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Geometry of Hilbert Modular Varieties over Totally

Ramified Primes

F. Andreatta and E. Z. Goren

1 Introduction

Let L be a totally real field with ring of integersOL. LetN ≥ 4 be an integer and let M(µN)

be the fine moduli scheme over Z of polarized abelian varieties with real multiplication

(RM) and µN-level structure, satisfying the Deligne-Pappas condition. For every scheme

S, we let M(S, µN) = M(µN) ×Z S be the moduli scheme over S; see Definition 2.1.

Many aspects of the geometry of the modular varieties M(Fp, µN) are obtained

via local deformation theory that factorizes according to the decomposition of p in OL.

The unramified case was considered in [9] (see also [8]). Given that, one may restrict one’s

attention to the case p = pe inOL. We discuss here only the case e = g, that is, p is totally

ramified in L.

The ramified case was first treated by Deligne and Pappas in [6] (the case g = 2

was considered in [2]). We recall some of their results under the assumption that p is

totally ramified. Let A/k be a polarized abelian variety with RM, defined over a field k of

characteristic p. Fix an isomorphismOL⊗Zk ∼= k[T ]/(Tg). One knows thatH1
dR(A) is a free

k[T ]/(Tg)-module of rank 2. The elementary divisors theorem furnishes us with k[T ]/(Tg)-

generators α and β forH1
dR(A) such that

H1
(
A,OA

)
=
(
T i
)
α+

(
T j
)
β, i ≥ j, i+ j = g. (1.1)
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The index j = j(A) gives a stratification Sj of the moduli space M(Fp, µN); the jth stratum

parameterizes abelian varietiesAwith j(A) ≥ j. We call this stratification the singularity

stratification, and we call j(A) the singularity index of A.

Using comparison of local moduli with a suitable Grassmannian variety, Deligne

and Pappas gave local equations for a point in the stratum Sj inside the stratum Sj ′ for

any j ′ ≤ j, implying, in particular, that S1 is the singular locus of M(Fp, µN). Their results

imply that the Sj-stratum, if nonempty, has dimension g− 2j. They did not prove that the

Sj-strata are nonempty.

To have a better understanding of the moduli space M(Fp, µN), one would like

to refine the singularity stratification. After recent works by Oort [17] and others [9, 12,

19, 20], one idea that comes to mind is to stratify the moduli space according to the iso-

morphism type of the p-torsion as a polarized group scheme with OL-action. This ap-

proach is successful in the unramified case; see [8, 9]. When p is ramified, it turns out

that this approach is not already desirable for g = 2: let k be an algebraically closed field

of characteristic p and let L be a real quadratic field in which p ramifies. There are infin-

itely many nonisomorphic polarized group schemes with OL-action arising as p-torsion

of polarized abelian surfaces with RM byOL (which would yield infinitely many different

“strata”). This is proven in the appendix.

Still, one would like to refine the singularity stratification and study its relation

to the Newton stratification and to arithmetic. To this end, we introduce another invari-

ant. Given a polarized abelian variety A with RM, defined over a field k of characteristic

p, we define its slope n = n(A) by

j(A) + n(A) = a(A), (1.2)

where a(A) is the a-number of the abelian variety (for us, a(A) is equal to the nullity of

the Hasse-Witt matrix of A). One proves that

j ≤ n ≤ i. (1.3)

We prove that there exists a locally closed subset of M(Fp, µN), denoted by W(j,n), that

parameterizes abelian varieties with singularity index j and slopen. We prove that W(j,n)

is a nonempty set and is a nonsingular variety of dimension

dim
(
W(j,n)

)
= g− (j+ n). (1.4)

The proof that W(j,n) is nonempty uses a construction of Moret-Bailly families

and the study of the variation of (j, n) along these families, while the nonsingularity and
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the dimension of W(j,n) follow from studying the local deformation theory via displays.

The reason for calling n the slope is the following. Let βr/g denote the Newton polygon

with the two slopes r/g and (g − r)/g, each of multiplicity g, and if g is odd, let β1/2 de-

note the Newton polygon with unique slope 1/2 of multiplicity 2g. In our case, where p is

totally ramified, the polygons β0, β1/g, . . . , β1/2 are precisely the Newton polygons that

appear on M(Fp, µN). We also define

λ(n) = min

{
n

g
,
1

2

}
. (1.5)

Then, the Newton polygon on W(j,n) is constant, equal to βλ(n). The proof of this result

is based on the classification of the Dieudonné modules over the ring OL ⊗Z W(k)[F, V].

The fact that the Newton polygon is constant on each W(j,n) allows us to confirm certain

general conjectures concerning the Newton stratification on moduli spaces of abelian

varieties for the moduli spaces we consider here. Such conjectures were proposed by Oort

in [15] and generalized by Chai in [4]. In [16], Oort proved some of his conjectures in the

“Siegel case,” that is, moduli spaces of principally polarized abelian varieties.

We prove that {W(j,n) : 0 ≤ j ≤ n ≤ g − j} is a stratification. One consequence of

the relation between n and the Newton polygon is that for n < g/2, both j and n go up

under specialization and not only j and j+n. The exact determination of the boundary is

somewhat involved. We prove the following result. Let

J =
{
(j, n) : 0 ≤ j ≤ n ≤ g− j, j, n ∈ Z

}
. (1.6)

There exists a unique function ∆ : 2J → 2J determined by the following properties (we

interpret elements of 2J as subsets of J and write (j, n) for the singleton {(j, n)}):

(i) for any integer 0 ≤ j ≤ g/2, we have ∆(j, j) = {(j ′, n ′) ∈ J : j ≤ j ′};
(ii) for any integer 0 ≤ j ≤ g/2, we have ∆(j, g− j) = (j, g− j);

(iii) for any integer 1 ≤ j ≤ g/2, we have ∆(j − 1, n) = Λ(∆(j, n)), where Λ is given

by an explicit recipe in Definition 8.8.

We prove that

W(j,n) = W∆(j,n) :=
⋃

(j ′,n ′)∈∆(j,n)

W(j ′,n ′). (1.7)

One hopes that the techniques, introduced here, of studying stratifications via p-iso-

genies will generalize. For example, in the Siegel case, one does not know yet the exact

description of the boundary of an Ekedahl-Oort stratum (see [17]). We refer the reader

to [1] for further results on the stratification defined in this paper and on the universal

display of an abelian variety with RM.
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2 Background and notation

2.1 Definition of the moduli problem

Throughout this paper, we fix a totally real field L of degree g over Q. We denote byOL its

ring of integers, by D−1
L its inverse different relative to Q, by dL its discriminant, and by

Cl(L)+ its strict class group. We fix a set of fractional ideals R = {I1, . . . ,Ih+ } of L that,

endowed with their natural notion of positivity, form a complete set of representatives

of Cl(L)+. The moduli problem we are interested in is, roughly, that of parameterizing

abelian varieties of dimension gwith a given action of OL, level structure, and polariza-

tion datum. A precise definition follows.

Definition 2.1. Let S be a scheme. LetN be a positive integer. Denote by

M
(
S, µN

) −→ S (2.1)

the moduli stack over S of polarized abelian varieties with real multiplication by OL

and µN-level structure. It is a fibered category over the category of S-schemes. If T is a

scheme over S, the objects of the stack over T are the polarized Hilbert-Blumenthal abe-

lian schemes over T relative to OL with µN-level structure, that is, quadruples (A, ι, λ, ε)

consisting of

(a) an abelian scheme A → T of relative dimension g;

(b) anOL-action, that is, a ring homomorphism

ι : OL EndT (A); (2.2)

(c) a polarization

λ :
(
MA,M

+
A

)
∼−−→ (

I,I+
)
, (2.3)

that is, an OL-linear isomorphism on the étale site of S between the in-

vertibleOL-moduleMA of symmetricOL-linear homomorphisms fromA

to its dual A∨ and one of the fixed representatives I ∈ R, identifying the

positive cone of polarizationsM+
A with I+;

(d) anOL-linear injective homomorphism

ε : µN ⊗Z D
−1
L A, (2.4)

where for any scheme S over T , we define

(
µN ⊗Z D

−1
L

)
(S) := µN(S) ⊗Z D

−1
L . (2.5)
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We require that the following condition, called the Deligne-Pappas condition, holds:

(DP) the morphism A⊗OL
MA → A∨ is an isomorphism.

To ease notation, we will write A for (A, ι, λ, ε).

The stack M(S, µN) is a disjoint union
∐

I∈R M(S, µN,I), where M(S, µN,I) is

defined as above with the proviso that the polarization module is I. By works of Rapoport

[18] and Deligne-Pappas [6] (building on works of others), the moduli stacks M(S, µN)

and M(S, µN,I) are schemes for N ≥ 4 and the morphism M(S, µN) → S is flat, a locally

complete intersection of relative dimension g and smooth over S[d−1
L ]. Furthermore, each

geometric fiber of M(S, µN,I) → S is irreducible, normal, and of dimension g.

Over the complex numbers, the underlying analytic variety of M(C,µN,I) is iso-

morphic to ΓI\Hg, where ΓI is a suitable discrete subgroup of SL2(L) acting, by a twisted

diagonal action, on the g-fold product of the Poincaré upper half plane H.

2.2 (DP) versus (R)

In his paper [18], Rapoport posed the condition:

(R) Ω1
A/T is a locally freeOT ⊗Z OL-module

instead of condition (DP). (We will refer to this condition as the Rapoport condition.)

However, Deligne and Pappas found that condition (R) is not stable under taking limits;

the problem is not with the cusps, but rather with the existence of families of polarized

abelian varieties with real multiplication byOL that generically, but not everywhere, sat-

isfy (R). The situation is as follows.

(i) Condition (R) implies condition (DP). Indeed, it is enough to prove that an

abelian variety over a field k, with real multiplication, satisfying (R), has a polarization

of degree prime to 
 for any prime 
. If k is of characteristic 0, this follows from complex

uniformization. If k has positive characteristic, condition (R) and crystalline techniques

allow one to lift the abelian variety with its real multiplication to characteristic 0 [18,

Corollary 1.13] and hence to conclude the existence of such polarizations.

(ii) Over base schemes S in which dL is invertible, the conditions (R) and (DP) are

equivalent [6, Corollary 2.9].

(iii) Every ordinary abelian variety satisfies (R), hence (DP). The argument here

is similar to the one above; the lift to characteristic 0 is provided by the Serre-Tate canon-

ical lift.

(iv) If S is the spectrum of a field of positive characteristic p dividing dL, but not

N, there exists a pure codimension 2 subscheme of M(S, µN,I), where condition (R) does

not hold. Moreover, the singular locus of M(S, µN,I) is given by
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M
(
S, µN,I

)sing
= M

(
S, µN,I

)
\ M

(
S, µN,I

)R
, (2.6)

where, by definition,M(S, µN,I)R is the open subscheme of M(S, µN,I), where condition

(R) holds [6, Proposition 4.4]. The example of g = 2was worked out in detail in [2].

It is important to note that there are abelian varieties with real multiplication

that do not satisfy condition (R). In fact, taking an abelian variety A with real multipli-

cation that satisfies (R) and a general OL-invariant subgroup H of A, the typical case is

that A/H, with its canonicalOL-structure, does not satisfy (R).

3 The Deligne-Pappas condition

Let (A, ι)/S be an abelian scheme over Swith real multiplication byOL. Let (A∨, ι∨)/S be

the dual abelian scheme of A with the induced OL-action. Let MA := HomOL
(A,A∨)sym

be theOL-module of symmetricOL-linear homomorphisms fromA toA∨ as in Definition

2.1. As a sheaf on the étale site of S,MA is a projectiveOL-module of rank 1 generated by

M+
A; see [3] and [18, Proposition 1.17].

Proposition 3.1. The following are equivalent:

(1) the natural morphism

Φ : A⊗OL
MA −→ A∨ (3.1)

is an isomorphism (as étale sheaves on S);

(2) for any integer t, there exists, étale locally on S, a symmetric OL-linear polar-

ization

λt : A −→ A∨ (3.2)

of degree prime to t;

(3) as in (2) where t ranges among primes. �

Proof. (1)⇒(2). By étale localization on S, we can assume that there exists a polarization

λt ∈MA such that the homomorphism ofOL-modules

OL/tOL
η−−→ MA/tMA, r �−→ rλt, (3.3)

is an isomorphism. We have, then, the following isomorphisms:

A[t] ∼−−→ A[t] ⊗OL

(
OL/tOL

) 1⊗η−−−−→ A[t] ⊗OL

(
MA/tMA

)
∼−−→ A⊗OL

(
MA/tMA

)
.

(3.4)



Geometry of Hilbert Modular Varieties 1791

On the other hand, by comparing degrees, one finds that the natural map

(
A⊗OL

MA

)
[t] −→ A⊗OL

(
MA/tMA

)
(3.5)

is an isomorphism. Furthermore, by assumption,Φ induces an isomorphism

(
A⊗OL

MA

)
[t] ∼−−→ A∨[t]. (3.6)

Let A[t] → A∨[t] be the composition of all these maps. It is an isomorphism and it coin-

cides with λt restricted to A[t]. Hence, Ker(λt) has order prime to t as wanted.

(2)⇒(3). Clear.

(3)⇒(1). On the étale site of S,MA is a projective OL-module of rank 1 generated

by polarizations. Hence, Φ is an isogeny. Let K := Ker(Φ). It is a finite flat group scheme

over S. Let 
 be prime and choose, étale locally, a polarization λ� of degree prime to 
. The

isogeny λ� can be factored as

A −→ A⊗MA
Φ−−→ A∨, (3.7)

where the first arrow is the isogeny a �→ a ⊗ λ�. We deduce that the kernel of λ� surjects

onto K. Therefore, K has order prime to 
 for any prime 
. �

Corollary 3.2. Let (A, ι)/S be an abelian scheme satisfying (DP). Let H ↪→ A be an OL-

invariant, finite, locally free, closed subgroup scheme ofA having rank pa for some prime

p and some integer a. Suppose that the following holds:

(1) there exists r ∈ OL such thatH ↪→ A[r] and pa‖Norm(r);

(2) for every geometric point s ∈ S,
(2a) if p is prime to the characteristic of k(s), the constant group scheme Hs

is generated by one element as anOL-module;

(2b) if p is the characteristic of k(s), then the Dieudonné module associated

toHs is generated by one element as anOL ⊗ W(k(s))-module.

Then, theOL-action on A descends toA/H and A/H satisfies (DP). �

Proof. The OL-action on A clearly descends to A/H. Let t be any prime. By Proposition

3.1, it is enough to prove that étale locally A/H has a polarization of degree prime to t.

Let 
 = t if t �= p, and let 
 be a prime different from p otherwise. By étale localiza-

tion and Proposition 3.1, we may assume that there exists a polarization λ� : A → A∨ of

degree prime to 
p. One may replace r by an element r ′ ∈ OL such that condition (1) still

holds and r ′ is prime to 
 · deg(λ�). Indeed, A[r] = A[(r)] = ⊕pi‖(r)A[pi], and therefore the

existence of r ′ follows from the weak approximation theorem. Without loss of generality,

r is prime to 
 · deg(λ�).
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The homomorphism λ� ◦ r : A → A∨ is a polarization of degree Norm(r)2 ·deg(λ�).

By hypothesis,

H ⊂ Ker
(
λ� ◦ r

)
= A[r] ⊕ Ker

(
λ�

)
, (3.8)

and H is OL-invariant. If H is isotropic in A[r] with respect to the Mumford pairing de-

fined by λ� ◦ r, then λ� ◦ r descends to a polarization onA/H of degree equal to Norm(r)2 ·
deg(λ�)/�H2 which is prime to 
p, hence to t.

It remains to prove that indeed H is isotropic. We may assume that S is the spec-

trum of an algebraically closed field k. We distinguish two cases.

Case 1. The characteristic of k is prime to p. Then, A[r] ⊗ Zp is étale and isomorphic

to a free OL,p/rOL,p-module of rank 2, considered as a constant group scheme, with an

alternating and perfect pairing for which the action of OL is selfadjoint. By (2a), H ⊂
A[r] ⊗ Zp ⊂ A[r] is generated by one element as anOL-module, hence isotropic.

Case 2. The characteristic of k is p. Then, the Dieudonné module of A[r] ⊗ Zp is isomor-

phic to a free (OL/rOL) ⊗ W(k)-module of rank 2 [18, Lemma 1.3] with alternating and

perfect pairing for which the action of OL is selfadjoint. By (2b), the Dieudonné mod-

ule ofH is a (OL/rOL)⊗W(k)-submodule generated by one element, and hence isotropic.

�

Corollary 3.3. Let (A, ι)/S be an abelian scheme satisfying (DP). Let H ↪→ A be an OL-

invariant, finite, locally free, closed subgroup scheme of A having rank n. Assume that

the primes of OL dividing n have residue degree 1. Then, the OL-action descends from A

to A/H and A/H satisfies (DP). �

Proof. Clearly, the action of OL descends to the quotient A/H. Assume first that S is the

spectrum of an algebraically closed field k. Note that H has an OL-primary decompo-

sition H = ⊕pi‖nH[pi]. We may reduce to the case H = H[pi] and then, using the exact

sequence

0 −→ H/H[p] −→ A/H[p] −→ A/H −→ 0, (3.9)

to the caseH ⊂ A[p].

If H is trivial, then there is nothing to prove. If H = A[p], then H is the direct sum

of twoOL-invariant subgroup schemes, each of which satisfies condition (2) of Corollary

3.2. If H is a strict subgroup of A[p], we have that H has order equal to Norm(p). We may
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therefore reduce to that case where H satisfies condition (2) of Corollary 3.2. The corol-

lary follows from Corollary 3.2 by choosing r a local uniformizer at p which is a unit at

all other primes dividing Norm(p).

For a general S, by Proposition 3.1, it suffices to prove that for any prime 
 étale

locally on S, there exists a polarization λ� onA/H of degree prime to 
. Passing to an étale

covering of S, we may assume that theOL-moduleMA/H is locally free of rank 1. Let s ∈ S
be a geometric point. Consider the reduction map

γs : MA/H −→ MAs/Hs
. (3.10)

It is OL-invariant and injective. Hence, there exists m ∈ Z killing the cokernel of γs. Let

λs ∈ M+
As/Hs

. Let δ ∈ MA/H such that γs(δ) = mλs. Since δ is a polarization, Ker(δ)

is a finite flat subgroup scheme. Therefore, the inclusion Ker([m])s ⊂ Ker(δ)s implies

Ker([m]) ⊂ Ker(δ). Hence, there exists λ ∈MA/H such that γs(λ) = λs. This proves that γs

is an isomorphism. We conclude by the first part of the argument applied toAs/Hs. �

Remark 3.4. As the following example shows, the assumptions in Corollary 3.3 are nec-

essary. Let g = 2 and let p be an inert prime. Let A be an abelian surface with real mul-

tiplication byOL satisfying (DP) with a-number equal to 1. Then, the quotient A/αp of A

by its uniqueOL-invariant αp-subgroup scheme does not satisfy (DP).

Corollary 3.5. In the notation of Corollary 3.3, assume thatH has order p and that p = pg

is totally ramified in L. Let π : A → A/H be the canonical isogeny. Then, π∗(MA/H) =

pMA. �

Proof. We treat only the case S = Spec(k), where k is a perfect field of characteristic p,

leaving the general case to the reader. Let λ be a polarization on A such that Ker(λ) ⊃
H. Then, the Mumford pairing on Ker(λ)[p∞ ] induces a nondegenerate alternating OL-

pairing on the Dieudonné module of this group scheme which is isomorphic to (OL ⊗
W(k))/pi ⊕ (OL ⊗ W(k))/pj for suitable i and j. It follows that i = j and, in particu-

lar, Ker[λ] ⊃ A[p]. On the other hand, any subgroup H of order p is isotropic with re-

spect to any alternating pairing induced by a polarization. Hence, any polarization λ

with Ker[λ] ⊃ A[p] descends to A/H. Vice versa, for any ν ∈ MA/H, we have Ker(π∗(ν))

⊃ A[p].

Since A satisfies (DP), there exists γ ∈ MA of degree prime to p. In particular,

OLp · γ = MA ⊗Z Zp. Let λ ∈ MA. Write λ = r · γ with r ∈ OLp . Then, the Dieudonné

module of the p-part of Ker(λ) is isomorphic to (OL ⊗ W(k)/(r))2. Hence, the inclusion

Ker[λ] ⊃ A[p] is equivalent to valp(r) ≥ 1, which, in turn, is equivalent to λ ∈ pMA. �
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4 Displays with real multiplication

4.1 Displays

Let k be a perfect field of characteristic p > 0. Let A0 be an abelian variety over k of

dimension g of p-rank equal to 0. One can associate to A0 its covariant Dieudonné mod-

ule. It is a module over the Witt vectors W(k) of k, of rank 2g, endowed with a σ-linear

morphism F and a σ−1-linear morphism V. The assumption on the p-rank implies that

V is topologically nilpotent. The Dieudonné module coincides with the dual of

H1
crys(A0/W(k)). In [21], the notion of a display over a ring R is introduced. It is also

proven there that the notion of a Dieudonné module over W(k), such that V is topolog-

ically nilpotent, is equivalent to the notion of a display over k. Furthermore, it is shown

that the deformation theory of A0 is equivalent to the deformation theory of the asso-

ciated display. What is of interest to us is that the language of displays allows one to

describe explicitly the equicharacteristic deformation theory of A0 (possibly with extra

structure, e.g.,OL-action), obtaining the deformation of the Frobenius morphism.

4.2 OL-displays

The reader is referred to [21] for the definition and theory of displays. We define here the

notion of display with real multiplication by OL and reformulate it in a language that

emphasizes theOL-linear structure of this setting.

Definition 4.1 (cf. [21, Definition 1]). Let R be a ring. Let W(R) be the Witt vectors over R

and let σ be the Frobenius morphism on W(R). A display with real multiplication by OL

over R, or anOL-display over R, is a quadruple (P,Q, V−1, F), where

(1) P is a projectiveOL ⊗ W(R)-module of rank 2;

(2) Q ⊂ P is a finitely generatedOL⊗W(R)-submodule of P such that IRP ⊂ Q ⊂ P
and P/Q is a direct summand of the W(R)-module P/IRP;

(3) F : P → P is linear with respect to OL and σ-linear with respect to

W(R);

(4) V−1 : Q → P is linear with respect to OL and σ-linear with respect to W(R),

and V−1(Q) generates P as a W(R)-module.

We require that for anyw ∈ W(R) and any y ∈ P, we have

V−1
(
wV · y) = w · F(y). (4.1)

One imposes a further nilpotence condition as in [21, Definition 11].
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Remark 4.2. There exists an OL ⊗ W(R)-submodule L and a W(R)-submodule T of P sat-

isfying P = L⊕ T andQ = L⊕ IRT . This decomposition is not canonical, though.

Remark 4.3. Let k be a perfect field of characteristic p > 0. Let (A, ι) be an abelian variety

over k with p-rank equal to 0 and with real multiplication by OL. Let (D, F, V) be the co-

variant Dieudonné module of A. It is a projective OL ⊗Z W(k)-module of rank 2 [18], and

the Frobenius and Verschiebung morphisms of D are OL-linear. Let Q be the image of V.

The exact sequence ofOL ⊗Z W(k)-modules

0 −→ Q −→ P −→ P/Q −→ 0 (4.2)

lifts theOL ⊗Z k-exact sequence

0 −→ Lie
(
A∨
)∗ −→ H1,dR(A/k) −→ Lie(A) −→ 0. (4.3)

The module L is chosen as anOL⊗ZW(k)-lift of Lie(A∨)∗, while the module T is chosen as

a W(k)-lift of Lie(A) which modp splits the exact sequence. The reader may check that,

when Lie(A∨)∗ is not a freeOL ⊗Z k-module, one cannot choose T to beOL-invariant.

Definition 4.4 (cf. [21, Definition 18]). Let (P1,Q1, V
−1
1 , F1) and (P2,Q2, V

−1
2 , F2) be two

displays (resp., OL-displays) over R. A bilinear form of displays (resp., OL-displays) is

a map

〈·, ·〉 : P1 × P2 −→ W(R), (4.4)

(resp.,Hom(OL,Z) ⊗Z W(R)) such that

(a) 〈·, ·〉 is W(R)-bilinear (resp.,OL ⊗ W(R)-bilinear);

(b) V〈V−1
1 (x), V−1

2 (y)〉 = 〈x, y〉 for any x ∈ Q1 and y ∈ Q2.

Proposition 4.5. Let (P1,Q1, V
−1
1 , F1) and (P2,Q2, V

−1
2 , F2) be twoOL-displays over R. The

trace map Tr : L → Q defines a one-to-one correspondence between the following:

(i) the set {Φ : P1 × P2 → W(R)} of bilinear forms of displays such that Φ(rx, y)

= Φ(x, ry) for any r ∈ OL, x ∈ P1, and y ∈ P2;

(ii) the set {〈·, ·〉 : P1 × P2 → Hom(OL,Z) ⊗ W(R)} of bilinear forms ofOL-displays.

�

Proof. See [6, Section 2.11]. �

Definition 4.6. Let (P,Q, V−1, F) be an OL-display over R. An OL-polarization is an alter-

nating bilinear form of OL-displays. We say that it is principal if its image is equal to

Hom(OL,W(R)).
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Theorem 4.7 (cf. [21]). Let A0 be a polarized abelian variety with real multiplication by

OL over a field k of characteristic p of p-rank equal to 0. Let (P0,Q0, V
−1
0 , F0) be the associ-

ated polarized OL-display. Let R be a complete, Noetherian, local ring with residue field

k. There is an equivalence of categories between the category of polarized OL-displays

over R deforming (P0,Q0, V
−1
0 , F0) and the category of polarized abelian schemes over R

with real multiplication byOL deforming A0. �

4.3 Solving Frobenius equations

In this section, we discuss the solvability of equations of the form xσn

= bx for certain

p-adic rings. This is a step in providing a normal form for OL-displays; see Proposition

4.10.

Let R be a Henselian ring of positive characteristic p with a separably closed

residue field k. Let h(T) be an Eisenstein polynomial in W(Fpa)[T ]. Define the ring

B := W(R)[T ]/
(
h(T)

)
(4.5)

and the Frobenius ring automorphism σ : B → Bwhich is the identity on T and is given on

W(R) by (x0, x1, . . .) �→ (xpa

0 , x
pa

1 , . . .). For any integer n, define the group homomorphism

φn : B∗ → B∗ by

φn(λ) =
λσn

λ
. (4.6)

Proposition 4.8. For any nonzero integer n, the homomorphism φn : B∗ → B∗ is surjec-

tive. �

Proof. We can assume, without loss of generality, that n is a positive integer. Define ring

automorphisms

W(R)[T ] σ−−→ W(R)[T ], W(R)[[T ]] σ−−→ W(R)[[T ]] (4.7)

to be Frobenius on W(R) and to satisfy σ(T) = T . The ring W(R) is p-adically complete

and separated [21]. In particular, the ring B is p-adically complete and separated. Since

h(T) is Eisenstein, the σ-equivariant ring homomorphism W(R)[T ] → B extends to a sur-

jective σ-equivariant ring homomorphism

W(R)[[T ]] −→ B, (4.8)
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which is surjective also on units. It suffices to prove that for all m ∈ W(R)[[T ]]∗, there

exists λ ∈ W(R)[[T ]]∗ such that

λσn

= mλ. (4.9)

Write

λ = λ0 + λ1T + λ2T
2 + · · · , m = m0 +m1T +m2T

2 + · · · (4.10)

with λi,mi ∈ W(R) for all i ∈ N and m0 ∈ W(R)∗. We need to solve the system of equa-

tions

λσn

0 = m0λ0,

λσn

1 = m1λ0 +m0λ1,

...

λσn

t =

t∑
i=0

miλt−i,

(4.11)

Proceeding by induction on t, it is enough to prove the following claim.

Claim 4.9. Let A ∈ W(R)∗ andD ∈ W(R), and let n be a positive integer. The equation

xσn

= Ax+D (4.12)

admits a solution in W(R). Moreover, if D = 0 modulo the maximal ideal of W(R), the

solution can be chosen in W(R)∗. �

Proof. Let St and Pt with t ∈ N, respectively, be the addition and multiplication polyno-

mials for the Witt ring. Recall that

(i) St(α0, . . . , αt;β0, . . . , βt) = αt + βt+ polynomial in α0, . . . , αt−1, β0, . . . , βt−1;

(ii) Pt(α0, . . . , αt;β0, . . . , βt) = αtβ
pt

0 + βtα
pt

0 + polynomial in α0, . . . , αt−1, β0, . . . ,

βt−1.

Write

x =
(
x0, x1, x2, . . .

)
, A =

(
A0, A1, A2, . . .

)
, D =

(
D0,D1,D2, . . .

)
. (4.13)

We need to solve the equation

xσn

=
(
x

pan

0 , . . . , x
pan

t , . . .
)

=
(
S0

(
P0

(
A0, x0

)
;D0

)
, . . . ,

St

(
P0

(
A0; x0

)
, . . . , Pt

(
A0, . . . , At; x0, . . . , xt

)
;D0, . . . , Dt

)
, . . .

)
.

(4.14)
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For t = 0, we have

x
pan

0 −A0x0 −D0 = 0, A0,D0 ∈ R. (4.15)

The left-hand side is a separable polynomial because A0 ∈ R∗. Since the residue field of

R is separably closed, by Hensel’s lemma, we conclude that such a solution x0 exists. If

D0 = 0modulo the maximal ideal of R, then x0 can be chosen in R∗.

Assume that we found a solution {x0, . . . , xt−1} for the first t equations. The

(t+ 1)th equation is

0 = x
pan

t − St

(
P0

(
A0; x0

)
, . . . , Pt

(
A0, . . . , At; x0, . . . , xt

)
;D0, . . . , Dt

)
= x

pan

t −Dt − Pt

(
A0, . . . , At; x0, . . . , xt

)
+ pol

{
D0, . . . , Dt−1, A0, . . . , At−1, x0, . . . , xt−1

}
= x

pan

t −Dt − xtA
pat

0 +Atx
pat

0 + pol
{
D0, . . . , Dt−1, A0, . . . , At−1, x0, . . . , xt−1

}
.

(4.16)

This amounts to solving an equation of the form

x
pan

t −Apat

0 xt − C = 0 (4.17)

with C ∈ R. Since A0 ∈ R∗ and R is Henselian with separably closed residue field, we

conclude that the equation admits a zero in R. �

This concludes the proof of Proposition 4.8. �

4.4 Normal form forOL-displays

Let k be an algebraically closed field of positive characteristic p. Suppose that p = pg is

totally ramified in L. In particular,

OL ⊗ W(k) ∼−−→ W(k)[T ]/
(
h(T)

)
, (4.18)

where h(T) is an Eisenstein polynomial of degree g.

Proposition 4.10 (normal form). Let (P0,Q0, V
−1
0 , F0) be an OL-display over k. Let P̄0 :=

P0 ⊗ (W(k)/pW(k)), Q̄0 := Image(Q0 ⊂ P0 → P̄0), and F̄0 : P̄0 → P̄0 be the reduction of F0.

Let 〈·, ·〉0 : P0 × P0 → Hom(OL,W(k)) be a principal OL-polarization. There exist α0 and

β0 in P0 such that
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(a) P0 = (OL ⊗ W(k))α0 ⊕ (OL ⊗ W(k))β0;

(b) the Hodge filtration Q̄0 = Ker(F̄0) ⊂ P̄0 is defined by

Q̄0 =
(
T̄ i
)
ᾱ0 ⊕ (T̄ j

)
β̄0 ⊂ P̄0 =

OL

pOL
ᾱ0 ⊕ OL

pOL
β̄0, (4.19)

where i+ j = g and 0 ≤ j ≤ i ≤ g;
(c) there exist

(c1) a nonnegative integerm ≥ j,
(c2) a unit c3 ∈ (OL ⊗ W(k))∗ such that

F0

(
α0

)
= Tmα0 + T jβ0, F0

(
β0

)
= c3T

iα0. (4.20)
�

Proof. It follows from the properties of 〈·, ·〉0 that Q̄0 is a maximal totally isotropicOL⊗k-

submodule of P̄0. Moreover, P0⊗k is a freeOL⊗k-module of rank 2. Note thatOL⊗k is an

Artinian local ring. Hence, we may find α0 and β0 in P0 such that (a) and (b) hold. Note

that T i · T j is equal to p up to a unit in OL ⊗ W(k). From (b), we deduce that F0 is of the

form

F0

(
α0

)
= c1T

jα0 + c2T
jβ0, F0

(
β0

)
= c3T

iα0 + c4T
iβ0, (4.21)

where c1, c2, c3, and c4 are inOL ⊗ W(k). Since

〈
F0

(
α0

)
, F0

(
β0

)〉
0

= p
〈
α0, β0

〉σ
0

(4.22)

and 〈α0, β0〉0 generates Hom(OL,W(k)) by assumption, we conclude that

c1c4 − c2c3 ∈ (OL ⊗ W(k)
)∗
. (4.23)

Case 1 (c2 and c3 are units). Substituting α0 with α0 − c−1
3 c4β0, we can assume that c4 =

0. Note that the new c2 and c3 are units. Let c1 = εTy with ε a unit and y ≥ 0. Note

that OL ⊗ W(k) = W(k)[T ]/(h(T)), where h(T) is an Eisenstein polynomial. Moreover,

the automorphism of OL ⊗ W(k) that is trivial on OL and is given by Frobenius on W(k)

corresponds to the automorphism of W(k)[T ]/(h(T)) that is trivial on T and is equal to

Frobenius on W(k). We may now apply Proposition 4.8 to W(k)[T ]/(h(T)) and deduce that

there exists λ ∈ (OL ⊗ W(k))∗ such that ε−1 = λσλ−1. Substituting α0 with λα0, we can

assume that c1 = Ty. Letm = y+ j. Substituting β0 with c2β0, we can assume that c2 = 1

as wanted.
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Case 2 (c2c3 is not a unit). Then, c1 and c4 are units. Consider the change of variables

α ′ = aα0 + cβ0, β ′ = bT i−jα0 + dβ0, (4.24)

subordinate to the conditions: a, b, c, and d are in OL ⊗ W(k) and ad − bcT i−j is a unit.

Then, (a) and (b) still hold. The new matrix of Frobenius is

1

ad− bcT i−j

(
d −bT i−j

−c a

)(
c1T

j c3T
i

c2T
j c4T

i

)(
aσ bσT i−j

cσ dσ

)
. (4.25)

Hence, the coefficient c ′4 of β ′ in F0(β ′) is

−c1cb
σ + c2ab

σ − c3cd
σ + c4ad

σ

ad− bcT i−j
. (4.26)

The conditions

(i) f1(b, c, d) = c4d
σ + c2b

σ is a unit,

(ii) f2(b, c, d) = c1cb
σ + c3cd

σ is a unit,

(iii) f3(b, c, d) =
(
c1cb

σ + c3cd
σ
)
d− bc

(
c4d

σ + c2b
σ
)
T i−j is a unit,

are equivalent to the fact that the product f of the functions fi does not vanish identically

modulo p on A3(k). Since k is infinite, this is equivalent to require that fmodulo p, which

is a polynomial, is not zero. This follows since c1 and c4 are units. If we put

a =
(
c1cb

σ + c3cd
σ
)(
c4d

σ + c2b
σ
)−1

, (4.27)

we get that c ′4 = 0 and therefore c ′2 and c ′3 must be units. We conclude as in Case 1. �

4.4.1 A formula for Verschiebung. Define the Verschiebung map V0 : P0 → P0 as V0 :=

(V−1
0 )−1. Since k is perfect, V0 exists. We find that

V
〈
y, F0x

〉
= V

〈
V−1

0 V0y, V
−1
0 px

〉
=
〈
V0y, px

〉
= VF

〈
V0y, x

〉
, (4.28)

which gives

〈
V0(y), x

〉
=
〈
y, F0(x)

〉σ−1

, ∀x, y ∈ P. (4.29)

Suppose that, with respect to an OL ⊗ W(k)-basis {α0, β0} of P0, Frobenius has the 2 × 2
matrix with entries inOL ⊗ W(k)

F0 =

(
A B

C D

)
. (4.30)
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Then, the matrix of V0, with respect to the same basis, is

V0 =

〈
α0, β0

〉σ−1〈
α0, β0

〉 ·
(
Dσ−1

−Bσ−1

−Cσ−1

Aσ−1

)
. (4.31)

Definition 4.11. In the notation of Proposition 4.10, let

n =


m ifm ≤ i,
i otherwise.

(4.32)

Note that i ≥ n ≥ j.

Lemma 4.12. The notation is as in Proposition 4.10 and Definition 4.11.

(1) Let 
 be a positive integer. The rank of F̄�
0 on Q̄0 is

rankQ̄0

(
F̄�

0

)
= g− j− min(i, 
n). (4.33)

In particular,

rankQ̄0

(
F̄0

)
= g− (j+ n). (4.34)

(2) The following conditions are equivalent:

(a) n = i;

(b) F̄2
0 is zero on P̄0. �

Proof. Claim (1) follows from an easy calculation using Proposition 4.10. The equiva-

lence of (a) and (b) follows from (1). �

Note that the OL-display (P0,Q0, F0, V
−1
0 ) is superspecial if and only if either (a)

or (b) holds.

5 Key definitions j, n, Sj, and W(j,n)

Let p be totally ramified in OL, p = pg. Choose an Eisenstein polynomial h(T) over Zp

and an isomorphism OL ⊗ W(k) ∼−−→ W(k)[T ]/(h(T)). Let (A, ι)/k be an abelian variety

with real multiplication by OL over a perfect field k of characteristic p. Let (P0,Q0, V
−1
0 ,

F0) be the display associated to (A, ι) as in Section 4.1. Let j = j(A, ι) andn = n(A, ι) be the

invariants associated to (P0,Q0, V
−1
0 , F0) as in Proposition 4.10. We call j the singularity

index of (A, ι) and n the slope of (A, ι).
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Note that Tg−j is the minimal power of T annihilating Lie(A) and j+ n is equal to

the a-number of A by Lemma 4.12. In particular, j and n are, indeed, invariants of (A, ι);

they satisfy the following numerical restrictions:

0 ≤ j ≤ n ≤ g− j. (5.1)

For later use, we define

λ(n) := min

{
n

g
,
1

2

}
, J :=

{
(j, n) | 0 ≤ j ≤ n ≤ g− j, j, n ∈ Z

}
(5.2)

(a set of cardinality ([g/2] + 1)(g− [g/2] + 1)).

The singularity index, being a measure of the degeneracy of a morphism of vector

bundles, defines closed sets Sj of the moduli space M(Fp, µN) whose geometric points

consists of the geometric points x of M(Fp, µN) for which j(Ax) ≥ j. Deligne and Pappas

[6] proved the following facts:

(1) S1 is not empty and coincides with M(Fp, µN)sing;

(2) Sj is of pure dimension g− 2j if it is nonempty;

(3) Sj\Sj+1 is nonsingular.

Sincenmeasures the degeneracy of a morphism between vector bundles on Sj,we

may define locally closed subsets W(j,n) of Sj, indeed of M(Fp, µN), as follows. The geo-

metric points of W(j,n) consist of the geometric points x of M(Fp, µN) for which j(Ax) = j

and n(Ax) = n. If T is a subset of J, we define a constructible subset WT by

WT :=
⋃

(j,n)∈T

W(j,n). (5.3)

5.1 Examples

Consider the case g = 1. Then, M(Fp, µN) is the moduli space of elliptic curves with µN-

level structure. Note that j = 0, that is, S0 = M(Fp, µN). Moreover, W(0,0) coincides with

the ordinary locus and W(0,1) coincides with the supersingular locus.

Consider the case g = 2. This has been extensively studied in [2]. We rephrase

the results using our notation. The only possible j’s are j = 0 and j = 1. The locus S0

coincides with the Rapoport locus of M(Fp, µN). The locus S1 coincides with the non-

smooth locus of M(Fp, µN) and consists of the moduli points associated to supersingu-

lar Hilbert-Blumenthal abelian surfaces not satisfying (R). For the loci W(j,n), we have

the following possibilities:

(i) W(0,0) is the ordinary locus of M(Fp, µN). It is open dense in M(Fp, µN) and

smooth of dimension 2;
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(ii) W(0,1) is affine and smooth of dimension 1. It is parameterized by finitely many

nontrivial open subsets of P1
F

p2
;

(iii) W(0,2) consists of the moduli points associated to superspecial Hilbert-

Blumenthal abelian surfaces satisfying (R);

(iv) W(1,1) consists of the moduli points associated to superspecial Hilbert-

Blumenthal abelian surfaces not satisfying (R).

Note that S1 = W(1,1) and S0\S1 = W(0,0)∪W(0,1)∪W(0,2). It is proven in [2] that the Zariski

closure of W(0,1) coincides with W(0,1) ∪ W(0,2) ∪ W(1,1). Furthermore, [2] gives a formula

for the number of components of each stratum.

6 Moret-Bailly families

Throughout this section, we assume that p = pg is totally ramified inOL.

In this section, we construct, in characteristic p, families of abelian varieties

with real multiplication over P1. The method is that of dividing a single abelian variety

by a variable subgroup parameterized by P1, a method introduced by Moret-Bailly [13].

These families are used in the proof that the collection {W(j,n)} forms a stratification in

Section 8, and in the proof that W(j,n) is nonempty in Section 10.

Let k be an algebraically closed field of positive characteristic p. Let (P,Q, F,

V−1) be a principally polarized OL-display over k. We use X̄ to denote the reduction of

X (a module, a morphism, etc.) modulo p. Let α and β be elements of P such that F and

V = (V−1)−1 are in normal form as in Proposition 4.10. In particular,

Q̄ = Ker(F̄) =
(
T̄ i
)
ᾱ⊕ (T̄ j

)
β̄. (6.1)

Definition 6.1. Let

Pγ :=
1

p
W(k)γ+ P, whereQ � γ := w

(
a1

)
Tg−1α+w

(
a2

)
Tg−1β, (6.2)

(ω : k → W(k) is the Teichmüller lift) with (a1 : a2) ∈ P1
k and a1 = 0 if j = 0. Define

Qγ := Q+ F−1
(
W(k)γ

)
. (6.3)

Lemma 6.2. The pair (Pγ,Qγ) is endowed with a unique structure of display with OL-

action such that

(
P,Q, F, V−1

) (
Pγ,Qγ, Fγ, V

−1
γ

)
(6.4)

is a morphism of displays. �
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Proof. Note that F and V−1 extend uniquely to automorphisms of P ⊗ Q = Q ⊗ Q. Since

Tγ ∈ pP, it follows that Pγ is OL-invariant. Since F−1 = Vp−1, it follows that, also, Qγ

is OL-invariant. It suffices to verify that Qγ ⊂ Pγ and that V−1(Qγ) is contained in Pγ

and generates it; the existence of F follows automatically. Note that V(Pγ) = Qγ. The

inclusion Qγ ⊂ Pγ is equivalent to V(γ) ∈ pPγ which, in turn, is equivalent to V̄(γ̄) = 0.

The last equality follows from Proposition 4.10 and Section 4.4.1. �

6.1 The computation of Q̄γ

We note that Q̄γ is the kernel of the map F̄γ, where F̄γ : P̄γ → P̄γ is the induced Frobenius

on the reduction modulo p of P̄γ. Thus,

Q̄γ
∼= F−1

(
W(k)γ+ pP

)
/
(
W(k)γ+ pP

)
. (6.5)

In the notation of Proposition 4.10, we find that

F−1
(
W(k)γ+ pP

)
=

{
d1α+ d2β | d1, d2 ∈ L⊗ W(k), F

(
d1α+ d2β

) ∈ W(k)γ+ pP
}

=
{
d1α+ d2β | d1, d2 ∈ L⊗ W(k),

(
dσ

1T
m + dσ

2c3T
i
)
α+ dσ

1T
jβ ∈ W(k)γ+ pP

}
=

{
Tg−j−1δσ−1

1 α+ Tg−i−1δσ−1

2 β |

δ1, δ2 ∈ OL ⊗ W(k),
(
Tm−jδ1 + δ2c3

)
a2 − δ1a1 ≡ 0mod T

}
.

(6.6)

6.2 TheOL-structure of Q̄γ

For fixed a1 and a2, we compute, using the isomorphism Q̄γ
∼= F−1(W(k)γ + pP)/

(W(k)γ+ pP), the minimal nonnegative integer r such that

T̄rQ̄γ = 0. (6.7)

We distinguish cases.

Case 6.3 (j > 0). The equality T̄sQ̄γ = 0 is equivalent to

T̄s
(
T̄g−j−1δσ−1

1 ᾱ+ T̄g−i−1δσ−1

2 β̄
) ∈ kγ̄ (6.8)

for all δ1, δ2 ∈ k[T ]/(Tg) satisfying

(
T̄m−jδ1 + δ2c̄3

)
T̄g−1a2 − δ1T̄

g−1a1 = 0. (6.9)
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Note that s = i+1 satisfies (6.8). On the other hand, δ1 = δ2 = T̄ always satisfies (6.9) and

gives

T̄s
(
T̄g−jᾱ+ T̄g−iβ̄

) ∈ kγ̄, (6.10)

which implies that s ≥ i− 1. Hence, we conclude that

i− 1 ≤ r ≤ i+ 1. (6.11)

We proceed to examine when does s = i or i− 1 satisfy (6.8) for all δ1 and δ2 as in (6.9).

(i) The case s = i. We rewrite (6.8) as

T̄g−1+(i−j)δσ−1

1 ᾱ+ T̄g−1δσ−1

2 β̄ ∈ kγ̄ (6.12)

for all δ1 and δ2 as in (6.9). Note that the linear dependence condition (6.12) is equivalent

to

a1δ
σ−1

2 − a2T̄
i−jδσ−1

1 = 0mod T̄ . (6.13)

Hence, we need to examine when does the following implication hold:

(
T̄m−ja2 − a1

)
δ1 + a2c̄3δ2 = 0mod T̄ =⇒ aσ

1δ2 − aσ
2 T̄

i−jδ1 = 0mod T̄ (6.14)

for all δ1 and δ2 as in (6.9). Treating δ1 and δ2 as free variables in k, the implication is

equivalent to

(
T̄m−ja2 − a1

)
aσ

1 + T̄ i−jc̄3a
σ+1
2 = 0mod T̄ . (6.15)

(a) Suppose that i > j and n > j. Then,m > j and (6.15) holds if and only if a1 = 0.

(b) Suppose that i > j andm = n = j. Then, (6.15) holds if and only if a1(a1−a2) =

0.

(c) Suppose that i = j. Then, (6.15) holds if and only if the couple (a1 : a2) is

among the p + 1 distinct solutions to the equation c̄3a
p+1
2 + T̄m−ja

p
1a2 −

a
p+1
1 = 0.

(ii) The case s = i− 1. We rewrite (6.8) as

T̄g−1+i−(j+1)δσ−1

1 ᾱ+ T̄g−2δσ−1

2 β̄ ∈ kγ̄ (6.16)

for all δ1 and δ2 as in (6.9).
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(a) Suppose that i ≥ j + 2 and n > j. First, take δ1 = δ2 = T̄ to deduce from (6.16)

that a1 = 0, and hence a2 �= 0. Note thatm > j. Therefore, we may rewrite

(6.9) as

δ2c̄3a2 = 0mod T̄ (6.17)

or simply as δ2 = 0mod T . But, if a1 = 0 and δ2 = 0mod T̄ , then (6.16)

holds. To sum up, this case is possible if and only if a1 = 0mod T̄ .

(b) Suppose that i ≥ j+2 andn = j. Then, alsom = j. As before, taking δ1 = δ2 = T̄ ,

we find that a1 = 0. Hence, (6.9) is equivalent to

(
δ1 + δ2c̄3

)
a2 = 0mod T̄ , (6.18)

which can be solved with δ2 = 1 and δ1 = −c̄3. Assigning these to (6.16),

we get that T̄g−2β̄ ∈ kγ̄, which is a contradiction. Hence, if i ≥ j + 2 and

n = j, then s = i− 1 is not possible.

(c) Suppose that i = j + 1. Again, δ1 = δ2 = T̄ gives a1 = 0. Now, δ1 and δ2 need to

satisfy

T̄m−jδ1 + δ2c̄3 = 0mod T̄ . (6.19)

Whether m = j or m > j, there exists a solution with δ1 = 1. But, then

(6.16) is just

T̄g−1ᾱ+ T̄g−2δσ−1

2 β̄ ∈ kγ̄, (6.20)

which is impossible.

(d) Suppose that i = j. Here, already δ1 = ε1T and δ2 = ε2T , where εi are appro-

priate units, give a contradiction.

Case 6.4 (j = 0). In this case, a1 = 0 by definition, and we may assume, without loss of

generality, that a2 = 1 and γ = Tg−1β. It follows that

F−1
(
W(k)γ+ pP

)
=

{
Tg−1δσ−1

1 α+ T−1δσ−1

2 β | δ1, δ2 ∈ OL ⊗ W(k), Tmδ1 + δ2c3 ≡ 0mod T
}
.

(6.21)
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Table 6.1

r = i− 1 i ≥ j+ 2 n > j a1 = 0

r = i

i = j+ 1 n > j a1 = 0

i > j n = j a1(a1 − a2) = 0

i = j n = j
the p+ 1distinct solutions of

c̄3ap+1
2 + T̄m−jap

1 a2 − ap+1
1 = 0mod T̄

r = i+ 1 otherwise

(a) Suppose that n > 0. Then,m > 0 and, therefore, δ2 cannot be a unit. Thus,

F−1
(
W(k)γ+ pP

)
=

{
Tg−1δσ−1

1 α+ δσ−1

2 β | δ1, δ2 ∈ OL ⊗ W(k)
}
. (6.22)

Hence, r = max(g− 1, 1).

(b) Suppose that n = 0. Then, m = 0. Taking δ2 = 1 in (6.21), one concludes that

r = g.

We summarize our results in Table 6.1.

6.3 TheOL-structure of P̄γ/Q̄γ

It follows from our definitions that F̄(P̄/Q̄) is isomorphic, as an OL ⊗ W(k)-module, to

(Tm)/(T i)ᾱ, where F is given in a normal form as in Proposition 4.10, that is, F(α) = Tmα+

T jβ and F(β) = c3T
iαwith n = min(i,m) and c3 ∈ (OL ⊗ W(k))∗. Therefore,

T̄sF̄

(
P̄

Q̄

)


= 0 if s ≥ i− n,
�= 0 if s < i− n.

(6.23)

Note that knowing i, the calculation of the minimal s annihilating F̄(P̄/Q̄) gives n. We are

interested in finding n for the modules Pγ, equivalently, for P̄γ/Q̄γ. Since i, and hence j,

for these modules is given in Section 6.2, we focus on the calculation of the minimal s

such that T̄sF̄γ(P̄γ/Q̄γ) = 0.

We have Pγ = P + W(k)p−1γ and

P̄ � Tp−1γ = ū
(
a1ᾱ+ a2β̄

)
for some ū ∈ (k[T̄ ]/

(
T̄g
))∗
. (6.24)

Hence,

T̄sF̄γ

(
P̄γ/Q̄γ

)
= 0 if s ≥ i− n+ 1. (6.25)
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Note also that if i− n− 2 ≥ 0 (which implies n < i and, therefore,m = n), then

T i−n−2F(α) = T i−2α+ Tg−n−2β. (6.26)

Applying F to both sides and reducing modulo pP, we find that

T̄ i−n−2F̄2(ᾱ) = T̄ i+n−2ᾱ+ T̄g−2β̄ (6.27)

is not proportional to γ̄. Therefore, T i−n−2F(α) does not belong toQγ and, hence, T i−n−2

does not kill F̄(P̄γ/Q̄γ). Thus,

T̄sF̄γ

(
P̄γ/Q̄γ

) �= 0 if 0 ≤ s ≤ i− n− 2. (6.28)

We proceed to examine, for s = i − n − 1 and s = i − n, under which conditions we have

T̄sF̄γ(P̄γ/Q̄γ) = 0.

6.3.1 The case T̄ i−nF̄γ(P̄γ/Q̄γ) = 0. This happens if and only if T̄ i−nF̄2
γ(P̄γ) = 0; equiva-

lently,

T i−nF2
γ

(
p−1γ

) ∈ pPγ. (6.29)

Fix a1 and a2. Then, the last condition can be written explicitly: the element

T i−nF2
γ

(
γ

p

)
= uF

(
w
(
a1

)σ(
T i+m−n−1α+ Tg−n−1β

)
+w

(
a2

)σ
c3T

2i−n−1α
)

= uT i−n
(
w
(
a1

)σ2

T2m−1 +w
(
a2

)σ2

cσ
3T

i+m−1 +w
(
a1

)σ2

c3T
g−1

)
α

+ u
(
w
(
a1

)σ2

Tg+m−n−1 +w
(
a2

)σ2

cσ
3T

g+i−n−1
)
β,

(6.30)

with u ∈ (OL⊗W(k))∗, is proportional to γmodulo pP. Equivalently, the following equal-

ity should hold modulo T :

(
aσ2

1 T̄2m−j−n + aσ2

2 c̄σ
3 T̄

i−j+m−n + aσ2

1 c̄3T̄
i−n
)
a2 −

(
aσ2

1 T̄m−n + aσ2

2 c̄σ
3 T̄

i−n
)
a1 ≡ 0
(6.31)

(i) if j < n < i, thenm = n < i and i−j > 0. Hence, the above equality is equivalent

to a1 = 0;
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Table 6.2

s = i− n− 1 j < n < i a1 = 0

s = i− n
j = n < i a1(a1 − a2) = 0

j ≤ n = i the p2 + 1distinct solutions mod T̄ of (6.32)

s = i− n+ 1 otherwise

(ii) if j = n < i, the equality is equivalent to a1(a1 − a2) = 0;

(iii) if n = i, then (6.31) is a nonzero homogeneous polynomial equation of degree

p2+1 in the variables a1 and a2. There are, therefore, p2+1 distinct points

(a1 : a2) forming the solutions of the equation

(
a

p2

1 T̄2m−g + ap2

2 c̄
p
3 T̄

m−j + ap2

1 c̄3

)
a2 −

(
a

p2

1 T̄m−n + ap2

2 c̄
p
3

)
a1 ≡ 0. (6.32)

6.3.2 The case T̄ i−n−1F̄γ(P̄γ/Q̄γ) = 0. Note that we must have i − n − 1 ≥ 0 and, hence,

m = n. The condition is equivalent to require that T̄ i−n−1F̄2
γ(P̄γ) = 0. Since F2(β̄) = 0,

necessary and sufficient conditions are that

(i) T̄ i−n−1F̄2(ᾱ) = T i+n−1ᾱ+ T̄g−1β̄ ∈ kγ̄;
(ii) F(aσ

1 (T i+m−n−2α+Tg−n−2β)+aσ
2c3T

2i−n−2α) ∈ kγ̄ is proportional to γmodulo

pP.

Hence, one of the following must hold:

(i) j < n. Then, m = n ≤ i − 1 and the first equation gives a1 = 0. Conversely, if

a1 = 0, both equations hold;

(ii) j = n. Then, the first equation implies that a1 = a2. The second equation im-

plies that a1 = 0, a contradiction. Hence, this case never holds.

We summarize our results in Table 6.2 that gives the minimal s so that T̄sF̄γ(P̄γ/Q̄γ) = 0.

6.4 Notation

Let k be a field. We denote by M̃(k, µN) (resp., M̃(k, µN,I)) the coarse moduli space of

abelian varieties (A, ι) with real multiplication byOL and µN-level structure (resp., such

that (MA,M
+
A) is isomorphic étale locally to (I,I+)). The natural morphism M(k, µN) →

M̃(k, µN) is finite. It takes Sj and W(j,n) to their counterpart in M̃(k, µN).

Proposition 6.5. Let (A, ι) → Spec(k) be an abelian variety with OL-multiplication over

an algebraically closed field of characteristic p satisfying (DP) and with polarization

module isomorphic to I. Assume that g > 1. Suppose that the moduli point [A] ∈ M̃(k, µN)



1810 F. Andreatta and E. Z. Goren

satisfies

[A] ∈ W(0,n) with n > 0. (6.33)

There exists a uniqueOL-invariant subgroup schemeH ⊂ A[T ] of order p. It is isomorphic

to αp. Moreover, A/H satisfies

(1) theOL-action onA descends toA/H and the abelian varietyA/H satisfies (DP)

with polarization module isomorphic to pI;

(2) the moduli point [A/H] of (A/H, ι) satisfies

[A/H] ∈




W(1,n) if n < g,

W(1,n−1) if n = g.

(6.34)
�

If [A] ∈ W(0,0), there exist two OL-invariant subgroup schemes H ⊂ A[T ] of order p: one

isomorphic to Z/pZ and one to µp. Furthermore, [A/H] lies in W(0,0).

Proof. Use Sections 6.2 and 6.3, Corollaries 3.3 and 3.5. For the last assertion, note that

W(0,0) is the ordinary locus of W̃(k,µN). �

Proposition 6.6. Let (A, ι) → Spec(k) be an abelian variety with OL-multiplication over

an algebraically closed field of characteristic p satisfying (DP) and with polarization

module isomorphic to I. Suppose that the moduli point [A] ∈ M̃(k, µN) satisfies

[A] ∈ W(j,n) with j > 0. (6.35)

There exists a Moret-Bailly family of abelian varieties A → P1
k. Denote by A(a:b) the fiber

over (a : b) ∈ P1
k. The family A → P1

k satisfies the following:

(1) A → P1
k is an abelian scheme with OL-multiplication satisfying (DP) and has

polarization module isomorphic to pI;

(2) moreover,

(2a) if j < n < i, then

[
A(a:b)

] ∈



W(j+1,n) if (a : b) = (0 : 1),

W(j−1,n) for all other points of P1
k;

(6.36)

(2b) if n = j < i, then

[
A(a:b)

] ∈



W(j,n) for (0 : 1), (1 : 1),

W(j−1,n) for all other points of P1
k;

(6.37)
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(2c) if n = i = j, then

[
A(a:b)

] ∈



W(j,n) for exactly (p+ 1)-points (a : b) ∈ P1
k,

W(j−1,n+1) for exactly (p2 − p)-points (a ′, b ′) ∈ P1
k,

W(j−1,n) for all other points of P1
k;

(6.38)

(2d) if j < i = n, let j ′ := j+ 1 if i ≥ j+ 2 and j ′ = j otherwise. Then,

[
A(a:b)

] ∈



W(j ′,n+(j−j ′)) if (a : b) = (0 : 1),

W(j−1,n+1) for the p2-solutions �= (0 : 1) of (6.32),

W(j−1,n) for all other points of P1
k.

(6.39)

�

Proof. Use Sections 6.2 and 6.3 and Corollaries 3.3 and 3.5. �

7 Deformations and the local structure of W(j,n)

In this section, we construct equicharacteristic deformations of abelian varieties with

real multiplication, using the theory ofOL-displays as in Definition 4.1. In particular, we

construct a model for the completion of the local ring of Sj at a point x such that the corre-

sponding abelian variety has singularity index j. The method of Deligne-Pappas, follow-

ing Grothendieck, is to study the deformation theory via the variation of the Hodge fil-

tration. Thus, the completed local ringOM(k,µN),x of M(k, µN) at x (resp.,OSj,x of Sj at x)

is identified with the completion of (a closed subset of) the Grassmannian of certainOL-

modules in a rank 2 freeOL ⊗ k(x)-module (coming from the variation ofH0(Ω1) ⊂ H1
dR).

This already gives that the local ring OSj,x is smooth of dimension g − 2j. However, the

inherent in this method is that one does not get an explicit expression for the variation

of Frobenius, and, therefore, more delicate questions, like the local structure of W(j,n),

must be approached using other methods.

We refer to Proposition 4.10 for notation. In particular, our starting point is an

OL-display (P0,Q0, V
−1
0 , F0), over an algebraically closed characteristic p-field k, given

in normal form: it has basis {α0, β0} and F0 is described with respect to the basis by the

matrix Tm c3T
i

T j 0

 . (7.1)
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Proposition 7.1. Define R := k[[fj, . . . , fi−1]]. There exists a polarized OL-display (P,Q,

V−1, F, 〈·, ·〉) over R with an OL ⊗ W(R)-basis {α,β} of P such that the following proper-

ties hold:

(i) there is an isomorphism of polarizedOL-displays

(
Pk,Qk, V

−1
k , Fk

)
∼−−→ (

P0,Q0, V
−1
0 , F0

)
; (7.2)

(ii) we haveQ = (OL ⊗ W(R))T iα⊕ (OL ⊗ W(R))T jβ+ IRP;

(iii) the Frobenius is determined by the following identities:

F(α) :=F0

(
α0

)
+w

(
fj
)
T jα+ · · · +w(fi−1

)
T i−1α, F(β) :=F0

(
β0

)
. (7.3)

In the above formulas, we view P0 = (OL ⊗W(k))α0 ⊕ (OL ⊗W(k))β0 as a subset of P via

the identification (α0, β0) �→ (α,β) and the inclusion W(k) ⊂ W(R). (We recall that w(x)

denotes the Teichmüller lift of x.) �

The proof is given in the following subsections.

7.1.1 The definition of (P,Q, F, V−1). Define P andQ by

P =
(
OL ⊗ W(R)

)
α⊕ (OL ⊗ W(R)

)
β,

Q =
(
OL ⊗ W(R)

)
α ′ ⊕ (OL ⊗ W(R)

)
β ′ + IRP,

(7.4)

where α ′ := T iα and β ′ := T jβ. Define F : P → P as the uniqueOL-linear and σ-linear map

such that (7.3) holds.

We, further, define

T = W(R)α⊕ · · · ⊕ W(R)T i−1α⊕ W(R)β⊕ · · · ⊕ W(R)T j−1β,

L = W(R)α ′ ⊕ · · · ⊕ W(R)T j−1α ′ ⊕ W(R)β ′ ⊕ · · · ⊕ W(R)T i−1β ′.
(7.5)

One verifies from the definitions that the kernel of the reduction F̄ of F to P̄ is Q̄ =

Image(Q → P/IRP).

We now proceed to the definition of V−1: since P ↪→ P ⊗ Q, the map V−1 exists on

P ⊗ Q and is given by the formula V−1 = p−1F. Clearly, it is OL-linear and is a σ-linear

homomorphism satisfying V−1(wV · y) = w · F(y) for any w ∈ W(R) and any y ∈ Q.

Furthermore, V−1
k = V−1

0 . It remains to verify that V−1(Q) ⊂ P and generates it.

Note that P = L⊕T andQ = L⊕ IRT . Since F(α ′), F(β ′) ≡ 0modulo p, the following

identities show that V−1(Q) ⊂ P:
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V−1
(
wV · y) = wF(y) if y ∈ T, V−1(x) = p−1F(x) if x ∈ L. (7.6)

Finally, since V−1
k = V−1

0 , by Nakayama’s lemma, V−1(Q) generates P.

7.1.2 The pairing on P. Let

〈·, ·〉 : P × P −→ Hom
(
OL,Z

)⊗ W(R) (7.7)

be the uniqueOL ⊗ W(R)-bilinear alternating pairing such that

〈α,β〉 =
〈
α0, β0

〉
0
. (7.8)

This pairing extends to P ⊗ Q. Let a, b, c, d ∈ OL ⊗ W(R). An easy calculation gives
V〈V−1(aα+ cβ), V−1(bα+ dβ)〉 = 〈aα+ cβ, bα+ dβ〉.

Proposition 7.2. Let k be a separably closed field of characteristic p. LetA0 := (A0, ι0, λ0,

ε0)/k be a polarized abelian variety with real multiplication by OL and µN-level struc-

ture, where N ≥ 4. Suppose that the associated moduli point [A0] ∈ M(k, µN) belongs to

W(j,n). Let R := k[[fj, . . . , fi−1]]. There exists a deformation

A −→ Spec(R) (7.9)

of A0 → Spec(k) such that

(a) A → Spec(R) is a polarized abelian scheme with real multiplication byOL and

level µN satisfying (DP);

(b) the induced map ψ : Spec(R) → M(Fp, µN) factors via Sj and is an isomor-

phism onto the completed local ring of Sj at [A0];

(c) letting (P,Q, V−1, F) be the polarized OL-display of A, there exist an integer

m ≥ n, an element c3 ∈ (OL ⊗ W(k))∗, and anOL ⊗ W(R)-basis {α,β} of P

such that the Frobenius map is defined by

α �−→ Tmα+w
(
fj
)
T jα+ · · · +w(fi−1

)
T i−1α+ T jβ, β �−→ c3T

iα. (7.10)
�

To prove the proposition we argue as follows.

We take the deformation A of A0 corresponding to the display constructed in

Proposition 7.1. Parts (a) and (c) and the fact that the map ψ factors via Sj follow from

Proposition 7.1 and Theorem 4.7. It remains to prove that ψ is an isomorphism onto the

completed local ring Γ of Sj at [A0]. By Deligne-Pappas [6], the ring Γ is a power series ring
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in (g−2j)-variables over k. SinceN ≥ 4, the scheme M(k, µN) is a fine moduli scheme and

Spec(Γ) is naturally identified with a closed subscheme of the universal equicharacteris-

tic deformation space ofA0. Since R is a formal power series ring in (g−2j)-variables over

k, it is enough to prove that the map ψ is injective on tangent spaces. Using the moduli

property of Γ , this follows from Section 7.2.1.

7.2.1 The map ψ is injective on tangent spaces. This amounts to proving that for any

tangent vector

t : R = k
[[
fj, . . . , fi−1

]] −→ k[ε]/
(
ε2
)
, (7.11)

the polarized OL-display (Pt,Qt, V
−1
t , Ft, 〈·, ·〉t), obtained by base change via t from

(P,Q, V−1, F, 〈·, ·〉), is trivial if and only if t(f�) = 0 for all 
 = j, . . . , i− 1.

By Proposition 7.1, we haveQ = (OL ⊗W(R))T iα⊕ (OL ⊗W(R))T jβ+ IRP and that

V−1 is given, with respect to the bases {T iα, T jβ} ofQ and {α,β} of P, by the matrix

p−1Tm+i + p−1T iZ c3p
−1Tg

p−1Tg 0

 , (7.12)

where Z := w(fj)T j + · · · + w(fi−1)T i−1 and the expression p−1Tg is a unit of OL ⊗ Zp

(similarly, for p−1Tm+i and p−1T iZ) and, in particular, makes sense modp. Assume that

(
Pt,Qt, V

−1
t , Ft, 〈·, ·〉t

)
∼=
(
P0,Q0, V

−1
0 , F0, 〈·, ·〉0

)×k k[ε]/
(
ε2
)
. (7.13)

Then, there exists anOL ⊗ W(k[ε])-linear isomorphism

Φ : Pt
∼−−→ Pt, (7.14)

restricting to the identity on P0 such that

(1) Φ(Qt) = Qt;

(2) 〈Φ(α),Φ(β)〉t = 〈α,β〉t;
(3) the following diagram commutes:

Qt

V−1
0

Φ
Qt

V−1
t

Pt
Φ

Pt.

(7.15)
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We write

Φ(α) = Aα+ Cβ, Φ(β) = Bα+Dβ, (7.16)

whereA,B,C,D ∈ OL⊗W(k[ε]) andA−1,D−1,C, and B are equivalent to 0mod ε that is,

via the map OL ⊗ W(k[ε]) → OL ⊗ W(k). By construction, 〈Φ(α),Φ(β)〉t = 〈α,β〉0, which

implies that

AD− BC = 1. (7.17)

By assumption, the matrix of V−1
0 , with respect to the bases {T iα, T jβ} and {α,β}, is

p−1Tm+i c3p
−1Tg

p−1Tg 0

 . (7.18)

We proceed to find out the implications of condition (3).

We first note that condition (1) implies that Φ(T jβ) = T jBα + T jDβ ∈ Qt, and

hence T jB = T ix for a suitable x ≡ 0mod ε. Then, one computes

V−1
t

(
Φ
(
T jβ

))
= V−1

t

(
T jBα+ T jDβ

)
=
((
p−1Tm+i

)
+ t∗

(
p−1ZT i

))
xσα

+
(
p−1Tg

)
xσβ+ c3

(
p−1Tg

)
Dσα

= c3

(
p−1Tg

)
α;

(7.19)

the last equality follows from σ being zero on the kernel of W(k[ε]) → W(k). On the other

hand,

Φ
(
V−1

0

(
T jβ

))
= Φ

(
c3

(
p−1Tg

)
α
)

= c3

(
p−1Tg

)
Aα+ c3

(
p−1Tg

)
Cβ. (7.20)

Since c3 and (p−1Tg) are units, we deduce that A = 1 and C = 0. From the determinant

condition, we also get thatD = 1. Finally, we compute that

V−1
t

(
Φ
(
T iα

))
= V−1

t

(
T iα

)
=
((
p−1Tm+i

)
+ t∗

(
p−1ZT i

))
α+

(
p−1Tg

)
β,

Φ
(
V−1

0

(
T iα

))
= Φ

((
p−1Tm+i

)
α+

(
p−1Tg

)
β
)

=
((
p−1Tm+i

)
+
(
p−1Tg

)
B
)
α+

(
p−1Tg

)
β.

(7.21)
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Comparing the two expressions, we find that (p−1Tg)B = t∗(p−1ZT i), whence

B = t∗
(
w
(
fj
))

+ t∗
(
w
(
fj+1

))
T + · · · + t∗

(
w
(
fi−1

))
T i−j−1. (7.22)

Since B = T i−jx, we conclude that t(f�) = 0 for all 
 = j, . . . , i− 1.

Remark 7.3. The matrix of the operator F̄ on P̄/Q̄, with respect to the basis {ᾱ, . . . , T̄ i−1ᾱ,

β̄, . . . , T̄ j−1β̄}, is

0 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · 0 0 · · · 0

fj 0 0 · · · 0 0 0 · · · 0 0 · · · 0

fj+1 fj 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

fn−1 fn−2 fn−3 · · · 0 0 0 · · · 0 0 · · · 0

b+ fn fn−1 fn−2 · · · 0 0 · · · 0 0 · · · 0

fn+1 b+ fn fn−1 · · · 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

fi−2 · · · b+ fn fn−1 · · · 0 0 · · · 0

fi−1 fi−2 · · · fn+1 b+ fn fn−1 · · · fj 0 · · · 0

0 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · 0 0 · · · 0



, (7.23)

where b = 1 ifm < i and b = 0 ifm ≥ i.

Corollary 7.4. Let x be a geometric point of W(j,n). Then, using the above notation, for

any j ≤ n ′ ≤ n, the equations defining W(j,n ′) at the formal neighborhood of x in Sj are

fj = · · · = fn ′−1 = 0. (7.24)

In particular, W(j,n) is a locally irreducible, nonsingular subscheme of M(Fp, µN). �

8 Γ0(p)-correspondences

Assume that p = pg is totally ramified in L. In this section, we study the Hecke correspon-

dence arising from the Γ0(p)-level structure. We prove in Proposition 8.10 that the image
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of W(j,n) via such correspondence is the union of certain sets W(j ′,n ′). We use it to prove

in Theorem 8.14 that the W(j,n)’s define a stratification of M(Fp, µN), that is, the closure

of W(j,n) is the union of some of the sets W(j ′,n ′).

Let A be an abelian variety with a polarization module MA and a polarization

datum identifying (MA,M
+
A) with an element I of R = {I1, . . . ,Ih+ }. Let H be an OL-

invariant subgroup scheme of A of order p. By Corollary 3.5, the polarization module of

A/H is pMA, and hence identified with pI. Thus, we fix, for every I ∈ R, an isomorphism

pI ∼= I ′, where I ′ ∈ R is uniquely determined. Then, for everyAwith polarization datum,

also A/H is equipped with a polarization datum.

Definition 8.1. Let N := M(Fp, µN, Γ0(p)) be the moduli space over Fp of polarized abelian

schemes with real multiplication by OL, with µN-level structure and OL-invariant finite

flat subgroup scheme of degree p. Let M := M(Fp, µN) and let

N
π1 π2

M M

(8.1)

be the two projections defined by

π1

(
[A,H]

)
= A, π2

(
[A,H]

)
= A/H. (8.2)

Definition 8.2. Define the involution ∨ : M → M by mapping an abelian scheme A with

real multiplication byOL onto its dual A∨. Define an involution ρ on N by

ρ
(
[A,H]

)
=
[
(A/H)∨, H∨

]
. (8.3)

Remark 8.3. The involution ρ fits in the following commutative diagram:

N

π2

ρ

N

π1

M
∨

M.

(8.4)

Similarly, with the role of π1 and π2 interchanged.

Lemma 8.4. The morphisms πi : N → M are proper. �

Proof. We first prove that π1 is proper applying the valuative criterion. Let R be a dvr

with fraction field K, let [A] be in M(R), and let [AK, HK] be in N(K). The Zariski closure
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H of HK in A defines an OL-invariant subgroup scheme, finite and flat of order p over

Spec(R). Then, [A,H] is in N(R) and it is the unique extension of [AK, HK] over Spec(R). It

follows that π1 is proper. Thus, π1 ◦ ρ =∨ ◦π2 is also proper. Hence, so is π2 =∨ ◦∨ ◦ π2.

�

Lemma 8.5. The involution ∨ on M sends W(j,n) to W(j,n). �

Proof. Let A be an abelian scheme with real multiplication by OL over a scheme of char-

acteristic p. By Proposition 3.1, there exists a prime-to-p OL-polarization on A that in-

duces an isomorphism of the Hodge filtration of A and its dual A∨. In particular, the

singularity index and the slope of A coincide with those of A∨, that is, j(A) = j(A∨) and

n(A) = n(A∨). �

Lemma 8.6 (inversion lemma). Let x = [Ax] ∈ M be a geometric point. Then,

π−1
2

([
Ax

])
= ρ

(
π−1

1

([
A∨

x

]))
=

{[(
A∨

x /K
)∨
, K∨

]
| K ⊂ A∨

x , OL-invariant of degree p
}
.

(8.5)

In particular, π1(π−1
2 [A]) consists of points whose invariants (j, n) are exactly those con-

structed out of A via the Moret-Bailly construction in Proposition 6.5 if j(Ax) = 0, and in

Proposition 6.6 if j(Ax) > 0. �

Proposition 8.7. The following holds:

(1) the restrictions of the morphisms π1 and π2 to the Rapoport locus MR are

finite;

(2) the restrictions of the morphisms π1 and π2 to the singular locus S1 are P1-

bundles. �

Proof. By Remark 8.3 and Lemma 8.5, the statements concerning π2 follow from those

concerning π1. By Lemma 8.4, we know that π1 : N → M is proper. Over MR, the mor-

phism π1 is quasifinite. In fact, using Dieudonné theory, one proves, as in Section 6, that

the (reduced) fibers have two points over W(0,0) and one point over W(0,n) for n > 0. We

conclude from [10, Proposition 4.4.2] that π1 is finite. This completes the proof of (1).

LetA be the universal abelian scheme over S1. LetU = Spec(R) be the completion

of S1 at a geometric point, W(R) the Witt vectors of R, and IR the kernel of W(R) → R.

Let (PU,QU, FU, V
−1
U ) be the display over U associated to A ×S1

U. Note that PU is free of

rank 2 as OL ⊗ W(R)-module. It follows from Theorem 4.7 that π−1
1 (U) is isomorphic to

the Grassmannian of (OL/p)⊗ R-invariant submodules of PU/IRPU, that is, to P1
U. In par-

ticular, we deduce from [6] that T := π−1
1 (S1) is locally an integral scheme. Let W be the
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Table 8.1

t Λ({t})

(0,0) {(0,0)}

(0,g)
{(1,g− 1)} (if g > 1)

{(0,g)} (if g = 1)

(0,n) n < g {(1,n)}

(j,n) 0 < j < n < g− j {(j+ 1,n),(j− 1,n)}

(j,n) 0 < j = n < g− j {(j,n),(j− 1,n)}

(j,n) 0 < j = n = g− j {(j,n),(j− 1,n+ 1),(j− 1,n)}

(j,n) 0 < j < n = g− j = j+ 1 {(j,n),(j− 1,n+ 1),(j− 1,n)}

(j,n) 1 < j+ 1 < n = g− j {(j+ 1,n− 1),(j− 1,n+ 1),(j− 1,n)}

tangent space of A[p] relative to S1. Since A[p] is a local group scheme, using Dieudonné

theory, one concludes that, geometrically,W is a locally freeOS1
-module of rank 2. Since

S1 is Zariski locally an integral scheme by [6], we deduce that W is a locally free OS1
-

module of rank 2. LetH be the universalOL-invariant subgroup scheme of order p ofA[p]

over T. Its tangent space Z relative to T defines an (OL/p) ⊗Z OT-invariant submodule of

W ⊗OS1
OT. The Oort-Tate classification of group schemes of order p implies that there

exists a covering {Ui = Spec(Ai)} of T by affine open subschemes and elements {ai ∈ Ai}i

such that HUi
∼= Spec(Ai[y]/(yp − aiy)). Since H is, geometrically, a local group scheme,

for every i, the element ai lies in the intersection of every prime ideal, that is, in the nil

radical of Ai. Thus, ai = 0 and Lie(HUi
) ∼= Ai for every i. We deduce that Z is locally

free as OT-module of rank 1. In particular, we get a map from T to the Grassmannian of

(OL/p)⊗OS1
-invariant submodules ofW which are locally free of rank 1 asOS1

-modules.

Such Grassmannian is a P1-bundle over S1, and the given map is an isomorphism after

completing at every point of S1 and, hence, it is an isomorphism. This proves (2). �

Definition 8.8. Define a function

Λ : 2J −→ 2J, (8.6)

where J is as in Section 5, by defining Λ(T) = ∪t∈TΛ({t}) and by defining Λ({t}) according

to Table 8.1.

Given (s, t) ∈ J, we will write Λ(s, t) for Λ({(s, t)}).
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Lemma 8.9. Let (j, n) and (s, t) be elements of J. Then,W(s,t) ⊂ π2(π−1
1 (W(j,n))) if and only

if (j, n) ∈ Λ(s, t). Furthermore, W(s,t) ∩ π2(π−1
1 (W(j,n))) �= ∅ ⇒ W(s,t) ⊂ π2(π−1

1 (W(j,n))).

�

Proof. (⇒) By assumption, we have π−1
2 (W(s,t))∩π−1

1 (W(j,n)) �= ∅. On the other hand, the

inversion Lemma 8.6 implies that π−1
2 (W(s,t)) ⊂ π−1

1 (WΛ(s,t)). Hence, also π−1
1 (WΛ(s,t)) ∩

π−1
1 (W(j,n)) �= ∅. This implies that (j, n) ∈ Λ(s, t). (Note that this also proves the final

assertion.)

(⇐) Let y ∈ W(s,t). Since (j, n) ∈ Λ(s, t), using the inversion Lemma 8.6, we con-

clude that there exists a point x ∈ π−1
2 (y) ∩ π−1

1 (W(j,n)) as wanted. �

Proposition 8.10. Let (j, n) ∈ J. Then, π2(π−1
1 (W(j,n))) = WΛ(j,n). �

Proof. The inclusion ⊂ follows from Propositions 6.5 and 6.6. To prove the inclusion ⊃,

we make use of Lemma 8.9. It suffices to verify that for any (s, t) ∈ Λ(j, n), we have (j, n) ∈
Λ(s, t). This follows from a direct computation. We give one example. Assume that 0 <

j < n < g− j and take (s, t) = (j+ 1, n) ∈ Λ(j, n). We have the following possibilities:

(i) j+ 1 < n < g− j− 1, in which case Λ(j+ 1, n) = {(j+ 2, n), (j, n)};

(ii) j+ 1 = n < g− j− 1, in which case Λ(j+ 1, n) = {(j+ 1, n), (j, n)};

(iii) j+ 1 = n = g− j− 1, in which case Λ(j+ 1, n) = {(j+ 1, n), (j, n+ 1), (j, n)};

(iv) j+1 < n < g− j−1 = j+2, in which caseΛ(j+1, n) = {(j+1, n), (j, n+1), (j, n)};

(v) j+ 2 < n = g− j− 1, in which case Λ(j+ 1, n) = {(j+ 2, n− 1), (j, n+ 1), (j, n)}.

One readily checks that indeed (j, n) ∈ Λ(j+ 1, n). �

As a consequence of the proof of Proposition 8.10, we get the following.

Corollary 8.11. Let (j, n) and (s, t) be elements of J. Then,

(s, t) ∈ Λ(j, n) ⇐⇒ (j, n) ∈ Λ(s, t). (8.7)
�

Lemma 8.12. Let (j, n) ∈ J and j > 0. Then, π2(π−1
1 (W(j,n))) = W(j−1,n). �

Proof. Since, over the stratum S1, the morphism π1 is a P1-bundle by Proposition 8.7, we

have π−1
1 (W(j,n)) = π−1

1 (W(j,n)). For any x ∈ W(j,n), the generic invariants of π2(π−1
1 (x))

are (j − 1, n). In particular, it follows from Proposition 8.10 that W(j−1,n) is contained in

π2(π−1
1 (W(j,n))). Hence,

W(j−1,n) = π2

(
π−1

1

(
W(j,n)

))
= π2

(
π−1

1

(
W(j,n)

))
= π2

(
π−1

1

(
W(j,n)

)) (
π2 proper

)
.

(8.8)
�
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Lemma 8.13. Let 0 ≤ j ≤ g/2. Then, W(j,j) = Sj and W(j,g−j) = W(j,g−j). �

Proof. The generic points of Sj have singularity index j by [6] and slope j by Corollary 7.4.

The set W(j,g−j) consists of superspecial abelian varieties and, hence, has dimension 0.

�
Theorem 8.14. There exists a unique function ∆ : 2J → 2J such that

W(j,n) = W∆(j,n) (8.9)

(where∆(j, n) stands for∆({(j, n)})). The function∆ satisfies the following properties and

is characterized by them:

(1) for any integer 0 ≤ j ≤ g/2, we have ∆(j, j) = {(j ′, n ′) ∈ J | j ≤ j ′};
(2) for any integer 0 ≤ j ≤ g/2, we have ∆(j, g− j) = {(j, g− j)};

(3) for any integer 1 ≤ j ≤ g/2, we have ∆(j− 1, n) = Λ(∆(j, n)). �

Proof. Claims (1) and (2) follow from Lemma 8.13. Given a pair (j, n) with j > 0, we dis-

tinguish two cases:

(i) n ≤ g/2. By (1), we have W(n,n) = W∆(n,n). We proceed by induction on n −

j. If n = j, we are done. Assume that W(n−h,n) = W∆(n−h,n) for some

integer 0 ≤ h < n − j. By Lemma 8.12, W(n−h−1,n) = π2(π−1
1 (W(n−h,n))).

By Proposition 8.10, we have π2(π−1
1 (W∆(n−h,n))) = WΛ(∆(n−h,n));

(ii) n > g/2. By (2), we have the equality W(g−n,n) = W∆(g−n,n). We proceed by in-

duction on (g−n)− j. If j = g−n, we are done. Assume that W(g−n−h,n) =

W∆(n−h,n) for some integer 0 ≤ h < (g − n) − j. By Lemma 8.12,

W(g−n−h−1,n) = π2(π−1
1 (W(g−n−h,n))). We conclude, by Proposition 8.10,

that π2(π−1
1 (W∆(g−n−h,n))) = WΛ(∆(g−n−h,n)). �

9 Newton polygons

In this section, we determine the Newton polygon of an abelian variety with real multi-

plication by OL over a field of characteristic p, where p = pg is totally ramified in L. The

result we obtain is phrased in terms of the two invariants j and n we associated to such

an abelian variety in Section 5.

From the point of view of Dieudonné modules, we restrict our attention to the

classification of F-isocrystals of rank 2 over the discrete valuation ringOL ⊗W(k), which

is the case relevant to our situation. Our methods are somewhat ad hoc and follow the

exposition in [7]. Indeed, the classification of F-crystals up to isomorphism over this ring

can be carried out along lines similar to Manin’s seminal paper [11]. Details will appear

in [14].
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Lemma 9.1. Let ε = 1 if gλ(n) is an integer, and let ε = 1/2 otherwise. We extend the

automorphism σ to OL ⊗ W(k)[Tε] by requiring σ(Tε) = Tε. The extra commutation rule

on OL ⊗ W(k)[Tε][F] is FTε = TεF. Then, there exist elements b0, b1, u ∈ OL ⊗ W(k)[Tε],

with u a unit, such that

(
b0F+ b1

)(
F− Tgλ(n))u = F2 − TmF− c3T

g. (9.1)
�

Proof. We write λ instead of λ(n). Note that

(
b0F+ b1

)(
F− Tgλ

)
u = b0u

σ2

F2 +
(
b1 − b0T

gλ
)
uσF− ub1T

gλ. (9.2)

Let v = u−1, b0 = vσ2

, and b1 = vσ2

Tgλ − vσTm. Then, the above factorization holds if and

only if v can be chosen to be a unit satisfying

vσ2

− vσTm−gλ − vc3T
g(1−2λ) = 0. (9.3)

We proceed by constructing a converging sequence of elements vn ∈ OL ⊗ W(k)[Tε] such

that vn solves (9.3) modulo Tεn for all n ∈ N.

Let n = 1. Note that either g(1 − 2λ) = 0 or m = n and m − gλ = 0. Hence, (9.3)

admits a nonzero solution v1 mod Tε since k is algebraically closed.

Suppose that for n ∈ N, we have constructed a unit vn ∈ OL ⊗ W(k)[Tε] such that

vσ2

n − vσ
nT

m−gλ − vnc3T
g(1−2λ) = zTεn (9.4)

for some z ∈ OL ⊗ W(k)[Tε]. Let vn+1 := vn + Tεnx with x ∈ OL ⊗ W(k)[Tε]. Then, vn+1

solves (9.3) mod T (n+1)ε if and only if

xp2

− xpTm−gλ − c3xT
g(1−2λ) + z = 0mod Tε. (9.5)

Since k is algebraically closed, such x exists. �

Theorem 9.2. Let k be an algebraically closed field of positive characteristic p. Let (A, ι)

be an abelian variety with real multiplication by OL over k satisfying (DP) and of type

(j, n). The slopes of the Newton polygon ofA are λ(n) and 1−λ(n), each with multiplicity g.

�

Proof. Let P be the polarizedOL-display associated toA. By Proposition 4.10, there exist

α and β in P such that P = (OL ⊗W(k))α⊕ (OL ⊗W(k))β, the submodule (OL ⊗W(k))α is

maximal isotropic with respect to theOL-polarization on P, and the matrix of Frobenius
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in the basis {α,β} is given byTm c3T
i

T j 0

 . (9.6)

Let

β ′ = F(α) = Tmα+ T jβ. (9.7)

Recall thatm ≥ nwith equality if n < i. The casem = ∞ is allowed, and then Tm = 0 and

β ′ = T jβ. Notice that {α,β ′} is an L⊗ W(k)-basis of P ⊗ Q that (L⊗ W(k))α is a maximal

isotropic submodule of P ⊗ Q and that F is given in this basis by0 c3T
g

1 Tm

 . (9.8)

The slopes of P are those of theOL ⊗ W(k)[F]-module

M̃ :=
(
OL ⊗ W(k)

)
α⊕ (OL ⊗ W(k)

)
β ′. (9.9)

Notice that F2(α) = F(β ′) = c3T
gα + TmF(α). Hence, the surjective map of Dieudonné

modules withOL-action

Φ : OL ⊗ W(k)[F] −→ M̃, (9.10)

given byΦ(1) = α andΦ(F) = β ′, induces an isomorphism

M := OL ⊗ W(k)[F]/
(
F2 − TmF− c3T

g
)

∼−−→ M̃. (9.11)

By Lemma 9.1, theOL ⊗ W(k)[F]-linear map

Ψ : M −→ OL ⊗ W(k)
[
Tε
]
[F]/
(
F− Tgλ(n)) =: N (9.12)

given by

Ψ(1) = u−1 (9.13)

is well defined. See Lemma 9.1 for the definitions of ε and u. Moreover, its image contains

Ψ
(
Φ−1

(
OL ⊗ W(k)α

))
=
(
OL ⊗ W(k)

)
u−1, (9.14)
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and hence has W(k)-rank at least g. In particular, the slopes of F-isocrystal P⊗Q contain

the slopes ofN. Define

N0 := OL ⊗ Zp

[
Tε
]
, F0 = multiplication by Tgλ(n). (9.15)

Then,

N
∼−−→ N0 ⊗ W(k), F = F0 ⊗ σ. (9.16)

In particular, the slopes of N are the slopes of N0. Since on N0 the operator F0 is linear

and equal to multiplication by Tgλ(n), the slopes of N0 are the p-adic valuations of the

eigenvalues of Tgλ(n) on N0. Since T ∈ OL is the zero of an Eisenstein polynomial, we

conclude that the slopes ofN0 are all equal to λ(n). �

10 The main theorem

Let J, W(j,n), Sj, and λ(n) be as in Section 5. Let k be a field of characteristic p.

Theorem 10.1. Let (j, n) ∈ J. The following properties hold:

(1) W(j,n) is a nonempty, regular, locally closed subscheme of M(k, µN) of dimen-

sion equal to g − (j + n). Moreover, every irreducible component M(k,

µN,I) of M(k, µN) contains a point of W(j,n);

(2) the slopes of the Newton polygon of every point x of W(j,n) are (λ(n), 1− λ(n)),

each appearing with multiplicity g;

(3) there exists a function ∆ : 2J → 2J such that the Zariski closure W(j,n) of W(j,n)

is equal to W∆(j,n). In particular, the subsets {W(j,n) | (j, n) ∈ J} define a

stratification of M(k, µN). See Theorem 8.14 for the properties of ∆;

(4) there exists a function Λ : 2J → 2J such that the image of W(j,n) via the Γ0(p)-

Hecke correspondence is WΛ(j,n). See Definition 8.8 for the properties of

Λ. �

We remark again that

Sj =
⋃

j≤n≤g−j

W(j,n). (10.1)

We define the Newton stratification. For any 
 ∈ {i/g | 0 ≤ i ≤ [g/2]} ∪ {1/2}, let β� be

the Newton polygon with slopes (
, 1 − 
), each appearing with multiplicity g. Let N� be

the closed reduced subscheme of M(k, µN) universal for the property that the Newton

polygon lies above or is equal to β�.
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Corollary 10.2. We have

N� =
⋃

{(j,n)|λ(n)≥�}

W(j,n). (10.2)

In particular,

dim
(
N�

)
= g− �g · 
�. (10.3)

�

Proof. The corollary follows from the theorem noticing that N� = ∪{(j,n):λ(n)=�}W(j,n) =

W(0,�g·�	). �

Proof of Theorem 10.1

W(j,n) ∩ M(k, µN,I) is nonempty. For any fractional ideal I with its natural notion of

positivity, we construct, in several steps, a I-polarized abelian variety with real multi-

plication byOL and invariants j and n.

Let E be a supersingular elliptic curve with a µN-level structure. Then, E ⊗Z D
−1
L

satisfies (R), carries a µN ⊗ D−1
L -level structure, and is parameterized by a point x of

W(0,g) ∩ M(k, µN,DL). Choose a prime q, relatively prime toNdL, and a prime ideal q di-

viding q such that q−1DL = I in Cl(L)+. Consider the image of x under the finite Hecke cor-

respondence Tq sending any geometric point [A] to
∑

H⊂A[q][A/H], where the sum ranges

over all nontrivial, OL-invariant, subgroup schemes H of A. Using arguments similar

to Section 3, one checks that, indeed, Tq is a well-defined correspondence on M(k, µN)

(in particular, condition (DP) is preserved). To calculate how the polarization module

changes under Tq, one may focus on Tate objects.

Let T(DL, OL) = (Gm ⊗ OL)/(q(OL)). Then, the Tate object T(q−1, OL) belongs to

Tq(T(DL, OL)) and has polarization module q−1DL = I. This proves point (a) below.

(a) W(0,g) ∩ M(k, µN,I) is nonempty.

(b) Let x ∈ W(0,n) ∩ M(k, µN,I), where 1 ≤ n ≤ g− 1. Then, W(1,n) ∩ M(k, µN, pI)

is nonempty by Proposition 6.5.

(c) Let x ∈ W(j,n) ∩ M(k, µN,I), where 0 < j < n < g − j. Then, W(j+1,n) ∩
M(k, µN, pI) is nonempty by Proposition 6.6.

(d) Let x ∈ W(j,n) ∩ M(k, µN,I). Then, W(j,n ′) ∩ M(k, µN,I) is nonempty for any

j ≤ n ′ ≤ n by Section 7.2.1 and Corollary 7.4.

Proof of (1). The assertion that W(j,n) ∩ M(k, µN,I) is nonempty follows from (a), (b),

(c), and (d) above. The rest of the claim follows from Corollary 7.4.

Proof of (2). This is Theorem 9.2.
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Proof of (3). This is Theorem 8.14. We will give in Section 10.2 a second proof outside the

supersingular locus using the de Jong-Oort purity theorem.

Proof of (4). This is Proposition 8.10. �

10.1 The Grothendieck conjecture

The Grothendieck conjecture was initially asserted in terms of deformations of p-divis-

ible groups and can be reformulated for abelian varieties, possibly with extra structure;

see [16]. In our context, it corresponds to the following corollary.

Corollary 10.3. LetA0 be a g-dimensional abelian variety with real multiplication byOL

and satisfying (DP) over an algebraically closed field k of characteristic p. Let β1 be a

Newton polygon with two slopes {λ(n1), 1− λ(n1)} for some 0 ≤ n1 ≤ g, each of multiplic-

ity g, lying below the Newton polygon β0 of A0. Then, there exist a complete equicharac-

teristic local ring (R,m) with isomorphism R/m ∼= k and a g-dimensional abelian scheme

with real multiplication byOL and satisfying (DP) over Spec(R) whose special fiber isA0

and whose generic fiber has Newton polygon β1. �

Proof. Let (j0, n0) be the invariants ofA0. Its Newton polygon has only two slopes {λ(n0),

1 − λ(n0)} with multiplicity g depending on n0 (Theorem 9.2). By Proposition 7.2, we can

deform A0 to an abelian variety with invariants (j, n ′) for every j ≤ n ′ ≤ n0. By [6], one

can deform an abelian variety with invariants (j, j) for j > 0 to an abelian variety with

singularity index j − 1. Using, repeatedly, the two arguments, we conclude that we can

deform A0 to an abelian variety with slope invariant n1. �

10.2 Connection to purity

This subsection is devoted to a different proof of part (3) of our main theorem, at least

outside the supersingular locus M(Fp, µN)ss, based on the de Jong-Oort purity theorem.

Let n < g/2. Note that

W(j,n)\M
(
Fp, µN

)ss ⊂
⋃

j≤j ′, n≤n ′<g/2

W(j ′,n ′) (10.4)

because j goes up under specialization and, for n ′ ≤ g/2, the Newton polygon determines

n ′ and goes up under specialization. The converse follows from the following two asser-

tions:

(1) for all 0 ≤ a ≤ g/2 and all a ≤ b < g− a, we have W(a,b+1) ⊂ W(a,b);
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(2) W(j+1,n) ⊂ W(j,n) for n ≤ g/2.
The assertion (1) follows from Corollary 7.4.

We now prove that W(j+1,n) ⊂ W(j,n) for n ≤ g/2. Let x = [Ax] be a geometric point

of W(j+1,n). Consider the formal neighborhood U of x in Sj, representing all infinitesimal

deformations ofAx with singularity index≥ j. By Deligne-Pappas, it is of pure dimension

g− 2j. Let η = [Aη] be a generic point of an irreducible component of U. It has invariants

(j, j). Note that j < n ≤ g/2. Therefore, the Newton polygon βj of Aη is strictly below that

ofAx. By de Jong-Oort purity theorem [5], there exists a closed integral subschemeU1 of

U with generic point η1, such that dim(U1) = g − 2j − 1 and the Newton polygon of Aη1

is strictly above βj. Let a = j(Aη1
) and b = n(Aη1

) be the invariants of Aη1
. They satisfy

j ≤ a, j < b, and a+ b ≤ 2j+ 1 (because dim(U1) ≤ dim(W(a,b))). Hence, the invariants of

Aη1
are (j, j+ 1).

If n = j + 1, we are done. If not, assume that for some integer 1 ≤ h < n − j, we

have constructed a closed integral subscheme Uh of U with generic point ηh such that

dim(Uh) = g − 2j − h and Aηh
has invariants (j, j + h). Since j + h < n ≤ g/2, the Newton

polygon of Aηh
is strictly below βn. By the purity theorem, there exists a closed integral

subscheme Uh+1 of Uh with generic point ηh+1, such that dim(Uh+1) = g − 2j − h − 1

and the Newton polygon of Aηh+1
is strictly above that of Ah. Let a = j(Aηh+1

) and b =

n(Aηh+1
) be the invariants of Aη1

. They satisfy j ≤ a, j + h < b, and a + b ≤ 2j + h + 1

(because dim(Uh+1) ≤ dim(W(a,b))). Hence, the invariants of Aη1
are (j, j+ h+ 1).

Again, if n = j+ h+ 1, we are done. Else, continue in the same fashion.

Remark 10.4. The inclusion W(j+1,n) ⊂ W(j,n) need not hold for n > g/2. See Section 11

for examples.

11 Examples

In this section, we provide examples of the functions Λ and ∆ defined in Definition 8.8

and Theorem 8.14, respectively. Some of the properties of these functions can be easily

guessed from the diagrams and were used above (Corollary 8.11 and Section 10.2).

The diagrams should be read as follows. In the diagrams for the function Λ, the

image of the function on a couple (j, n) is the set of all the couples attached to it (the

property is symmetric! see Corollary 8.11). Thus, for example, for g = 4,we haveΛ(2, 2) =

{(2, 2), (1, 3), (1, 2)} and Λ(1, 2) = {(2, 2), (0, 2)}. For the function ∆, our convention that if a

point x lies above a point y and is connected to y by a descending path, then the stratum

corresponding to x lies in the boundary of the stratum corresponding to y. Thus, for ex-

ample, for g = 4, the closure of (0, 3) is ∆(0, 3) = {(2, 2), (0, 4)} and the closure of (0, 2) is

given by ∆(0, 2) = {(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (2, 2)}.
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We remark that the diagrams for ∆ give a convenient way to see the structure of

the moduli space. The columns describe the singularities: the rightmost column is the

nonsingular part, the further the column is to the left the worse are the singularities.

The rows correspond to the a-number: the rth row from below corresponds to abelian

varieties with a-number equal to r, and we see that the a-number gives a stratification.

If Tr denotes the abelian varieties with a-number greater than or equal to r, then every

component of Tr has codimension g−r. Finally, the Newton strata is defined by “wedges.”

We immediately see that the smooth locus of the moduli space is dense in every Newton

strata (but not in the a-number strata).

11.1 The function Λ

g = 1

(0, 1)

(0, 0)

g = 2

(1, 1) (0, 2)

(0, 1)

(0, 0)

g = 3

(1, 2) (0, 3)

(1, 1) (0, 2)

(0, 1)

(0, 0)

g = 4

(2, 2) (1, 3) (0, 4)

(1, 2) (0, 3)

(1, 1) (0, 2)

(0, 1)

(0, 0)

g = 8

(4, 4) (3, 5) (2, 6) (1, 7) (0, 8)

(3, 4) (2, 5) (1, 6) (0, 7)

(3, 3) (2, 4) (1, 5) (0, 6)

(2, 3) (1, 4) (0, 5)

(2, 2) (1, 3) (0, 4)

(1, 2) (0, 3)

(1, 1) (0, 2)

(0, 1)

(0, 0)
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11.2 The function ∆

g = 1

(0, 1)

(0, 0)

g = 2

(1, 1) (0, 2)

(0, 1)

(0, 0)

g = 3

(1, 2) (0, 3)

(1, 1) (0, 2)

(0, 1)

(0, 0)

g = 4

(2, 2) (1, 3) (0, 4)

(1, 2) (0, 3)

(1, 1) (0, 2)

(0, 1)

(0, 0)

g = 8

(4, 4) (3, 5) (2, 6) (1, 7) (0, 8)

(3, 4) (2, 5) (1, 6) (0, 7)

(3, 3) (2, 4) (1, 5) (0, 6)

(2, 3) (1, 4) (0, 5)

(2, 2) (1, 3) (0, 4)

(1, 2) (0, 3)

(1, 1) (0, 2)

(0, 1)

(0, 0)

Appendix

A pathology

Let k be an algebraically closed field of characteristic p. We consider Dieudonné modules

over k, that are self-dual, of rank 4 and have a-number equals one. We call them modules

of type x. These are precisely the Dieudonné modules arising from supersingular, but not

superspecial, abelian surfaces having a separable polarization. Every such Dieudonné

moduleD is generated by an element α0 ∈ D satisfying F2α0 = V2α0. The elements

α0, Fα0, Vα0, F
2α0 = V2α0 (A.1)
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form a k-basis for D. Note that every other generator α of D as a k[F, V]-module is of the

form α = rα0 + sFα0 + tVα0 +uF2α0, where r ∈ k× and s, t, u ∈ k. We let r(α) be defined by

the formula

r(α) = F2α/V2α. (A.2)

Let L be a quadratic field in which p is ramified. Given a module D of type x, we

wish to consider anOL = k[T ]/(T2)-action onD such that the action commutes with F and

V and the kernel of T has rank 2. We call such modules the modules of type y. The modules

of type ymay appear as the Dieudonné modules of the p-torsion of a supersingular, and

not superspecial, abelian surface over kwith real multiplication byOL.

Given a moduleD of type x, choose any k[F, V]-generator α toD. Giving an action

of k[T ] onD is equivalent to giving A ′, A, B, and C in k. The image Tα is

Tα := A ′α+AFα+ BVα+ CF2α. (A.3)

The action is extended then by the formulas

TFα = FTα, TVα = VTα, TF2α = F2Tα. (A.4)

A necessary condition that the action factors through the quotient by the ideal (T2) is

A ′ = 0 (and then the action automatically commutes with F and V). Hence,

Tα = AFα+ BVα+ CF2α. (A.5)

Since

T2α = T
(
AFα+ BVα+ CF2α

)
= AFTα+ BVTα

= Ap+1F2α+ B1+p−1

V2α

=
(
Ap+1r(α) + B1+p−1)

V2α,

(A.6)

we get the additional condition

Ap+1r(α) + B1+p−1

= 0. (A.7)

The further condition that the rank of T is 2 is equivalent to

AB �= 0. (A.8)
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Conversely, if (A.5) and (A.7) hold, then the action factors through T2.

Define an action k× on the set

I =
{

(a, b, c) ∈ (k×)3 : ap+1c+ b1+p−1

= 0
}

(A.9)

by

r(a, b, c) =
(
r1−pa, r1−p−1

b, rp
2−p−2

c
)
. (A.10)

Lemma A.1. Giving a Dieudonné module of type y is equivalent to giving an orbit of k×

on I. The association is as follows. Given a module D, choose a generator α to D as a

k[F, V]-module; write Tα = AFα + BVα + CF2α, let r(α) = F2α/V2α, and associate to the

moduleD the invariants (A,B, r(α)).

Conversely, given a triple (a, b, c), associate to it the cyclic Dieudonné module on

the generator α satisfying F2α = cV2α and define the action of T by Tα = AFα+ BVα. �

Proof. One checks that changing the generator forD from α to rα+ sFα+ tVα+uF2α has

the effect of changing A to r1−pA, B to r1−p−1

B, and r(α) to rp
2−p−2

r(α). Hence, the orbit

associated toD is well defined.

Now, suppose that the same orbit (A,B, r) is associated to two modules D1 and

D2. We may reduce to the case where we have a single module D and two generators α

and α ′ forD such that r = r(α) = r(α ′) and two actions of T

T ∗1 α
′ = AFα ′ + BVα ′, T ∗2 α = AFα+ BVα+ CF2α. (A.11)

One checks that under a change of generator α ′ �→ α ′′ := α ′ + dFα ′, we have r(α ′) = r(α ′′)

and

Tα ′′ = T(α ′ + dFα ′)

= AFα ′ + BVα ′ + dF(AFα ′ + BVα ′)

= AFα ′ + BVα ′ + dApF2α ′

= AF(α ′ + dFα ′) + BV(α ′ + dFα ′) +
(
dAp −Adp

)
F2α ′

= AFα ′′ + BVα ′′ +
(
dAp −Adp

)
F2α ′′.

(A.12)

It is enough to find d ∈ k such that dAp − Adp = C. This is possible since A �= 0 and k is

algebraically closed. �

Remark A.2. (a) Note that the relation Ap+1r(α) + B1+p−1

= 0 determines r and, in fact,

I ∼= (k×)2, where the action of k× is given by (A,B) �→ (r1−pA, r1−p−1

B). However, it is
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sometimes convenient to keep r. Indeed, we may then identify I//k× with I ′//F×
p4 , where

I ′ = {(A,B) ∈ (k×)2 : Ap+1 + B1+p−1

= 0}.

(b) The function

(A,B, c) �−→ ABp (A.13)

is well defined on the orbits of k× in I; it induces an isomorphism I ′//F×
p4

∼= k×.

Corollary A.3. There are infinitely many nonisomorphic Dieudonné modules of type y

over k. �

In the rest of this section, we provide examples for g = 2 showing that there

are infinitely many nonisomorphic polarized group schemes with OL-action arising as

p-torsion of abelian surfaces with RM by OL. To show this, we compute the invariants

for a certain Moret-Bailly family lying in the moduli space M(Fp, µN) for the field L. We

put ourselves in the case of Proposition 6.6, case (2c). To calculate initial data for this

case—an abelian surface of invariants (i, j) = (1, 1)—we start with a point of invariants

(0, 2) and use Proposition 6.5. Such a point may be obtained from E ⊗ OL, where E is a

supersingular elliptic curve. It provides us with a display

P = OL ⊗ W(k)α⊕OL ⊗ W(k)β ⊃ Q
= pOL ⊗ W(k)α⊕OL ⊗ W(k)β.

(A.14)

The action of F is given by the matrix
(

0 p
1 0

)
. Let T be a uniformizer of OL ⊗ W(k). The

lattice providing initial data for case (2c) is given by

Pγ = P + p−1Tβ

= OL ⊗ W(k)α⊕OL ⊗ W(k)T−1β ⊃ Qγ

= OL ⊗ W(k)Tα⊕OL ⊗ W(k)β.

(A.15)

Note that T , indeed, kills Pγ/Qγ. The action of F, with respect to the basis α ′ = α and

β ′ = T−1β, is given by
(

0 T−1p
T 0

)
.

We reset our notation assuming that T2 = p and putting

P = OL ⊗ W(k)α⊕OL ⊗ W(k)β ⊃ Q
= TOL ⊗ W(k)α⊕ TOL ⊗ W(k)β;

(A.16)

the operators F andV are given by
(

0 T
T 0

)
. Take a vector γ = a1Tα+a2Tβ as in Definition 6.1.
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Generically, p−1γ generates Pγ/pPγ as a Dieudonné module and, to simplify the computa-

tions, we may as well assume that a1 = 1. We proceed to calculate the invariants (A,B, r)

for (Pγ/pPγ, p
−1γ).

We put δ = p−1γ. We note that, in the above notation, if Tδ = AFδ + BVδ + CF2δ

modulo pPγ, then FTδ = ApF2δmodulo pPγ and VTδ = Bp−1

V2δmodulo pPγ. To findA and

B, we therefore make the following calculation. First, we calculate that

Tδ = α+ a2β,

FTδ = aσ
2Tα+ Tβ, VTδ = aσ−1

2 Tα+ Tβ,

F2δ = Tα+ aσ2

2 Tβ, V2δ = Tα+ aσ−2

2 Tβ.

(A.17)

We first find u and z such that

FTδ− uF2δ− zpδ ∈ pP, (A.18)

that is, expanding this expression in terms of α and β, every coefficient is divisible by p.

Solving, we find that u = aσ
2 − (aσ2+σ

2 − 1)/(aσ2

2 − a2) which gives

A = a2 −
a

p+1
2 − 1

a
p
2 − ap−1

2

=
1− a1+p−1

2

a
p
2 − ap−1

2

(modp). (A.19)

Similarly, we find u and z such that

VTδ− uV2δ− zpδ ∈ pP. (A.20)

Solving, we find that u = aσ−1

2 − (aσ−1+σ−2

2 − 1)/(aσ−2

2 − a2) which gives

B = a2 −
a

1+p−1

2 − 1

a
p−1

2 − ap
2

=
1− ap+1

2

a
p−1

2 − ap
2

(modp). (A.21)

To show that there is indeed a variation in the isomorphism type of the Dieudonné mod-

ules, it is enough to check that the values ABp are not constant as a function of a2. This

is immediate.
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