMA(p). In order for UM to be a tubular neighborhood, these 

auxiliary manifolds must be combined in a smooth manner such that  there exists a 

parameterization u = ( u l , . . . ,  urn) ' on M and parameterization w -- ( w l , . . . ,  wn) ' 

on UM such that w ~ = u ~ for a = a where a = 1 , . . . , n  and a = 1 , . . . , m .  The 

other n - m components of w will be denoted v ~ for ~ = m + 1 , . . . ,  n. In brief, we 

write this relationship between w, u and v as (w ~) = (u a, v~). The parameter v is 

defined so that  (u ~, 0) names a point on the manifold M and if p0 is a fixed point 

in M and uo = u(po), then w = (u~,v ~) names a point in A(po). The parameter 

v is a coordinate chart for each A(p). 

For this paper we shall only consider auxiliary manifolds A that  are orthogonal 

to M; that  is, TpM is the orthogonal complement of TpA(p) in TpS for each 

p C M. We let 0~ = O/(~U a, a = 1 , . . . ,  m be the natural basis associated with the 

parameter u and 0,~ = O/Ov '~, ~ = m , . . . ,  n be the natural basis for the parameter 

v so that  (0~, 0~) = 0 at all points on M. An important tensor defined on the 

auxiliary submanifolds is the imbedding curvature which has components defined 

by 

(4.1) 

We shall be most interested in the curvature of A(p) evaluated on the submanifold 

M. It will be useful to express this tensor using another parameterization #. 

We write O~ = U~Oi and 0:~ = V~O~ where O~ = 0 /0#  ~, U~ = O#i/Ou ~ and 

V~ -- O#i/Ov ~. Notice that  U~ depends on how the submanifold M is imbedded 

in S while V~ depends on the auxiliary submanifolds. Making the appropriate 

substitutions in (4.1) we have 

(4.2) 

The following contraction of H ~ ,  called the square of the auxiliary imbedding 

curvature, will be used 

(4.3) ( H~)ab = H,c:~a H~, ~,bg'~'g ~ '  
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/ . ° 

where g ~  is the (n - m) × ( n - m) matmx formed from the lower right corner 

of the n x n matrix g ~ ' ,  the matrix inverse of g ~ , .  The simplest contraction of 

H ~ a  is the trace 

= H~ag • (4.4) t r (H)a  ~ 

This tensor will also be considered in the sequel. 

Before calculating Af(p) explicitly, we discuss estimation and auxiliary sub- 

manifolds. We shall assume that the vector of observations y can be mapped into 

the manifold S; this is typically done using the expectation parameter so that we 

choose an element p(y) in S having expectation parameter y. We also assume that 

the true distribution of Y belongs to the submanifold M. Recall that the points of 

S and M axe equivalence classes of probability distributions, so by the assumption 

that y has distribution in M, we mean that the distribution of Y belongs to one of 

the equivalence classes in M. Let p(y) be the point in S corresponding to y and let 

P0 E M contain the true distribution of Y. One way to estimate P0 is to find the 

point in M that is nearest, in some sense, to p(y). How we estimate P0 will depend, 

then, on how we measure the "distance" between points in S. Hence, to each f -  

divergence there will be an estimator called the minimum f-divergence estimator 

or f-est imator for short. When S is defined from a linear exponential family, then 

the maximum likelihood estimator belongs to the family of f-estimators. 
f 

Let/5 be the minimum f-divergence estimate for p(y); i.e., 

(4.5) Df(p(y),~) -- min Df (p(y), p). 
pEM 

Notice that we can also define a minimum divergence estimator by interchanging 

p and p(y) in (4.5). By Proposition 3.2, we see that this is just the if-est imator.  

To calculate A f (p), we need the following property for divergence functions. 

PROPOSITION 4.1. If~5 is a minimum divergence estimator not on the bound- 

ary of M and ra < n, then we must have F(/5,p(y)) _l_ T~M. 

The proof of Proposition 4.1 follows from Theorem 3.8 in Amari (1985) and 

noting that Amari's result holds when S is defined using a quasi-likelihood func- 

tion. 

We can now define the f-anxiliaxy manifold A f (p) at p E M, 

Af(p) = exfpp(T ~ N (TpM) ±) 

f 
where T) is the domain of expp and (TpM) ± is the orthogonal complement of TpM 

in TpS. In light of Proposition 4.1, Af(p) is almost the set of all points in S whose 

image under the f-est imator is p. The auxiliary submanifolds may intersect, so 

that some auxiliary submanifolds A f (p) may contain points that  do not provide p 
f 

as the f-estimate. This is because the restriction that the residual vector F(p(y), p) 



526 PAUL W. VOS 

be orthogonal to TpM is necessary but not sufficient (once again, provided p is not 

on the boundary of M and m < n). Locally, that is in the tubular neighborhood 

UM, the auxiliary submanifolds do not intersect and this condition is sufficient. 

In practice, we generally cannot assume that p(y) E UM and extra care must be 

exercised in finding the f-estimate. The f-auxiliary submanifold is particularly 

easy to express in the f-divergence parameter 

(4.6) ~ (A:(p)) = {7]: 77 = '7(P) + t~v ~} 

where t~ (t~ n i = , . . . ,  t~) , t~ = t~O~ and v't~ C 7) N (T~M) 1. For a tubular neigh- 

borhood, we can define vector fields t~ on a neighborhood around p such that 

t'~(q) span (TqM) ± for all q in this neighborhood. If u = ( u l , . . . ,  um)' is param- 

eterization for M, then (w ~) = (u ~, v ~) where v is defined in (4.6) parameterizes 

a tubular neighborhood UM of M. Notice that the f-auxiliary submanifolds are 

orthogonal to M; i.e., (0a, 0~) = 0 on M. 

In practice, there will often be a large selection of f-divergences compatible 

with the metric. We will assume there exists a unique f0 so that the f0-estimator 

is third order efficient. Further details appear in the next section. Consider the 
:o fo 

statistical manifold (S, (., .), T(., . ,  .)), where T(., . ,  .) is the skewness tensor defined 

by the divergence D/0(. , .). From the definition of A:°(p) it is clear that the fo- 

fo *0 
imbedding curvature of A f° (p), call it H ~ a ,  is zero on M for all to, ~ and a. For 

the s-connections, Lauritzen (1987) calls such a manifold c~-geodesic. Following 

this terminology, we say that A f° (p) is f0-geodesic. Any f-geodesic submanifold 

imbedded in an f-flat manifold is f-flat. The converse, however, is not true. The 

f-geodesic submanifold Af(p) is f-flat and by (2.7) f*-flat, but Af(p) is not f*- 

geodesic. The preceding two statements follow from the relationship between the 

imbedding curvature and Riemannian curvature expressed by the Gauss equation 

for dual connections (Vos (1989)). 

Typically, f0 is unknown, so we cannot define A f° (p). One example where this 

occurs is when we model some transformation of the data and it is assumed that the 

"correct" transformation is a member of some family, but we do not know which 

one. Rather than use Dfo(., .), we use D f(., .) and define auxiliary submanifolds 

Af(p) at each p E M. Since the optimal auxiliary submanifolds Af°(p) have 

zero imbedding curvature in the f0-connection, the curvature of Af(p) in the f0- 

connection will give us a measure of how much the f-estimator differs from the 
fo 

f0-estimator. We shall use H ~  to indicate the fo-imbedding curvature of A f  

fo f 2 fo 
( H ) a b  to indicate its square, and tr(Hf)a to indicate its trace. The f0-imbedding 

curvature measures the curvature of AI only at the point of intersection with 

M. Since the f-estimator will depend on how AI behaves through out S (or at 
Io: 

least UM), one might think that H ~ a  would be inadequate to compare auxiliary 

manifolds. Recall, however, that A/(p) is f-geodesic and so it has zero imbedding 

curvature everywhere, not just at its point of intersection with M. It is reasonable 

to expect the fo-imbedding curvature of A:(p) to be approximately constant, 

especially if f is near f0. This interpretation of ~ /  has relied solely on the t~Aa 
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/of 2 
geometry of the f -  and/o-est imators .  In the next section, we show that ( H ) a b  

Yo 
measures loss of efficiency and t r (H/ )a  measures bias under repeated sampling. 

/o i 
We are now ready to obtain explicit formulae for H~x~. From (4.2) and the 

I /  
fact that Hn)~a = 0, we see that 

• f 

(4.7) V ~ ( O i v J ) u k g j k  i 3  k 

Substituting (4.7) into (4.2) we have 

(4.8) 
• / o  /of i j k . i 3 k .. 

H~A a = V~(OiV~ )U~ggk + V~V~ U a r~gk 

• . k.fo f 
-- v ~ v ~ u ~  ( r  - r)~j~. 

Substituting (4.8) into (4.3) and (4.4) we find 

/ 0 2  / /o / . . . . . . . . .  
(4.9) ( g f ) a  b i j r~ •i , : j  .,~, .;~;~ F~rr,~ 

(4.10) t r ( ~ f ) ~  (~ f i j ~ k 

One further simplification can be made in (4.9). By the orthogonality of Oa and 

0~, we have that Vi~Vi~g ~ '  = ~ii' where 

(4.11) ~i,' = gii' _ V~U~:g~ ' .  

In many applications m is quite small while n - m  is large and V~ is computationally 

non-trivial. Equation (4.11) shows that we need not calculate V~ to find V~ V ~ g ~ ' ,  

f o f  2 /0 
(H)ab ,  or t r (H/)~.  Equations (4.9) and (4.10) now become 

(4.12) 

(4.13) 

/ /o  / , , , 

ab F ) i j k ( F  ~ - i i  - j j  r rk r rk  = -- __ l ) i , j , k , g  g U a U  b , 

tr (~/) (~ / "" o = _ r)~'Ua ~. 

Equation (4.12) ((4.13)) shows that the square (trace) of the imbedding curvature 

for the auxiliary submanifold of any divergence estimator is a quadratic (linear) 

form in the difference between the components of two connections. 

5. Asymptotic considerations 

fo 
In the previous section we showed how the imbedding curvature H~x a can be 

used to compare estimators with auxiliary submanifolds orthogonal to M. In this 
fo 

section, we interpret Hf~a when the data y is obtained under repeated sampling. 
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That is, we assume y = (Yl +"" + yg) /N so that 1 ~ = v/N(Y - #) = Op(1) where 

# = E(Y/), I - 1, . . . ,  N. We have assumed that E( ]  ~i) = 0 and cov(I ~i, YJ) = gij. 
For first order asymptotic calculations it is enough to assume 

E(Y i) = O(N -1/2) and cov(]Zi, yJ )  = gij + 0(N-1/2). 

Vos (1991) shows that all f-estimators are first order efficient. This also follows for 

exponential families from Theorem 5.2 in Amari ((1985), p. 130) which says that 

all estimators having auxiliary families orthogonal to M are first order efficient. 
Y0 

In order to interpret H~a, which measures the difference between the f0- and f-  

estimators, we will need to consider higher order asymptotic calculations and make 

further assumptions. We make these assumptions in terms of ~ = v/-N(ff)(Y) - 

E(~)  = 0(N-3/2), cov(~,  ~)  = g~S + 0(N-3/2), 

(5.1) cum(Cf, (7~, ~t) -_ N-1/2~-~t + 0(N-3/2), 

cum(7)~, ~ ,  ~)t, 7) ~) = N - I ~  ~t~, + O(N -3/2) 

= = O~OsOt¢(~ *) and O~080tOu¢(~*). An easy calculation 

shows that ~ s t  is the contravariant version of f0 Trst defined in (2.15b) for the f0- 

divergence. The assumptions have been strengthened in (5.1) by specifying two 

further cumulants and requiring a closer approximation to all four cumulants. In 

practical terms, (5.1) says that the functional relationship between the mean and 

variance is better described using the transformed data fo(Y) and the parameter 

7. The calculations that we do here are identical to those in Amari ((1985), Section 

4.4) for exponential families, so we shall not repeat all the details. By following 

the steps in Amari (1985), one finds that the exponential family assumptions 

can be replaced by those in (5.1). For our applications, these assumptions can be 

weakened slightly; the O(N -3/2) term for the covariance and third order cumulant 

can be replaced with O(N-1). For the main result, Proposition 5.1, ~ t ~  cancels 

and, therefore, need not be specified. 

Let w -- (u, v) be a parameterization for the tubular neighborhood UM defined 

by the f-estimator and let w0 = (u0, 0) be the w coordinates of the "true" point in 

M. We take 7) = ~(Y) and let zb = (z2, ~3) be the corresponding w coordinate for 7). 

From Section 5.2 of Amari (1985), we see that E(~t a - u~) ---- ba(uo) + O(N -3/2) 
f 0  ~ t 

where ba(uo) --- _[~a gcd tr(H])a, gaa)/2N is the second order bias term. If cd + 
we had used the f0-estimator, then the second order bias terms would simply be 

So ]0 "o Yo 
--F'~dg~d/2N since t r (H J )~ = O. Thus, tr(H~ y) measures the change in the second 

order bias term resulting from using the f-estimator rather than the fo-estimator. 

Notice that the f-estimator may, in fact, reduce the second order bias term. 
s s (uSA) 

Consider next the bias corrected f-divergence estimator z2* = ~ - b . Fol- 

lowing the steps found in Amari ((1985), pp. 132-133), we can find the Edgeworth 
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expansion for ~* = v/-K(~ * - u )  and thereby obtain the following proposition 

analogous to Theorem 5.4 in Amari ((1985), p. 133). 

PROPOSITION 5.1. Under the assumptions found in (5.1), the mean square 

error of the bias corrected f-estimator ~t* is 

+ 2(H~t) + (~I/) ~ab +O(N-3/2) 

where (~)2ab, ( ~ / ) 2 a b  and (~f)2ab are contravariant versions of 

(5.2) 
ce a3- ~ rat _cd_tc)~ (r) ab F c d a r e f b g  g ' ( H M ) a b  : : l l a c t ~ H b d A Y  Y , 

Io 2 Yo. /o . . . . .  
~ ~,~ ,Y Y . 

As Amari points out, the O(N -1) terms given in (5.2) allow the following 

interpretations. The first term is one half the square of the f-connection on M. 

This is not a tensor and depends on the parameterization of M, but it is the same 

for all estimators. The second term is the square of the if-curvature of M; it is 

a tensor and so depends only on the geometric properties of M and is the same 

for all estimators. The third term is one half the square of the f0-curvature of A f 

f o .  2 
discussed in Section 4. We see then that (H-t)ab m e a s u r e s  the third order efficiency 

not recovered by the bias corrected f-estimator. 

6. The power family of divergences 

In applications, it may be more practical to restrict our attention from the 

set of all diffeomorphisms compatible with the metric to an indexed family. An 

analogous situation occurs when searching for an appropriate data transformation. 

In this case, the family of power transformations is often useful. Correspondingly, 

we restrict f to the power family of diffeomorphisms 

{ #:~ A # O  

= log( ) : 0. 

Notice that the transformations f ( . ;  A) act componentwise; that is, f r (# ;  A) is 

a function of #~ for i = r alone. In order for the transformations f ( . ;  A) to 

be diffeomorphisms, we require that #~ ~ 0 for any i. Typically we take the 

domain of f (  .; A) to be Ad = (0, B) n where 0 < B < ~ .  Sometimes the power 

transformation family is defined so that it is continuous in A, 

_f(#; A) = - - - - -  A # e 

log(#) A = O. 
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Notice that for fixed A, If(#; A)] = [_f(#; A)] and so, by Proposition 3.1, the diver- 

gence and geometric structures are the same for either version of the power family 

of transformations. To distinguish these divergences from general f-divergences 

we shall use the terminology A-divergence and notation such as V, H, etc. We 

shall see that the geometry defined by the power divergence is closely related to 

Amari's a-geometry (Amari (1985)). 

We shall restrict our attention to covariance matrices V(#) belonging to l; = 

{Y(#) : V(#) = [diag(#)] d, d E R} where diag(#) is an n x n diagonal matrix with 

diagonal p E 3/[. Although there are more general covariance matrices, many 

important covariance structures are contained in 12. When d = 0, 1, 2 and 3, V(#) 

corresponds to the second order moment structure for the normal, Poisson, gamma 

and inverse Gaussian distributions, respectively. If A ¢ 0, then r/ = #~ so that 

0~" = A(pi) )'-I i f / =  r, zero otherwise, and OiOjrf" = A(A-1)(#i)  x - 2  i f / =  j = r, 

zero otherwise. We also have 

{ A-2(#i) 2 . ~ - d  r = s = i 

(6.1) grs = 0 otherwise. 

Equation (6.1) follows from gT8 = (Opi/O~r)gij(O#J/07l ~) and gij = (#i)-d if /  = j. 

Making the above substitutions into (2.3), we obtain 

f (A - 1)(#i )  - (d+l)  i -----j = k 

(6.2) Fijk = [ 0 otherwise. 

Since Oigjk = -d(l~i) -(d+l) , we have, by definition of the dual connection, that 

f (1 - A -  d)(/zi) -(d+l) i = j = k 
(6.3) F/*Jk ---- [ 0 otherwise. 

It is easily checked that (6.2) and (6.3) hold for A = 0 as well. From (6.2), (6.3), 

and Tijk = Fijk - Fi*jk we see that Tijk ----- (d + 2(A - 1))(pi) -(d+l) for i = j = k 

and Tijk = 0 otherwise. The covariant version of this tensor is 

( 6 . 4 )  ~ijk = { ~d + 2 ( A  - 1 ) ) ( . / )  2 d - 1  i =  j = k 

otherwise. 

The A-divergence can be easily expressed when V E 12. For each real d, we 

can define the A-divergence/)A,d(#I, #~) by 

(6.5) 

2 - - d 2 d .  #2-d _ #~-d + - - - ~ # 2 -  {1 - ( ~ t l / ~ 2 ) ) ~ }  

/)~,d(#,, #2) = E (2 -- d - A)(2 - d) 

provided A 7~ 0, d ~ 2 and A + d ¢ 2. We use the notation/)~,d rather than D~,d 

in (6.5) because # is the mean parameter which is for A ~ 1 not the divergence 

parameter. We reserve D for the divergence defined directly on the manifold or in 
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terms of the divergence parameter so that b~,d(#l, #2) = Dt,4,(f(#z; A), f(#2; A)) 

for suitably chosen d'. In (6.5), raising a vector to a power and division are 

done componentwise so that #1/#2 is the vector with i-th component i i #1/#2" The 

function ~-]~: A/{ H R is defined by ~ v = ~-]~1 vi where v = ( v l , . . . ,  vn) ' e f14. If 

A ~ 0 and d - -  2 - A, then 

(6.6) 
#~ - #)  + A#~ log(#1/#2) 

DA,2-A(#I , # 2 )  = ~ A2 

where log(#1/#2) is the vector with components log(#~/#~). If A ¢ 0 and d = 2, 

then 

(6.7) b~,2(#1, #2) = 

If A = 0 and d ~ 2, then 

(6.8) b0,d(#1, #2) = 

If A = 0 and d = 2, then 

X-' Alog(#2 /# t )+  (#z/#2) ~ - 1 
A., A2 

#1 -d #g-a E - + (2 - d)#2-dlog(#2/#1) 

( 2 - d )  2 

(6.9) Do 2(#1,#2) = E (lOg#l - 1~,~.o~,~2j2 
' 2 

For the special case when d = 1, D)~,d is closely related to the power divergence 

of Read and Cressie (1988). We note that the dual connections given in (6.2) and 

(6.3) can be obtained directly from the above divergences using (2.4) and (2.5) for 

general contrast functionals. 

Using Proposition 3.1, equations (6.2) and (6.3), and the fact that D~,d can 

be defined for all A and d (using (6.5)-(6.9)), we have the following result. 

PROPOSITION 6.1. Let S be (0, B) n with metric given by the covariance struc- 

ture V E ];. For every f = f ( . ,  A) in the power family of transformations, the 

f-divergence Oh,a(-,') exists and has dual D~.,d(',') where A* -- (2 - d) - A. 

There exists a unique power transformation that makes the divergence symmetric; 

namely, the transformation with A = 1 - d/2. 

Next, we shall compare the A-connections and the a-connections. Suppose we 

have an n-dimensional exponential family with covariance structure V C ]; and 
(1) (-1) 

let # = (#i) be the expectation parameter so that F ijk = Oig jk  and F ijk = O. 

From (2.29) in Amari ((1985), p. 40) we see that 

~iyk -- (1 + O) Oigjk ' 
2 

(We note that  equation (2.29) holds for any parameterization; Amari (1985) uses 

Fijk for the components of a connection using the natural parameter while we 
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use the same symbol for the components of a connection using the expectation 
(--1) 

parameter. Hence, the -1-connection is represented by F ~jk = 0 in this paper 
(--1) 

and by F ijk = (9igjk in Amari (1985).) 

Since gjk are the components of the inverse of the covariance structure and 

V E V, we have 

a { _ d ~ ( # i ) _ ( d + l ) i = j = k  
(6.10) Fijk = 

0 otherwise. 

Comparing (6.2) and (6.10), we see that  V = V provided (1 -A)  = d(1 +c~)/2 and 

V E V. Although the collection of all A-connections is the same as the collection 

of all c~-connections when V C Y and d ¢ 0, in general, they can be quite different. 

The c~-connections are defined by a linear combination of the dual connections on a 

Riemannian manifold S. The f-connections, and the A-connections in particular, 

axe defined from an f-divergence whose metric matrix is compatible with the 

metric on S. Hence, for each A-connection there is a A-divergence, but the same 

need not be true for the c~-connections. When V E ];, the relationship between the 

A-connections and (~-connections means that  the (~-divergence exists for all real a. 

This means the manifold S is a-flat for all real a. Notice that when d = 0, then 
A c~ 

T i i i =  2(A - 1)(pi) -1 while Ti i i=  0 for all (~. 

The imbedding curvature of A ~ in the A-connection, ~(~) "" ~ a ,  can be easily cal- 

culated when V E 1;. We place the superscript A in parentheses because it denotes 

the A-connection while the subscript A is an index for the v parameter. Using (4.8) 

and (6.2) we see that  

(6.11) = ( A o  - 

From (6.2), (4.12) and (4.13) we see that  the square and trace of this curvature 

a r e  

(6.12) 

(6.13) 

n 

"~  - -  Y Y a b ' 

i , j  

n 

tr = (A0 - A) E ( "  ) g Ua  

Equations (6.12) and (6.13) show how the "distance" between power transforma- 

tions can be measured by the difference in their lambda parameters. Hoaglin et 
al. (1983) obtain a similar result for the strength of data transformations. 
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7. An example 

Bates and Watts ((1988), pp. 110-121) analyzed the data from an experiment 

that measured the nitrate utilization (nmol/g hr) of portions of three bean plant 

leaves subjected to eight levels of light (#E/m2s). This same experiment was 

repeated on a different day. The data for both days is plotted in Fig. 1. It was 

expected that the nitrate utilization would be zero at zero light intensity and to 

approach an asymptote for increased light intensity, but no explicit functional 

relationship is known. 
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Fig. 1. 

Light Intensity 
*=day 1 ,x=day 2 

Nitrate  util ization for bean plants. 

Bates and Watts (1988) show that the data is consistent with the assumption 

of homoscedastic errors and use nonlinear regression techniques to analyze the 

data. They failed to find a satisfactory model for the mean structure that has an 

asymptote. Our analysis differs both in the mean structure as a function of light 

intensity and the assumptions on the error distribution. 

First, we consider the functional relationship between mean nitrate utilization 

and light intensity. Bates and Watts (1988) try the models 

(7.1) 

(7.2) 

~lx 
p =  h ( x , ~ )  - ~2 + x '  

# = h ( x , ~ )  = ~1 (1  - e - B 2 z )  
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where x is light intensity. These models are inadequate until the day effect and a 

quadratic term are added. Inspection of Fig. 1 shows that if the mean approaches 

an asymptote, it does so quite quickly; that is, the "bend" in the curve is a sharp 

one. The problem with models (7.1) and (7.2) is that they contain only "45 mph" 

curves while the data exhibits a sharper "30 mph" curve. A better model for 

this data is a function whose slope is large for small values of x and changes 

rapidly to small positive slope for larger values of x. One such function is the 

hyperbolic tangent. Since there appears to be an effect for the day the experiment 

was conducted, we fit the model 

(7.3) # = h(x,/3) = (/31 +/33x2 ) tanh((/32 +/34x2)xl) 

where xl is light intensity and x2 is 0 for day 1 and 1 for day 2. Notice that (7.3) 

is not a generalized linear model since there is not transformation of # that is 

linear in/3 = (/31,/32 33,/34),. Following Bates and Watts (1988), we use ordinary 

least squares to estimate/3, i.e., we find j3 that minimizes D1,0(y, h(x,/3)). The 

parameter/34 is not found significant and the analysis for the three parameter 

model is summarized in Table 1. The lack-of-fit analysis produces an F-statistic 

with value 1.44, so that  the fit is reasonable. A plot of the residuals shows no 

irregularities. Adding a quadratic term to obtain 

hi (x;/3) = (/31 + ~33x2)tanh(/32xl + t35(xl)2) 

and estimating/3 -- (/31,/32,/33,/35), show/35 is not significant (t = 1.27). There 

appears to be little evidence suggesting that nitrate utilization does not approach 

an asymptote when the hyperbolic tangent models are used. 

Table 1. Constant  variance and zero skewness model (d = 0, A -- 1). 

Parameter  Est imate  Standard  error t ratio Correlation matr ix  

B 1 19300 343 56.3 1.00 

~2 240 × 10 -4  8.44 × 10 -4  28.4 -0 .55 1.00 

~3 -1484  407 - 3 . 6  -0 .61 0.04 1.00 

Next, we consider the error distribution for these data. Estimating/3 by min- 

imizing Dl,o(y, h(x,/3)) assumes homoscedasticity and zero skewness for the data. 

Although the homoscedasticity assumption appears reasonable, the zero skewness 

assumption is unwarranted. Since the nitrate utilization cannot be negative and 

we have assumed constant variance, the data must be positively skewed, at least 

for # near zero. For large # the skewness may be negligible, but there are six 

observations at xl = 2.2 that are near zero. The average for the three observa- 

tions taken on day 1 is about 1 standard deviation from zero and the average for 

the three observations taken on day 2 is about 1.6 standard deviations from zero. 

(The variance estimate comes from the replications mean square error (32 d.f.).) 
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Whether the skewness of these six observations can safely be ignored is unclear 

without further investigation. 

We model the skewness by using the minimum A-divergence estimate for con- 

stant variance, i.e., we minimize D~,,o(y, h(x, t3)). By (6.4), we see that  the skew- 

ness of the transformed random variable is proportional to 2(A - 1). Values of 

A far from 1 should be used to model large skewness. Rather than attempt to 

estimate the skewness from the data, we can investigate the parameter estimates 

for several values of A. Even for A as small as 0, the estimates change little. The 

estimates for this model are summarized in Table 2. The parameter a s is esti- 

mated by the minimum divergence estimate s 2 = min~ Do,o(Y, h( x, /3) ) / 45. One 

normally would not choose A > 1 since the skewness of the resulting transformed 

data  would be larger than the original data; even so, for A < 1.5, the estimates 

are not too different from those in Table 1. 

Table 2. Cons t an t  variance and positive skewness model  (d = 0, ), -- 0). 

Pa rame te r  Es t ima te  S t anda rd  error t rat io Correlat ion ma t r ix  

~1 19045 353 54.0 1.00 

~2 244 x 10 -4  9.00 × 10 -4  27.1 -0 .55  1.00 

83 - 1 7 5 3  418 - 4 . 2  -0 .61  0.04 1.00 

Even though there is not sufficient evidence to reject the constant variance 

assumption, a plot of the replication standard deviation versus the replication 

average shows that variance may also be modeled as an increasing function of the 

mean. If we take V(Y) = pd for d > 0 and use the maximum quasi-likelihood 

estimate, then (6.4) shows that this estimator is optimal for distributions with 

skewness d# 2d-1. I n  other words, changing the constant variance assumption has 

the added advantage of simultaneously introducing a positive skewness structure. 

The maximum quasi-likelihood estimates for the case d = .5 are given in Table 3. 

A plot of the replication standard deviation divided by #.5 versus the replication 

average supports this choice of d. Again, the dispersion parameter is estimated by 

the minimum divergence estimator s 2 = min~ D1,.5 (Y, h(x, t3))/45. 

'Fable 3. Non-cons tant  variance model (d : .5, A : 1). 

Pa rame te r  Es t ima te  S tandard  error t ra t io  Correlat ion ma t r ix  

~31 19244 415 46.4 1.00 

82 240 x 10 -4  9.07 x 10 -4  26.5 - 0 . 5 7  1.00 

133 - 1 3 7 6  475 - 2 . 9  - 0 . 6 0  0.04 1.00 

Another approach to this problem is to transform the data to homoscedastic- 

ity (see, e.g., Ruppert  and Aldershof (1989)). However, after any transformation 
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from the power family with A > 0, the data will still be constrained (at the trans- 

formation of the origin) so that the homoscedasticity assumption near this point is 

wrong. Although transformations with ~ _< 0 avoid this problem, they can often be 

too strong to transform to homoscedasticity. By modeling the heteroscedasticity 

we avoid this problem. 

In conclusion, the asymptote for day 1 is around 19000 (nmol/g hr) for all three 

models, while the asymptote for day 2 is about 18000 for the models summarized 

in Tables 1 and 3, but closer to 17000 for the model in Table 2. Correspondingly, 

the day effect is more significant for the constant variance, positive skewness model 

(Table 2). On the other hand, for the nonconstant variance model (Table 3), the 

day effect is lessened, but still produces a significant t-value. The nominal standard 

errors for the estimates of the nonconstant variance model are also increased. The 

major conclusions, the existence of an asymptote and difference between day 1 

and day 2, are the same for each model. Hence, these conclusions are relatively 

insensitive to perturbations in the variance and skewness structures. In picking 

a final model, however, there is a slight preference for the nonconstant variance 

model. The constant variance, zero skewness model is clearly inappropriate. The 

constant variance, positive skewness model may be appropriate, but the skewness 

structure is difficult to estimate. If we had seriously followed this approach, a 

model different from the one given in Table 2 would likely have been found. The 

model in Table 2, was chosen to check the harmful effects of wrongly assuming zero 

skewness. For the nonconstant variance model with d = .5, the variance model is 

easy to check and appears reasonable. This model for mean nitrate utilization is 

plotted along with the data in Fig. 1. 
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