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GEOMETRY OF INTERPOLATION SETS IN DERIVATIVE FREE

OPTIMIZATION

ANDREW R. CONN∗, KATYA SCHEINBERG† , AND LUı́S N. VICENTE‡

Abstract. We consider derivative free methods based on sampling approaches for nonlinear
optimization problems where derivatives of the objective function are not available and cannot be
directly approximated.

We show how the bounds on the error between an interpolating polynomial and the true function
can be used in the convergence theory of derivative free sampling methods. These bounds involve
a constant that reflects the quality of the interpolation set. The main task of such a derivative free
algorithm is to maintain an interpolation sampling set so that this constant remains small, and at
least uniformly bounded. This constant is often described through the basis of Lagrange polynomials
associated with the interpolation set. We provide an alternative, more intuitive, definition for this
concept and show how this constant is related to the condition number of a certain matrix. This
relation enables us to provide a range of algorithms whilst maintaining the interpolation set so that
this condition number or the geometry constant remain uniformly bounded. We also derive bounds
on the error between the model and the function and between their derivatives, directly in terms of
this condition number and of this geometry constant.

Key words. Multivariate Polynomial Interpolation, Error Estimates, Poisedness, Derivative
Free Optimization.

AMS subject classifications. 65D05, 65G99, 90C30, 90C56

1. Introduction. Derivative free optimization (DFO) is an area of nonlinear
optimization that deals with problems where the derivatives of the objective function
(and, possibly, constraints) are not available. Often, legacy code makes it undesirable
to introduce the necessary modifications to obtain the derivatives. There are practical
instances where the evaluation of the function is the result of an experiment, resulting
in the absence of derivatives.

It is also assumed that the derivatives cannot be approximated directly, either
because they are too expensive or because the presence of noise in the function evalu-
ations makes such approximation inaccurate. Among the most popular such methods
are direct and pattern search ([2], [12], [19], [21]). DFO sampling methods include
interpolation based trust-region methods ([7], [8], [14], [15], [16], [18]) and implicit
filtering ([3], [11]). A number of surveys have been written on DFO methods ([5] [6,
Chapter 9], [8], [12], [16], [22]).

Like their derivative based counterparts most of the derivative free sampling meth-
ods for unconstrained optimization build a linear or a quadratic model of the objective
function and apply a trust region or a line search step to find the next iterate. While
derivative based methods typically use a Taylor based model, or an approximation
thereof, as the model of the objective function, these derivative free methods use in-
terpolation, regression, or other sample based models. In order to be able to use the
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extensive convergence theory that exists for derivative based methods, these deriva-
tive free methods need to satisfy properties similar to those of the former methods.
For instance, it is necessary to show that as the trust region or line search step be-
comes small, the error in the gradient approximation approaches zero, and, hence, a
descent step will eventually be found, unless the gradient of the true function is zero
at the current iterate. One way to show this is to prove that the linear or quadratic
approximation models satisfy Taylor-like error bounds on the function value and the
gradient. (Pattern search methods are directional methods and do not use models of
the function, but the main convergence issues related to these methods are similar.)

The purpose of this paper is to provide the necessary theoretical foundation for
various DFO sampling methods to guarantee such bounds. We will focus on polyno-
mial interpolation models because of their simplicity and because polynomials appear
naturally in Taylor based models. In an upcoming paper, we will address polynomial
regression and underdetermined polynomial interpolation models. In the current pa-
per, we describe some of the already existing results from the multivariate polynomial
interpolation literature, relate them to the DFO context, provide additional intuition
and show how these results can be used in a DFO framework. In addition, we will
show how the results can be used consistently in an algorithmic framework.

Consider a set of interpolation points given by

Y =
{

y0, y1, . . . , yp
}

,

where p1 = p + 1 = |Y | is a positive integer defining the number of points in the
interpolation set. Let m(x) denote an interpolating polynomial of degree d satisfying
the interpolation conditions

m(yi) = f(yi), i = 0, . . . , p.(1.1)

Typically, p1 = p+ 1 is the dimension of the space of polynomials of degree less than
or equal to d:

p1 = p+ 1 =

(

n+ d

n

)

.

In the multivariate polynomial interpolation literature there exist several Taylor
type bounds on the error between m(x) and f(x) and their derivatives. One of the
most commonly used ones can be found in [4, Theorem 1]. In particular, for the error
in the gradient such a bound can be simplified to

‖∇m(x) −∇f(x)‖ ≤ 1

(d+ 1)!
GΛY

p
∑

i=0

‖yi − x‖d+1,

for x in the convex hull of Y . Here G is a constant that depends only on the function
f , and ΛY is a constant that depends on the interpolation set Y . To guarantee
convergence of a DFO method, we need to ensure that the error in the gradient
converges to zero when the distances between all yi and x go to zero. Also, the rate
of convergence of this error should be preserved to equal the rate of convergence of
∑p

i=0 ‖yi−x‖d+1. For that purpose, ΛY has to remain uniformly bounded for all sets
Y used by the algorithm.

The interpolation set Y gets updated whenever a new iterate is found (and some-
times more frequently than that). Each update has to be designed so that the constant
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ΛY associated with the set Y remains uniformly bounded and, if possible in certain
situations, is reduced. Thus, it is crucial to understand the nature of the dependence
of the constant ΛY on Y .

The classical way to describe ΛY is as an upper bound on the absolute value of
a certain set of polynomials, called Lagrange polynomials, that form a basis in the
space of polynomials of degree ≤ d. Powell [17] uses this definition to suggest an
approach of maintaining the set Y by choosing points to enter Y or to leave Y so that
the bound on the maximum absolute value of the Lagrange polynomials is, hopefully,
reduced. However, he does not provide any bounds on the resulting polynomials. In
[7] and [8], a somewhat different definition of ΛY is used. It is derived from the bound
on the value of the so called Newton polynomials, which also form a basis in the space
of polynomials of degree ≤ d. A mechanism for maintaining a uniform bound on the
Newton polynomials is described in [7]. This method requires maintaining the set of
Newton polynomials in each iteration, just as Powell’s method requires maintaining
the set of Lagrange polynomials. The drawbacks of these approaches are discussed in
Section 5.

In this paper, we develop a theoretical framework that guarantees a uniform
bound on the constant ΛY , under various approaches to maintaining the interpolation
set Y .

We will show how the constant ΛY is related to the condition number of a certain
multivariate extension of a Vandermonde matrix. Hence, we will provide a connection
between the bound on Lagrange polynomials and this condition number. This connec-
tion is important because it enables us to relate our results to the classical bounds on
polynomial interpolation such as described in [4]. We will derive Taylor-like bounds
for linear and quadratic interpolation expressed via both the condition number and
the bound on the Lagrange polynomials. It is often simpler to design algorithms that
operate with the condition number of a matrix rather than directly with a bound on
the Lagrange polynomials.

We provide examples of such algorithms for linear and quadratic interpolation.
These algorithms can verify if a given interpolation set Y satisfies the condition needed
to keep ΛY uniformly bounded and if not, modify this set so that the condition is
satisfied. The theory in this paper provides a guarantee of the Taylor-like bounds if
such an algorithm (or a new algorithm of a similar nature) is used in any interpolation
based DFO method. The Taylor-like bound can then be used to develop a global
convergence theory for such a method.

The paper is organized as follows. In Section 2 we introduce the notion of a poised
interpolation set, discuss the definition of Lagrange polynomials and their use in the
existing approximation bounds. In Section 3 we present a geometric interpretation of
Lagrange polynomials (introducing the notion of Λ–poisedness). We then establish
a connection between the bound on Lagrange polynomials for a given interpolation
set Y and the bound on the condition number of a (multivariate extension of a) Van-
dermonde matrix. This matrix arises from the natural basis of normalized monomials
and from Y . In Section 4, we derive the Taylor-like bounds, both in terms of this
condition number and in terms of an upper bound on the Lagrange polynomials. (In
the Appendix of this paper, we briefly sketch how this derivation extends to higher
order instances using the cubic case.) Finally, in Section 5, we present the algorithms
for maintaining the set Y and the bound ΛY .

1.1. Basic facts and notation. Here we introduce some further notation and
also state some facts from linear algebra that will be used in the paper.
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By ‖·‖k, with k ≥ 1, we denote the standard ℓk vector norm or the corresponding
matrix norm. By ‖ · ‖ (without the subscript) we denote the ℓ2 norm. We use
B(∆) = {x ∈ IRm : ‖x‖ ≤ ∆} to denote the closed ball in IRm of radius ∆ > 0
centered at the origin (where m is inferred from the particular context). By BY (∆)
we will denote the smallest ball enclosing a given set Y , not necessarily centered at
the origin (we indicate ∆, the radius of this ball, although, it is uniquely defined by
Y ). We use several properties of norms. In particular, given an m× n matrix A, we
use the facts

‖A‖2 ≤ m
1

2 ‖A‖∞, ‖A‖2 = ‖A⊤‖2.

We will use the standard “big-O” notation written as O(·) to say, for instance,
that if for two scalar or vector functions α(x) and β(x) one has β(x) = O(α(x)) then
there exists a constant C > 0 such that ‖β(x)‖ ≤ C‖α(x)‖ for all x in its domain.

By the natural basis of the space of polynomials of degree at most d in IRn we
will mean the following basis of normalized monomial functions

{1, x1, x2, . . . , xn, x
2
1/2, x1x2, . . . , x

d−1
n−1xn/(d− 1)!, xd

n/d!}.(1.2)

2. Polynomial interpolation and poisedness. Let us consider P , the space
of polynomials of degree ≤ d in IRn. Let p1 = p + 1 be the dimension of this
space (e.g., for d = 1, p1 = n + 1 and for d = 2, p1 = (n + 1)(n + 2)/2) and let
φ = {φ0(x), φ1(x), . . . , φp(x)} be a basis in P . This means that φ is a set of p1 polyno-
mials of degree ≤ d that span P . Assume we are given a set Y = {y0, y1, . . . , yp} ⊂ IRn

of interpolation points, and let m(x) denote a polynomial of degree ≤ d that inter-
polates a given function f(x) at the points in Y . Since φ is a basis in P , then
m(x) =

∑p
j=0 αjφj(x), where αj ’s are some coefficients. By determining the coeffi-

cients α0, . . . , αp we determine the interpolation polynomial m(x). The coefficients
α0, . . . , αp can be determined from the interpolation conditions

m(yi) =

p
∑

j=0

αjφj(y
i) = f(yi), i = 0, . . . , p.

This is a linear system in terms of the interpolating coefficients. For the above system
to have a unique solution, the matrix of the system

M(φ, Y ) =











φ0(y
0) φ1(y

0) · · · φp(y
0)

φ0(y
1) φ1(y

1) · · · φp(y
1)

...
...

...
...

φ0(y
p) φ1(y

p) · · · φp(y
p)











has to be nonsingular. It is easy to see that if M(φ, Y ) is nonsingular for some basis
φ then it is nonsingular for any basis of P . In that case the set Y is said to be poised
(or d-unisolvent, see [4]).

It is natural to ask if the condition number of M(φ, Y ) is an indication of how
well-poised the set Y is. The answer, in general, is “no”, since the condition number
of M(φ, Y ) depends on the choice of φ, moreover, for any given poised interpolation
set Y , one can choose the basis φ so that the condition number of M(φ, Y ) can
equal anything between 1 and +∞. Hence, the condition number of M(φ, Y ) is not
considered to be a good characteristic of poisedness of a set of points. However, we
will return to this issue later in the paper and show that for a specific choice of φ,
namely for the natural basis, it is helpful to use the condition number of M(φ, Ŷ ) as
a constant associated with the well-poisedness of Y , where Ŷ is a scaled version of Y .
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2.1. Lagrange Polynomials. The most commonly used measure of poisedness
in multivariate polynomial interpolation literature is based on the basis of Lagrange
polynomials.

Definition 2.1. Given a set of interpolation points Y = {y0, y1, . . . , yp}, a basis
of p1 = p + 1 polynomials Lj(x), j = 0, . . . , p, of degree ≤ d, is called a basis of
Lagrange polynomials if

Lj(y
i) = δij =

{

1 if i = j,
0 if i 6= j.

For any poised set Y there exists a unique basis of Lagrange polynomials. The
classical measure of poisedness of Y is the upper bound on the absolute value of the
Lagrange polynomials in a region of interest. In [4, Theorem 1], it is shown that for
any x in the convex hull of Y

‖Dmm(x) −Dmf(x)‖ ≤ 1

(d+ 1)!
G

p
∑

i=0

‖yi − x‖d+1|DmLi(x)|,(2.1)

where Dm denotes the m-th derivative of a function and G is an upper bound on
Dd+1f(x). This is a Taylor bound for multivariate polynomial interpolation. Let now

ΛY = max
i

max
x

|Li(x)|,

where i varies in {0, . . . , p} and x varies in the convex hull of Y . The Taylor bound
for function value approximation can be simplified as

|m(x) − f(x)| ≤ 1

(d+ 1)!
p1GΛY ∆d+1,(2.2)

where ∆ is the diameter of the convex hull of Y . See also [17] for a simple derivation
of this bound. The bounds derived in [4] for the approximation of the derivatives can
also be expressed in terms of ΛY (as we will show later in Subsection 4.4).

In this paper we will (somewhat loosely) say that a set Y is well-poised if the as-
sociated ΛY is bounded by some reasonable predefined constant. As we described in
the introduction, it is crucial for the convergence of a derivative free sampling method
to maintain the interpolation set Y so that the poisedness constant ΛY remains uni-
formly bounded, but the actual size of this bound is not important for theoretical
purposes. However, for the efficiency of such a derivative free method it is important
to be able to relatively easily improve ΛY by replacing some point in Y , if necessary,
and to be able to readily recognize this necessity. Powell addresses these issues in [16]
and [17]. He suggests replacing the i-th point in Y by another point x in the convex
hull of Y so that the absolute value of the associated Li(x) is maximized. However,
he does not provide a proof that this procedure will guarantee a uniform bound on
ΛY .

It can be shown, as it is done in [7] for a similar approach using Newton polynomi-
als [20], that one can construct interpolation sets Y ∈ BY (∆) so that ΛY is uniformly
bounded for all ∆. The proofs for construction of such sets (like the one in [7]) have
to rely on the particular basis of polynomials that is used to produce the bound ΛY

and the same polynomials have to be used in the maintenance of well-poised sets Y
from iteration to iteration. We would like to provide a framework that will fit various
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approaches to maintaining Y . Having to replace the interpolation set Y completely
to ensure well-poisedness (which might happen in [7]) is very unattractive algorithmi-
cally. We would like to show that well-poised sets can be maintained throughout the
algorithm by imposing some threshold rule for accepting new interpolation points. To
do so we need a good intuition on what it means for the set Y to have the values of
the associated set of Lagrange polynomials bounded by a given ΛY in BY (∆).

Ciarlet and Raviart in [4, Theorem 2] provide some geometric intuition. They split
the constant ΛY into a product of two constants. One is the “stretchedness” coefficient
for the convex hull of Y and the other involves the size of the Lagrange polynomials
for a chosen set Y ′, which is obtained from Y by an affine transformation. This
split provides a nice interpretation for the well-poisedness of a set, but still involves
the bound of Lagrange polynomials, and therefore it is still not clear how to use the
second constant algorithmically. Moreover, the “stretchedness” coefficient can be a
misleading indicator of poisedness since there exist nearly nonpoised sets with small
“stretchedness” coefficient. For example, a set of six points in IR2 lying on a circle
is nonpoised for quadratic interpolation, hence small perturbations of such set are
nearly nonpoised sets with small “stretchedness” coefficient.

In the next section we provide what we feel is a good intuition (with some geo-
metric perspective) for Lagrange polynomials and the bound ΛY . Then we will show
how ΛY relates to the condition number of M(φ, Y ), where φ is the natural basis.

3. Λ–poisedness and the condition number of M(φ, Y ). For the remainder
of the paper we will assume that the smallest enclosing ball containing Y is centered
at the origin. This assumption can be made without loss of generality, since it can
always be satisfied by a shift of coordinates. Furthermore, for most of this section we
make an additional assumption that the radius of this smallest enclosing ball around
the origin is one, and we will denote this ball by B(1). We will relax this assumption
at the end of the section, considering a ball B(∆) of radius ∆ > 0. By working with
smallest enclosing balls rather than convex hulls, we adjust the presentation to our
DFO motivation.

Given a polynomial basis φ, let φ(x) = [φ0(x), φ1(x), . . . , φp(x)]
⊤ be a vector in

IRp1 whose entries are the values of the elements of the polynomial basis at x (one
can view φ as a mapping from IRn to IRp1). Given a poised set Y = {y0, y1, . . . , yp} ⊂
B(1) ⊂ IRn and an x ∈ B(1), we can express the vector φ(x) in terms of the vectors
φ(yi), i = 0, . . . , p, as

p
∑

i=0

λi(x)φ(yi) = φ(x).(3.1)

or

M(φ, Y )⊤λ(x) = φ(x), where λ(x) = [λ0(x), . . . , λp(x)]
⊤

Lemma 3.1. Given a poised set Y , {λi(x), i = 0, . . . , p} defined by (3.1) is the
set of Lagrange polynomials for Y .

Proof. It is trivial to see that λj(y
i) = δij , ∀i, j = 0, . . . , p. The fact that λi(x)

is a polynomial of degree ≤ d can be observed from the fact that λi(x) is a linear
function of φ(x). Hence, λi(x) is the i-th Lagrange polynomial for the set Y .

It is interesting to note as an immediate corollary that λ(x) = [λ0(x), . . . , λp(x)]
⊤

does not depend on the choice of φ. However, the geometric interpretation of λ(x)
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involves φ: λ(x) is the vector of coefficients for which φ(x) can be expressed in terms
of φ(yi), i = 0, . . . , p. The upper bound on λ(x) is then related to the maximum
possible coefficient that may be required to express φ(x) in terms of φ(yi), for some
x ∈ B(1). If the set of vectors {φ(yi), i = 0, . . . , p} spans IRp1 well, then the bound
on λ(x) is relatively small. We will use the following definition to indicate the degree
of poisedness of a set.

Definition 3.2. Let Λ > 0 be given. Let φ = {φ0(x), φ1(x), . . . , φp(x)} be a
basis in P.

A set Y = {y0, y1, . . . , yp} is said to be Λ–poised in B(1) if and only if for any
x ∈ B(1) there exists λ(x) ∈ IRp+1:

p
∑

i=0

λi(x)φ(yi) = φ(x) with ‖λ(x)‖ ≤ Λ.

Assume that, for a given Λ, the set Y ⊂ B(1) is not Λ–poised. Then there exists
a z ∈ B(1) such that

p
∑

i=0

λi(z)φ(yi) = φ(z), and ‖λ(z)‖∞ ≥ Λ/p
1

2

1 ,

hence, w.l.o.g., λ1(z) > Λ/p
1

2

1 . Then, dividing this expression by Λ we have

p
∑

i=0

λi(z)

Λ
φ(yi) =

p
∑

i=0

αi(z)φ(yi) =
φ(z)

Λ
, and α1(z) > 1/p

1

2

1 .

Hence,

‖
p
∑

i=0

αi(z)φ(yi)‖∞ ≤ maxx∈B(1) ‖φ(x)‖∞
Λ

.

If, for example, φ is the natural basis, then maxx∈B(1) ‖φ(x)‖∞ ≤ 1 and

‖
p
∑

i=0

αi(z)φ(yi)‖∞ ≤ 1

Λ
with α1(z) > 1/p

1

2

1 .

It is easy to see now that 1
Λ bounds, in some sense, the distance to linear dependency

of the vectors φ(yi), i = 0, . . . , p. As Λ grows the system represented by these vec-
tors becomes increasingly linearly dependent. But the actual distance to singularity
depends on the choice of φ. This brings us back to the discussion of the condition
number of M(φ, Y ).

We will now show how Λ–poisedness relates to the condition number of the fol-
lowing matrix

M =













1 y0
1 · · · y0

n
1
2 (y0

1)
2 y0

1y
0
2 · · · 1

(d−1)!(y
0
n−1)

d−1y0
n

1
d!(y

0
n)d

1 y1
1 · · · y1

n
1
2 (y1

1)
2 y1

1y
1
2 · · · 1

(d−1)!(y
1
n−1)

d−1y1
n

1
d!(y

1
n)d

...
...

...
...

...
...

...
1 yp

1 · · · yp
n

1
2 (yp

1)2 yp
1y

p
2 · · · 1

(d−1)!(y
p
n−1)

d−1yp
n

1
d!(y

p
n)d













.(3.2)
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This matrix is exactly the matrix M(φ̄, Y ) for

φ̄ = {1, x1, x2, . . . , xn, x
2
1/2, x1x2, . . . , x

d−1
n−1xn/(d− 1)!, xd

n/d!},(3.3)

the natural basis of monomials. Moreover, if we use the natural basis in the definition
of Λ–poisedness we can write it as

M⊤λ(x) = φ̄(x) with ‖λ(x)‖ ≤ Λ.(3.4)

Also, since x ∈ B(1) and since at least one of the yi’s has norm 1 (recall that B(1)
is the smallest enclosing ball centered at the origin), then the norm of this matrix is
always bounded by

1 ≤ ‖M‖ ≤ p
3

2

1 .(3.5)

The condition number of M is denoted by κ(M) = ‖M‖‖M−1‖. To bound κ(M) in
terms of Λ it is, then, sufficient to bound ‖M−1‖, and conversely, to bound Λ in terms
of κ(M) it is sufficient to bound it in terms of ‖M−1‖.

Theorem 3.3. If M is nonsingular and ‖M−1‖ ≤ Λ, then the set Y is
√
p1Λ–

poised in the unit ball B(1) centered at 0. Conversely, if the set Y is Λ–poised in the
unit ball B(1) centered at 0, then M is nonsingular and

‖M−1‖ ≤ θΛ,(3.6)

where θ > 0 is dependent on n and d but independent of Y and Λ.

Proof. Since the ℓ2 norm is invariant under transposition, we can use M⊤ in the
proof. If M is nonsingular and ‖M−1‖ ≤ Λ then

‖λ(x)‖ ≤ ‖M−⊤‖‖φ̄(x)‖ ≤ p
1

2

1 ‖M−⊤‖‖φ̄(x)‖∞ ≤ p
1

2

1 Λ,

since maxx∈B(1) ‖φ̄(x)‖∞ ≤ 1.
Proving the reverse relation is more complicated. First let us show that the matrix

M is nonsingular. Let us assume it is singular. By definition of Λ–poisedness, for any
x ∈ B(1), φ̄(x) lies in the range space of M⊤. This means that there exists a vector
v 6= 0 in the null space of M such that for any x ∈ B(1) we get φ̄(x)⊤v = 0. Hence,
φ̄(x)⊤v is a polynomial in x which is identically zero on a unit ball, which implies that
all coefficients of this polynomial are zero, i.e., v = 0. We arrived at a contradiction.

Now we want to show that there exists a constant θ > 0, independent of Y and
of Λ, such that ‖M−⊤‖ ≤ θΛ. From the definition of the matrix norm,

‖M−⊤‖ = max
‖v‖=1

‖M−⊤v‖,

we can consider a vector v̄ such that

‖M−⊤‖ = ‖M−⊤v̄‖, ‖v̄‖ = 1.(3.7)

Let us assume first that there exists an x ∈ B(1) such that φ̄(x) = v̄. Then from
the fact that Y is Λ–poised we have that

‖M−⊤v̄‖ = ‖M−⊤φ̄(x)‖ ≤ Λ,
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and from (3.7) the statement of the theorem holds with θ = 1.
Notice that v̄ does not necessarily belong to the image of φ̄, which means that

there might be no x ∈ B(1) such that φ̄(x) = v̄, and hence we have that ‖M−⊤v̄‖ 6=
‖M−⊤φ̄(x)‖. However, we will show that there exists a constant θ > 0 such that for
any v̄ which satisfies (3.7) there exists an y ∈ B(1), such that

‖M−⊤v̄‖
‖M−⊤φ̄(y)‖ ≤ θ.(3.8)

Once we have shown that such constant θ exists the result of the lemma follows from
the definition of v̄.

To show that (3.8) holds, we first show that there exists σ > 0 such that for any
v̄ with ‖v̄‖ = 1, there exists an y ∈ B(1) such that |v̄⊤φ̄(y)| ≥ σ. Consider

ψ(v) = max
x∈B(1)

|v⊤φ̄(x)|.

It is easy to show that ψ(v) is a norm in the space of vectors v. Since the ratio of
any two norms in finite dimensional spaces can be uniformly bounded by a constant,
there exists a (maximal) σ > 0 such that ψ(v̄) ≥ σ‖v̄‖ = σ. Hence, there exists a
y ∈ B(1) such that |v̄⊤φ̄(y)| ≥ σ.

Let v̄⊥ be the orthogonal projection of φ̄(y) onto the subspace orthogonal to v̄.
Now, notice that from the definition (3.7) of v̄ it follows that v̄ is the right singular
vector corresponding to the largest singular value of M−⊤. Then M−⊤v̄ and M−⊤v̄⊥

are orthogonal vectors (since M−⊤v̄ is a scaled left singular vector corresponding to
the largest singular value and M−⊤v̄⊥ is a vector spanned by the other left singular
vectors). Since ‖v̄‖ = 1, φ̄(y) = v̄⊥ + (v̄⊤φ̄(y))v̄. And from the orthogonality of
M−⊤v̄⊥ and M−⊤v̄

‖M−⊤φ̄(y)‖ = ‖M−⊤v̄⊥‖ + |v̄⊤φ̄(y)|‖M−⊤v̄‖.

Hence ‖M−⊤φ̄(y)‖ ≥ |v̄⊤φ̄(y)|‖M−⊤v̄‖. It follows from |v̄⊤φ̄(y)| ≥ σ that

‖M−⊤φ̄(y)‖ ≥ σ‖M−⊤v̄‖,

Assigning θ = 1/σ shows (3.8), concluding the proof of the bound on the norm of
M−⊤.

The constant θ can be estimated for specific values of d. For d = 1 we need to
find σ > 0 such that for any v̄ ∈ IRn+1, with ‖v̄‖ = 1, there exists an x ∈ B(1) ⊂ IRn

such that |v̄⊤φ̄(x)| ≥ σ, where φ̄(x) = [1, x1, . . . , xn]⊤. Let w = [v̄2, . . . , v̄n+1]
⊤. It is

easy to see that the optimal solution of problem maxx∈B(1) |v̄⊤φ̄(x)| is either given by
w/‖w‖ (with optimal value v̄1 +‖w‖) or by −w/‖w‖ (with optimal value −v̄1 +‖w‖).
Thus, the optimal value is |v̄1| + ‖w‖. Thus, since ‖v̄‖ = 1, we can guarantee that
σ ≥ 1. Hence θ ≤ 1 for d = 1.

For d = 2 we will need the following lemma.

Lemma 3.4. Let v̂⊤φ̄(x) be a quadratic polynomial with φ̄(x) defined by (3.3) and
‖v̂‖∞ = 1 and let B(1) be a (closed) ball of radius 1 centered at the origin. Then

max
x∈B(1)

|v̂⊤φ̄(x)| ≥ 1

4
.
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Proof. Since ‖v̂‖∞ = 1 then at least one of the elements of v̂ is 1 or −1, and thus
one of the coefficients of the polynomial q(x) = v̂⊤φ̄(x), is equal to 1, −1, 1/2, or
−1/2. Let us consider only the cases where one of the coefficients of q(x) is 1 or 1/2.
The cases −1 or −1/2 would be analyzed similarly.

The largest coefficient in absolute value in v̂ corresponds to a term which is either
a constant term, a linear term xi, or a quadratic term x2

i /2 or xixj . Let us restrict
all variables that do not appear in this term to zero. And let us consider only the
unrestricted variables. Clearly the maximum of the absolute value of q(x) over the
set of unrestricted variables is a lower bound on the maximum over B(1). We can
have three cases.

• q(x) = 1. This case is trivial.
• q(x) = x2

i /2 + αxi + β. It is easy to see that

max
xi∈[−1,1]

|q(x)| = max{|q(−1)|, |q(0)|, |q(1)|} ≥ 1

4
.

• q(x) = αx2
i /2 + xi + β. In this case we have

max
xi∈[−1,1]

|q(x)| ≥ max{|q(−1)|, |q(1)|} ≥ 1.

• q(x) = αx2
i /2+βx2

j/2+xixj +γxi +δxj +ǫ. This time we are considering the
quadratic function over a two dimensional ball. By considering four points,
p1 = (1/

√
2, 1/

√
2), p2 = (1/

√
2,−1/

√
2), p3 = (−1/

√
2, 1/

√
2), and p4 =

(−1/
√

2,−1/
√

2), on the boundary of the ball, and looking at all the possible
signs of α+ β, γ + δ, and γ − δ, we get

max{|q(0)|, |q(pi)|, i = 1, 2, 3, 4} ≥ 1

4
.

We can replace the constant θ of Theorem 3.3 by an upper bound, which is easily
derived for the quadratic case. Recall that θ = 1/σ, where

σ = min
‖v̄‖=1

max
x∈B(1)

|v̄⊤φ̄(x)|.

Given any v̄ such that ‖v̄‖ = 1, we can scale v̄ by at most
√
p1 to v̂ = αv̄, 0 < α ≤ √

p1,
such that ‖v̂‖∞ = 1. Then

σ = min
‖v̄‖=1

max
x∈B(1)

|v̄⊤φ̄(x)| ≥ 1√
p1

min
‖v̂‖∞=1

max
x∈B(1)

|v̂⊤φ̄(x)| ≥ 1

4
√
p1
.

The last inequality is due to Lemma 3.4 applied to the polynomials of the form v̂⊤φ̄(x).
Hence we have

θ ≤ 4p
1

2

1 .(3.9)

Specifying the bound on θ for polynomials of higher degree is also possible, but
is beyond the scope of this paper.

Remark 3.1. It is important to note that θ depends on the choice of φ̄(·). For
example, if we scale every element of φ̄(·) by 2 then the appropriate θ will decrease by
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2. Here we are interested in the condition number of a specific matrix M arising in
our algorithms and, hence, in a specific choice of φ̄(·).

We will now relax the assumption that the radius of the enclosing ball is 1. The
attractive property of Lagrange polynomials is that they remain invariant under the
scaling of set Y . A simple proof can be derived from our interpretation of Lagrange
polynomials given in the definition of Λ–poisedness.

Lemma 3.5. Let Y = {y0, y1, . . . , yp} be an interpolation set and λi(x), i =
0, . . . , p, be the set of Lagrange polynomials associated with Y . Then λi(∆x), i =
0, . . . , p, is the set of Lagrange polynomials associated with Ŷ , where
Ŷ = {∆ y0,∆ y1, . . . ,∆ yp} for any ∆ > 0.

Proof. From Lemma 3.1 we know that λi(x), i = 0, . . . , p, satisfy

p
∑

i=0

λi(x)φ̄(yi) = φ̄(x),

where φ̄ is the basis of monomials. If we scale each yi and x by ∆, this corresponds
to scaling the above equations by different scalars (1, ∆, ∆2, etc.). Clearly, λ(∆x)
satisfies the scaled system of equations. That implies, again due to Lemma 3.1, that
λi(∆x), i = 0, . . . , p, is the set of Lagrange polynomials associated with the scaled
set.

The norm of the inverse of M and therefore the condition number κ(M), though,
do depend on the scaling of the interpolation set. Multiplying points in the set Y by
∆ translates to multiplying the columns in M by different scalars (1, ∆, ∆2, etc.),
this means that for the scaled matrix M̂ , we have that ‖M̂−1‖, κ(M̂) → ∞ when
∆ → 0.

Given a set Y ⊂ B(∆) we will scale Y by 1/∆ to obtain Ŷ ⊂ B(1). The condition
number of the corresponding matrix M̂ will be used as a measure of poisedness and
as a geometric constant in the Taylor-like bounds presented in the next section. The
error bounds are derived first in terms of the norm of the scaled inverse M̂−1, from
which we can then use either the condition number κ(M̂) or the bound Λ on the norm
of the Lagrange polynomials given in the Λ–poisedness definition.

4. Error bounds. In this section we present a derivation of Taylor-like bounds
for linear and quadratic interpolation. Similar bounds, as we mentioned earlier, can
be found, for example, in [4]. But the derivation of our bounds is done in terms of
the inverse of the scaled matrix M̂ , described in the previous section, rather than
in terms of the bound on Lagrange polynomials. Also the proof that we present
is, in our opinion, very simple and intuitive and should be useful in furthering the
understanding of the nature of such bounds. The bounds are then written in terms
of the condition number of the scaled matrix M̂ as well as in terms of the bound on
Lagrange polynomials (what we call the Λ–poisedness constant).

For the remainder of the paper we will make an additional assumption that y0 = 0,
that is, one of the interpolation points is at the center of the region of interest, which,
by an earlier assumption, is a ball of radius ∆ around the origin. This assumption is
very natural in a DFO setting, since the center of the region of interest is typically
the current best iterate, which is usually an interpolation point. (Note that if this
assumption is not satisfied, it can always be made so by shifting the coordinates so
that y0 = 0. Since all the points of Y are in B(∆), then, after the shift, the points of
the shifted interpolation set are all in B(2∆).)
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We will also assume that ∆ has the smallest possible value that satisfies Y ⊂ B(∆)
and y0 = 0. Under the assumption y0 = 0, the matrix M can be written now as

M =











1 0 · · · 0 0 0 · · · 0 0
1 y1

1 · · · y1
n

1
2 (y1

1)
2 y1

1y
1
2 · · · 1

(d−1)!(y
1
n−1)

d−1y1
n

1
d!(y

1
n)d

...
...

...
...

...
...

...
1 yp

1 · · · yp
n

1
2 (yp

1)2 yp
1y

p
2 · · · 1

(d−1)!(y
p
n−1)

d−1yp
n

1
d!(y

p
n)d











.(4.1)

The error bounds will derived in terms of the submatrix Mp×p formed by the last p
rows and columns of M ,

M =

[

1 0
e Mp×p

]

,

in particular, in terms of the inverse of its scaled version M̂p×p.

4.1. Error estimates in the linear case. We now consider interpolation of a
function f(x) by a linear polynomial m(x):

m(x) = c+ g⊤x = c+

n
∑

k=1

gkxk.(4.2)

Assume that f is continuously differentiable in an open domain Ω containing B(∆)
and that ∇f is Lipschitz continuous in Ω with constant γL > 0.

The interpolation set satisfies Y = {y0, y1, . . . , yn} = {0, y1, . . . , yn} ⊂ B(∆),
where B(∆) is a ball of radius ∆ centered at the origin. The unknown coefficients
c, g1, . . . , gn are defined by the linear system arising from the interpolating condi-
tions (1.1).

We are interested in the error between the function and the polynomial and
between their gradients at any given x in the ball B(∆). We can write

m(x) = f(x) + ef(x)(4.3)

and

∇m(x) = g = ∇f(x) + eg(x).(4.4)

Subtracting (4.3) from each of the n+ 1 equalities in (1.1) and using (4.2) yields

(−x)⊤g = f(0) − f(x) − ef (x),

(yi − x)⊤g = f(yi) − f(x) − ef (x), i = 1, . . . , n.

Expanding f by a Taylor’s formula of order one around x for all the interpolation
points, we obtain from (4.4)

(−x)⊤eg(x)

=

∫ 1

0

(∇f(x− tx) −∇f(x))
⊤

(−x)dt− ef (x)

= O(∆2) − ef (x),(4.5)

(yi − x)⊤eg(x)

=

∫ 1

0

(

∇f(x+ t(yi − x)) −∇f(x)
)⊤

(yi − x)dt− ef (x)

= O(∆2) − ef (x), i = 1, . . . , n.(4.6)
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Now we subtract the first equation from the rest, canceling ef(x) and obtaining

(yi)⊤eg(x) = O(∆2), 1 ≤ i ≤ n,

or, using matrix notation,

Ln×n e
g(x) = O(∆2),(4.7)

where

Ln×n =







(y1)⊤

...
(yn)⊤






=







y1
1 · · · y1

n
...

. . .
...

yn
1 · · · yn

n






.

Notice that the matrix Ln×n is exactly the same as the matrix Mp×p described above,
restricted to the linear case. It is important to remark that the coefficient matrix in
this linear system does not depend on the point x.

Let us estimate an upper bound on the right hand side vector in (4.7). Each

element of this vector is the difference of two quantities of the form
∫ 1

0 (∇f(x +

t(yi − x)) −∇f(x))⊤(yi − x)dt and
∫ 1

0 (∇f(x − tx)) −∇f(x))⊤(−x)dt. Because x ∈
B(∆) and yi ∈ B(∆), these quantities can be bounded above by 2γL∆2 and γL∆2/2,
respectively, where γL is the Lipschitz constant of ∇f in Ω (see [10, Lemma 4.1.12]).
Hence the ℓ∞ norm of the right hand side can be bounded by (5/2)γL∆2, and the
bound on the ℓ2 norm is

‖Ln×n e
g(x)‖ ≤ 5

2
n1/2γL∆2.(4.8)

This suggests that the error bound between the function and the fully linear interpo-
lating polynomial is of the order of ∆2 in the case of function values and of the order
of ∆ in the case of gradient values, which we prove below.

The error bounds in the following theorem are stated in terms of the size of the
inverse of the scaled matrix

L̂n×n = Ln×n/∆.

This scaled matrix is the same as the matrix Ln×n corresponding to the scaled set
Ŷ = Y/∆ ⊂ B(1). The smaller ‖L̂−1

n×n‖ is the better the error estimates are.

Theorem 4.1. Let Y = {0, y1, . . . , yn} be a poised set of interpolation points
contained in a (closed) ball B(∆) centered at 0. Assume that f is continuously differ-
entiable in an open domain Ω containing B(∆) and that ∇f is Lipschitz continuous
in Ω with constant γL > 0.

Then, for all points x in B(∆), we have that
• the error between the gradient of the fully linear interpolation model and the

gradient of the function satisfies

‖eg(x)‖ ≤ (5n
1

2 γL‖L̂−1
n×n‖/2)∆,(4.9)

• the error between the fully linear interpolation model and the function satisfies

|ef (x)| ≤ (5n
1

2 γL‖L̂−1
n×n‖/2 + γL/2)∆2.
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Proof. From (4.8) and Ln×n = ∆L̂n×n, we have that

‖eg(x)‖ ≤ ‖L−1
n×n‖(5/2)n

1

2 γL∆2 ≤ ‖L̂−1
n×n‖(5/2)n

1

2 γL ∆,

From this and the detailed form (4.5), we obtain

|ef (x)| ≤ (5n
1

2 γL‖L̂−1
n×n‖/2 + γL/2)∆2.

4.2. Error estimates in the quadratic case. In the fully quadratic case we
assume that we have a poised set Y = {y0, y1, . . . , yp} = {0, y1, . . . , yp} of p1 =
p+ 1 = (n+ 1)(n+ 2)/2 interpolation points in a ball B(∆) of radius ∆ centered at
the origin. In addition we will assume that f is twice continuously differentiable in an
open domain Ω containing this ball and that ∇2f is Lipschitz continuous in Ω with
constant γQ > 0.

It is therefore possible to build the fully quadratic interpolation model

m(x) = c+ g⊤x+
1

2
x⊤Hx = c+

∑

1≤k≤n

gkxk +
1

2

∑

1≤k,ℓ≤n

hkℓxkxℓ,(4.10)

where H is a symmetric matrix of order n. The unknown coefficients c, g1, . . . , gn,
and hkℓ, 1 ≤ ℓ ≤ k ≤ n, are defined by the interpolating conditions (1.1).

Analogous to the linear case, we consider a point x in the ball B(∆), for which
we will try to estimate the error in the function value

m(x) = f(x) + ef (x),(4.11)

in the gradient

∇m(x) = Hx+ g = ∇f(x) + eg(x),(4.12)

and, in this quadratic case, also in the Hessian

H = ∇2f(x) + EH(x).

The error in the gradient has n components eg
k(x), k = 1, . . . , n, just as in the linear

case. Since the Hessians of f and m are symmetric, we only need to consider the error
in the second-order derivatives in the diagonal elements and in the elements below
the diagonal

hkℓ = ∇2
kℓf(x) + EH

kℓ(x), 1 ≤ ℓ ≤ k ≤ n.

Using (4.10) and subtracting (4.11) from all the p1 = p+ 1 equalities in (1.1), we
have that

−x⊤g +
1

2
x⊤Hx− x⊤Hx

= f(0) − f(x) − ef (x),

(yi − x)⊤g +
1

2
(yi − x)⊤H(yi − x) + (yi − x)⊤Hx

= f(yi) − f(x) − ef (x), i = 1, . . . , p.
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Now we expand f by a Taylor’s formula of order two around x for all the p1 = p+ 1
interpolation points and use the notation for the error in the gradient given by (4.12),
to get

−x⊤eg(x) +
1

2
x⊤[H −∇2f(x)]x

= O(∆3) − ef(x),(4.13)

(yi − x)⊤eg(x) +
1

2
(yi − x)⊤[H −∇2f(x)](yi − x)

= O(∆3) − ef (x), i = 1, . . . , p.(4.14)

The next step, as in the linear case, is to subtract the first of these equations from
the other equations, canceling ef (x) and obtaining

(yi)⊤(eg(x) − EH(x)x) +
1

2
(yi)⊤[H −∇2f(x)](yi) = O(∆3), 1 ≤ i ≤ p.

The linear system that we need to analyze in this quadratic case can be written as

∑

1≤k≤n

yi
ktk(x) +

1

2

∑

1≤k≤n

(yi
k)2EH

kk(x) +
∑

1≤ℓ<k≤n

[yi
ky

i
ℓ]E

H
kℓ(x)

= O(∆3), 1 ≤ i ≤ p,

or, in matrix form, as

Qp×p

[

t(x)
eH(x)

]

= O(∆3),(4.15)

with

t(x) = eg(x) − EH(x)x = eg(x) − [H −∇2f(x)]x.(4.16)

Here eH(x) is a vector of dimension n + n(n − 1)/2 storing the elements EH
kk(x),

k = 1, . . . , n and EH
kℓ(x), 1 ≤ ℓ < k ≤ n.

Notice that the matrix Qp×p is exactly the same as matrix Mp×p, described in
the beginning of this section, restricted to the quadratic case. Once again we remark
that the matrix Qp×p defining this linear system does not depend on the point x.

We will estimate an upper bound on the right hand side vector in (4.15). Each
element of this vector is the difference of two terms that can be bounded by γQ‖yi −
x‖3/6 and γQ‖x‖3/6, respectively, where γQ is the Lipschitz constant of ∇2f in Ω
(see [10, Lemma 4.1.14]). Since ‖yi − x‖ ≤ 2∆ and ‖x‖ ≤ ∆, the difference can be
bounded by 3∆3/2. Hence the ℓ∞ norm of the right hand side can be bounded by
that amount, and a bound on the ℓ2 norm is

∥

∥

∥

∥

Qp×p

[

t(x)
eH(x)

]∥

∥

∥

∥

≤ 3

2
p

1

2 γQ∆3.(4.17)

We will derive the error bounds in terms of the norm of the inverse of the scaled
matrix

Q̂p×p = Qp×p

[

D−1
∆ 0
0 D−1

∆2

]

,(4.18)

15



where D∆ is a diagonal matrix of dimension n with ∆ in the diagonal entries and
D∆2 is a diagonal matrix of dimension p − n with ∆2 in the diagonal entries. This
scaled matrix is the same as the matrix Qp×p corresponding to the scaled set Ŷ =
Y/∆ ⊂ B(1).

The next theorem generalizes the error estimates obtained in Theorem 4.1 for
the linear case to the quadratic case. As one might expect, the error estimates in
the quadratic case are linear in ∆ for the second derivatives, quadratic in ∆ for the
first derivatives, and cubic in ∆ for the function values, where ∆ is the radius of the
smallest ball containing Y . The smaller ‖Q̂−1

p×p‖ is the better the error estimates are.

Theorem 4.2. Let Y = {0, y1, . . . , yp}, with p1 = p + 1 = (n + 1)(n + 2)/2, be
a poised set of interpolation points contained in a (closed) ball B(∆) centered at 0.
Assume that f is twice continuously differentiable in an open domain Ω containing
this ball and that ∇2f is Lipschitz continuous in Ω with constant γQ > 0.

Then, for all points x in B(∆), we have that
• the error between the Hessian of the fully quadratic interpolation model and

the Hessian of the function satisfies

‖EH(x)‖ ≤ (αH
Qp

1

2 γQ‖Q̂−1
p×p‖)∆,

• the error between the gradient of the fully quadratic interpolation model and
the gradient of the function satisfies

‖eg(x)‖ ≤ (αg
Qp

1

2 γQ‖Q̂−1
p×p‖)∆2,

• the error between the fully quadratic interpolation model and the function
satisfies

|ef(x)| ≤ (αf
Qp

1

2 γQ‖Q̂−1
p×p‖ + βf

QγQ)∆3,

where αH
Q , αg

Q, αf
Q, and βf

Q are small positive constants dependent on d = 2 and
independent of n and Y :

αH
Q =

3
√

2

2
, αg

Q =
3(1 +

√
2)

2
, αf

Q =
6 + 9

√
2

4
, βf

Q =
1

6
.

Proof. Let us first write the left-hand-side of the system (4.15) in the form

Qp×p

[

D−1
∆ 0
0 D−1

∆2

] [

D∆t(x)
D∆2eH(x)

]

.

Then, using the bound (4.17) and the notation (4.18) we obtain
∥

∥

∥

∥

[

D∆t(x)
D∆2eH(x)

]∥

∥

∥

∥

≤ 3

2
p

1

2 γQ‖Q̂−1
p×p‖∆3,(4.19)

from which we get

‖D∆2eH(x)‖ ≤ 3

2
p

1

2 γQ‖Q̂−1
p×p‖∆3,

yielding the bound ‖eH(x)‖ ≤ (3/2)p
1

2 γQ‖Q̂−1
p×p‖∆. The error in the Hessian is there-

fore given by

‖EH(x)‖ ≤ ‖EH(x)‖F ≤
√

2‖eH(x)‖ ≤ 3
√

2

2
p

1

2 γQ‖Q̂−1
p×p‖∆.
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Now, we would like to derive the bound on ‖eg(x)‖. From (4.19) we also have

‖D∆t(x)‖ ≤ 3

2
p

1

2 γQ‖Q̂−1
p×p‖∆3,

and

‖t(x)‖ ≤ 3

2
p

1

2 γQ‖Q̂−1
p×p‖∆2,

and therefore, from (4.16),

‖eg(x)‖ ≤ ‖t(x)‖ + ‖EH(x)‖‖x‖
≤ 3

2p
1

2 γQ‖Q̂−1
p×p‖∆2 + (3

√
2

2 p
1

2 γQ‖Q̂−1
p×p‖∆)∆

= 3(1+
√

2)
2 p

1

2 γQ‖Q̂−1
p×p‖∆2.

Here we have used the fact that x is in the ball B(∆) centered at the origin.
Finally, from the detailed version of (4.13) and the bounds on ‖eg(x)‖ and

‖EH(x)‖ we have

|ef(x)| ≤ ‖eg(x)‖∆ + ‖EH(x)‖∆2/2 + γQ∆3/6

≤ 6+9
√

2
4 p

1

2 γQ‖Q̂−1
p×p‖∆3 +

γQ

6 ∆3.

We would like to emphasize that the goal of this section is not so much the
novelty of the bounds, in general, but their usefulness for the reader with primarily
optimization motivations, not to mention the simplicity of the derivation of these
bounds.

4.3. Interpreting the error bounds in terms of the condition number

of the scaled matrix. Since at least one of the ŷi’s of the set Ŷ has norm 1, we
know similarly as in (3.5) that ‖L̂n×n‖ ≥ 1 in the linear case and ‖Q̂p×p‖ ≥ 1 in the
quadratic case. Thus, in both instances we have that

‖L̂−1
n×n‖ ≤ κ(L̂n×n) and ‖Q̂−1

p×p‖ ≤ κ(Q̂p×p),

and the error estimates of Theorems 4.1 and 4.2 can be stated by replacing the norms
of the inverses of M̂p×p by their corresponding condition numbers κ(M̂p×p).

In fact, we can even go one step further and bound κ(M̂p×p) by κ(M̂). In fact, it

is easy to see that ‖M̂p×p‖ ≤ ‖M̂‖, also

M̂−1 =

[

1 0
... M̂−1

p×p

]

.

Hence, ‖M̂−1
p×p‖ ≤ ‖M̂−1‖, and κ(M̂p×p) ≤ κ(M̂).

Our bounds in terms of the condition number of M̂ exhibit a constant multiplying
M̂ which is a linear function of

√
p1. Curiously, the bound (2.1) for function values

is not as sharp as ours if posed in terms of M̂ . If fact, for m = 0 and d = 2, we get
from (2.1), (3.4), maxx∈B(1) ‖φ̄(x)‖∞ ≤ 1, and (3.5) that

|m(x) − f(x)| ≤ 1
6G‖λ(x)‖1∆

3 ≤ 1
6p1G‖λ(x)‖∞∆3

≤ 1
6p1G‖M̂−T‖maxx∈B(1) ‖φ̄(x)‖∞∆3 ≤ 1

6p1Gκ(M̂)∆3,

showing that the constant that multiplies Λ varies now linearly with p1 = p+ 1.
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4.4. Interpreting the error bounds in terms of the bound on Lagrange

polynomials. If we assume that the interpolation set Y is Λ–poised in B(∆), which
by the scaling invariance property of Lagrange polynomials implies that Ŷ = Y/∆ is
Λ–poised in B(1), then we can apply Theorem 3.3 and write

‖M̂−1
p×p‖ ≤ ‖M̂−1‖ ≤ θΛ,

where the first inequality is justified as in the previous section. So, for instance, the
error in function values for the quadratic case becomes (see (3.9))

|m(x) − f(x)| ≤ (4αf
QγQp1Λ + βf

QγQ)∆3,

which is similar to the bound (2.2) for d = 2 (in the sense that what multiplies Λ
varies linearly with p1 = p+ 1).

The error bound (2.1) for gradient and Hessian depends on a bound for the
gradient and the Hessian (respectively) of Lagrange polynomials. In [4], the authors
mention that such a bound would involve additional constants related to the geometry
of Y , which may make the bounds unnecessarily loose. Actually, our approach of
looking at Lagrange polynomials and considering Λ–poisedness provides an alternative
way to derive a bound on the derivatives of the Lagrange polynomials that seems
sharper and explicitly exhibits the same geometry constant Λ. For instance, for m = 1
and d = 2, we easily derive the following bound for the Jacobian matrix Dλ(x):

‖Dλ(x)‖∞ ≤ ‖M̂−1‖ max
z∈B(1)

‖Dφ̄(z)‖∞ ≤ 2θΛ.

5. Ensuring well-poisedness. In a typical (interpolation based) trust-region
or line search DFO sampling method, an interpolation set is maintained at each
iteration. Either the new iterate needs to be included into the interpolation model,
or the model needs to be improved. To guarantee the quality of the interpolation
model, i.e., the appropriate error estimates in the function and in its derivatives, one
needs to make sure that the poisedness of the interpolation set does not deteriorate
arbitrarily from iteration to iteration. That can be guaranteed in at least two ways.
One is to select a “good” interpolation set a priori and keep shifting and scaling at
each iteration to place it inside the current region of interest. This idea is closely
related to the use of a finite number of positive bases in pattern search methods
(see [2], [12], [21]). An alternative approach (used in [7], [8], [13]) is to update the
interpolation set by one or two interpolation points per iteration, while ensuring that
it satisfies some sufficient well-poisedness condition. For instance, in a trust-region
framework, this condition has to be satisfied whenever the new iterate is rejected and
the trust-region radius is reduced. If such a condition is not satisfied then at least one
“bad” point is replaced by a “good” point. In practice, it is more efficient to maintain
well-poisedness throughout the algorithm, not just when it is necessary to pass the
criterion needed for the convergence proof.

The methods of handling well-poisedness of the interpolation set that were pro-
posed so far are not very satisfactory, in some sense. Powell, in [17], uses values of
Lagrange polynomials as the criterion for update of the interpolation set. Each time
a point in Y is replaced, it is done so that the absolute value of the corresponding
Lagrange polynomial is maximized at the incoming point (depending on the situa-
tion this is achieved either by choosing the incoming point, or the outgoing point,
and hence, the corresponding Lagrange polynomial). This strategy is reasonable, and
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seems to work well in practice, however, there is no proof that such strategy will pro-
duce sets which are Λ-poised with a uniformly bounded Λ. In [7], a similar strategy
based on Newton fundamental polynomials was used. The same problem as for Pow-
ell’s method arises: there is no guarantee that the generated interpolation sets are
Λ–poised with uniformly bounded Λ. To circumvent this difficulty and to guarantee
convergence of the algorithm the authors of [7] introduced an extra step, where all
interpolation points have to be replaced, in order to guarantee that a Λ–poised set
is created. This step is very expensive, since it requires evaluation of f at all new
sample points. In practice this step should be avoided as much as possible.

In contrast, the methods we propose below are both practical and theoretically
sound. They guarantee that the set Y is Λ-poised for a specified (reasonably large) Λ
and at the same time they can handle updates of the interpolation set by one element.
These methods are also based on maintaining a set of polynomials and monitoring the
values of these polynomials at interpolation points. The drawback of these methods,
compared to that of Powell [17], is that the set of polynomials has to be (potentially)
completely recomputed, at each update of Y . However, the set itself does not have to
be recomputed. Only the points that “spoil” the Λ-poisedness have to be replaced.
We will comment on performance of the methods at the end of the section.

The algorithms that we describe in this section build an interpolation set Y , or
modify an already existing one, using some form of matrix factorization. We will
first present (in Subsection 5.1) an algorithm based on Gaussian elimination, as it is
the most intuitive and easy to explain, although, it might not be the most appealing
from a numerical point of view. In Subsection 5.2 we will present a potentially more
stable algorithm based on Gram-Schmidt orthogonalization. The proposed methods
are not the only ones that can be used in derivative free methods. The main reason
why we chose the two methods for this paper is because they are based on matrix
factorization algorithms, and hence they are easy to analyze.

Gaussian elimination has already been proved to be a reasonable idea for matrices
arising in polynomial interpolation. See, for instance, the paper by de Boor [9] and the
references therein. However, in [9] it is assumed that the set of interpolation points is
fixed data and the goal is to study the properties of the interpolant function spaces
and related linear algebra algorithms for matrices arising from these spaces. Our
optimization motivation is different, as the sets of sampling points for interpolation
are no longer fixed and change considerably during the course of an optimization
procedure. Consequently, our linear algebra algorithms focus instead on the quality
of the interpolation set for a given fixed function interpolation space.

We will present both algorithms, the Gaussian elimination one and the Gram-
Schmidt one, for the case of quadratic interpolation. The extension to higher degree
interpolations is straightforward. We will use the standard Matlab notation to indicate
submatrices. We describe the algorithms in the situation where the points lie in a
(smallest enclosing) ball of radius 1. If the radius is ∆ 6= 1 then one should scale Y by
1/∆, apply the chosen algorithm and then scale back the (possibly) new interpolation
set. We will work under the assumption that y0 = 0. The matrix that is factorized is
M for LU and M⊤ for QR, where M is given by (4.1) (assuming ∆ = 1).

The algorithms will provide us with a bound of the type

‖M−1‖ ≤ c(p1) εgrowth

ξ
,(5.1)

where εgrowth is an estimate of the growth factor that occurs during the factorization,
ξ is a lower bound on the absolute value of the pivots, and c(p1) is some power of
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p1 = p+ 1. For instance, in the quadratic case and for the LU version, ξ can be any
number in (0, 1/4).

Since M corresponds to a set in B(1), we get from (3.5) that the condition number
of M can be bounded by

κ(M) ≤ c(p1) p
3

2

1 εgrowth

ξ
.

On the other hand, we already know from Theorem 3.3 that if ‖M−1‖ is bounded
by Λ then Y is

√
p1Λ–poised. These algorithms indicate us that, in this context, such

a Λ can be any number satisfying

Λ ≥ c(p1) εgrowth

ξ
.

We now have

‖λ(x)‖1 ≤ p1‖λ(x)‖∞ ≤ p1c(p1) εgrowth

ξ
,

yielding a bound on the size of the Lagrange polynomials.
It is straightforward to adapt Algorithms 5.1 and 5.2 to the linear case, for which

the threshold ξ for the absolute value of the pivots in the LU version is required to
satisfy ξ ∈ (0, 1). Moreover, in the linear case it is possible to identify the simplex
geometry in Y that yields the smallest possible bound on the norm of M−1 (which is
related to the concept of a uniform positive basis; see [1]).

5.1. Ensuring well-poisedness using Gaussian elimination. The outcome
of the LU algorithm below is the interpolation set Y and the LU factors of the matrix
M defined by (4.1) (assuming ∆ = 1 and y0 = 0). The Gaussian elimination is
performed by rows. Thus, since the points in Y appear by rows in M , the algorithm
computes a new point yi — or modifies the already existing one — only when the
i+1-th row is being factorized (the first row of M , corresponding to y0 = 0 is already
factorized). The algorithm checks if the current set is well-poised, and if not, identifies
“bad” points and replaces them by “good” points.

Algorithm 5.1 (Ensuring well-poisedness — LU).

Step 0 Let φ̄ denote the natural polynomial basis for d ≤ 2 defined in (3.3). Choose
some threshold ξ such that 0 < ξ < 1

4 .

Step 1 Set U1,1:p1
= φ(y0)⊤ = e⊤1 , corresponding to y0 = 0.

For k = 2, . . . , p1

Step k • Assume that the first k − 1 steps of Gaussian elimination have been
completed, hence, we have the first k − 1 rows of the upper triangular
matrix U : U1:k−1,1:p1

.
• Let x ∈ Y be the sample point corresponding to the k-th row. Then the

element Uk,k, i.e., the k-th pivot element in the Gaussian elimination
process, can be expressed as

Uk,k(x) = φ̄k(x) − φ̄1(x)
U1,k

U1,1
− · · · − φ̄k−1(x)

Uk−1,k

Uk−1,k−1
.
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Clearly Uk,k(x) is a linear (when k ≤ n+1) or quadratic (when k > n+1)
polynomial in x, and can be written as (vk)⊤φ̄(x) with vk ∈ IRp1 and
‖vk‖∞ ≥ 1.

• Find i∗ = argmax{|(vk)⊤φ̄(yi)| : i = k − 1, . . . , p}.
If |(vk)⊤φ̄(yi∗)| ≥ ξ then set x = yi∗ and swap the points yk−1 and yi∗

in Y .
If |(vk)⊤φ̄(yi∗)| < ξ then find

x = yk−1 = argmaxx∈B(1)|(vk)⊤φ̄(x)|.

• Update the factorization

Uk,i = φ̄i(x) − φ̄1(x)
U1,i

U1,1
− · · · − φ̄k−1(x)

Uk−1,i

Uk−1,k−1
, k < i ≤ p1.

Since ‖vk‖∞ ≥ 1 and ξ < 1/4 we know from Lemma 3.4 that

max
x∈B(1)

|(vk)⊤φ̄(x)| ≥ 1

4
> ξ.

Proposition 5.1. Let a pivot threshold ξ ∈ (0, 1/4) be given. Algorithm 5.1
computes a set Y of p1 = p+1 = (n+1)(n+2)/2 points in the unit ball B(1) centered
at y0 = 0 for which the pivots of the Gaussian elimination of M satisfy

|Dii| ≥ ξ, i = 1, . . . , p1.

The effort required by the algorithm for the Gaussian elimination as presented is
of the order of O(n6) floating point operations. The algorithm requires, moreover, in
the worst case, the maximization of n linear functions and p− n quadratic functions
and the maximization of their symmetric counterparts, in a ball of radius 1. Strictly
speaking we only need to guarantee the computation of a point with objective function
value greater than or equal to 1/4. This can be done by using the same arguments used
in Lemma 3.4 to prove that this bound of 1/4 is achievable, which has the advantage
of reducing each pair of these optimization problems to a trivial enumeration.

The outcome of Algorithm 5.1 can be written in the form M = LDU where
‖D−1‖ ≤ √

p1/ξ and L and U are lower and upper triangular matrices, respectively,
with ones in the diagonals. Thus,

‖M−1‖ ≤ p
1

2

1 ‖L−1‖‖U−1‖
ξ

.

The sizes of ‖L−1‖ and ‖U−1‖ are related to the growth factor of the factorization,
and are expected to be of reasonable size for most practical instances. We obtain in
this way the bound (5.1) with εgrowth = ‖L−1‖‖U−1‖ and c(p1) =

√
p1.

5.2. Ensuring well-poisedness using Gram-Schmidt orthogonalization.

We now consider an alternative way of maintaining the interpolation set Y , via Gram-
Schmidt orthogonalization of the columns of the matrix M⊤ defined by (4.1), where
the points in Y appear now columnwise. The outcome of this algorithm is the inter-
polation set Y and the QR factors of the matrix M⊤ (assuming ∆ = 1 and y0 = 0).
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Similarly to the LU algorithm, the QR algorithm computes a new point yi — or mod-
ifies the already existing one — only when the i+1-th column is being factorized (the
first column of M⊤, corresponding to y0 = 0 is already factorized). This algorithm
also checks if the current set is well-poised, and if not, identifies “bad” points and
replaces them by “good” points.

Let us suppose that we have used the Gram-Schmidt orthogonalization scheme
to generate an orthonormal basis {q1, . . . , qk−1} for the subspace generated by the
vectors φ̄(y0), φ̄(y1), . . . , φ̄(yk−2), with y0 = 0. At this stage of the orthogonalization
process, we have computed a QR factorization of the first k−1 columns of the matrix
M⊤:

M⊤
1:p1,1:k−1 = Q1:p1,1:k−1R1:k−1,1:k−1,

where Q1:p1,1:k−1 = [ q1 · · · qk−1 ] and R1:k−1,1:k−1 is an upper triangular matrix of
order k − 1. Given φ̄(x), we know that the vector qk(x)/‖qk(x)‖, where

qk(x) = φ̄(x) −
(

φ̄(x)⊤q1
)

q1 − · · · −
(

φ̄(x)⊤qk−1
)

qk−1,

forms together with q1, . . . , qk−1 an orthonormal basis for the subspace generated by
φ̄(y0), φ̄(y1), . . . , φ̄(yk−2), φ̄(x).

We are interested in selecting or modifying the next point yk−1 = x so that qk(x)
has the largest possible norm. By maximizing ‖qk(x)‖ we are asking φ̄(x) to be as
close to being orthogonal to the subspace generated by φ̄(y0), φ̄(y1), . . . , φ̄(yk−2) as
possible. Note that ‖qk(yk−1)‖ will be the k-th diagonal element of R1:k,1:k. For the
purpose of maximizing ‖qk(x)‖, let q̄k, . . . , q̄p1 be an orthonormal basis for the null
space of M1:p1,1:k−1. We have that

qk(x)⊤qk(x) = φ̄(x)⊤φ̄(x) −
k−1
∑

i=1

(φ̄(x)⊤qi)2 =

p1
∑

i=k

(φ̄(x)⊤q̄i)2.

Let v̄k be one of the vectors among q̄k, . . . , q̄p1 . We know that ‖v̄k‖ = 1 and ‖v̄k‖∞ ≥
1/

√
p1. From Lemma 3.4 we also know that

max
x∈B(1)

|(vk)⊤φ̄(x)| ≥ 1

4

for vk = v̄k/‖v̄k‖∞. Thus, for any ξ in (0, 1/4) (or for any ξ in (0, 1) if φ̄(x) is only
formed by linear terms), there exists a point yk−1 such that

‖qk‖ = ‖qk(yk−1)‖ >
ξ

p
1

2

1

.

The algorithm for ensuring well-poisedness via QR decomposition of the matrix
M⊤ is presented below. At each iteration k, a new column φ̄(yk−1) is orthogonalized
after the point yk−1 has been appropriately selected or modified to increase the size
of the next diagonal element of R in the QR factorization.

Algorithm 5.2 (Ensuring well-poisedness — QR).

Step 0 Let φ̄ denote the natural polynomial basis for d ≤ 2 defined in (3.3). Choose
some threshold ξ such that 0 < ξ < 1

4 .
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Step 1 Set Q1:p1,1 = q1 = φ̄(y0) = e1 and R1,1 = ‖φ̄(y0)‖ = 1, corresponding to
y0 = 0.

For k = 2, . . . , p1

Step k • Assume that the first k − 1 steps of the QR factorization have been
completed, hence, we haveM⊤

1:p1,1:k−1 = Q1:p1,1:k−1R1:k−1,1:k−1, where
the columns in Q1:p1,1:k−1 are orthonormal and R1:k−1,1:k−1 is an upper
triangular matrix.

• Compute a vector vk in the null space of M1:p1,1:k−1 with ‖vk‖∞ = 1.
• Find i∗ = argmax{|(vk)⊤φ̄(yi)| : i = k − 1, . . . , p}.

If |(vk)⊤φ̄(yi∗)| ≥ ξ then set x = yi∗ and swap the points yk−1 and yi∗

in Y .
If |(vk)⊤φ̄(yi∗)| < ξ then find

x = yk−1 = argmaxx∈B(1)|(vk)⊤φ̄(x)|.

• Using Gram-Schmidt or modified Gram-Schmidt orthogonalize the k-th
column φ̄(yk−1) of M⊤, computing the k-th column qk of Q, and the
k-th column of R (with elements R1,k, . . . , Rk,k).

Proposition 5.2. Let a pivot threshhold ξ ∈ (0, 1/4) be given. Algorithm 5.2
computes a set Y of p1 = p+1 = (n+1)(n+2)/2 points in the unit ball B(1) centered
at y0 = 0 for which the diagonal elements of R in the QR factorization of M⊤ satisfy

|Rii| ≥ ξ

p
1

2

1

, i = 1, . . . , p1.

The algorithm could be improved in several ways. For instance, instead of com-
puting only one vector vk in the null space of M1:k−1,1:p1

, we could compute an
orthonormal basis for this subspace (normalized with respect to the ℓ∞ norm), and
then choose yk that gives the maximum value of maxx∈B(1) |v⊤φ̄(x)| for all p− k + 2
vectors v in this basis.

Algorithm 5.2 computes a QR factorization of M⊤ where, as we have seen before,
the diagonal elements of R satisfy |Rii| > ξ/

√
p1, i = 1, . . . , p1. Now we write M⊤ =

QR = QDR̄, where Q is orthogonal and R̄ is a p1-by-p1 upper triangular matrix with
ones in the diagonal. Thus,

‖M−1‖ ≤ p1‖R̄−1‖
ξ

.

The size of ‖R̄−1‖ is related to the growth factor of the factorization, and is expected
to be small in practice. We obtain in this way the bound (5.1) with εgrowth = ‖R̄−1‖
and c(p1) = p1. Since the QR factorization of a matrix often has better numerical
properties than the LU factorization, it is reasonable to expect the same from the
comparison of Algorithms 5.1 and 5.2.

5.3. Practical considerations. A natural question that arises is if the proposed
algorithms will be useful in practice. The answer will require the implementation of
the algorithms within a good DFO package. It is possible that the proposed algo-
rithms will not perform better than Powell’s algorithm. However, we expect them
to be reasonably practical. As we pointed out, these algorithms have the necessary
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theoretical foundation to guarantee global convergence of DFO methods. It is also
possible that, by using the theory of this paper, we may be able to show that al-
gorithms like Powell’s can also provide guarantees of uniform well-poisedness. Such
proofs will be a subject of a separate study.

For this paper we have conducted a series of simple experiments in Matlab. We
have generated 100 points, randomly in a unit cube centered at zero. From these
points we selected sets of interpolation points, by repeatedly applying Powell’s algo-
rithm of maximizing the absolute value of Lagrange polynomials, our LU factorization
algorithm, and our QR factorization algorithm. We then compared the resulting val-
ues of ‖M−1‖. All three algorithms produced very close results, with the value of
‖M−1‖ ranging most of the times between 10 and 100, and never exceeding 1000.
This numerical behavior may be the consequence of the random nature of the chosen
interpolation points. Note that without a framework of a real derivative free package,
it is difficult to reproduce a more practical example. This simple experiment confirms
our expectation that in “normal” circumstances our algorithms perform similarly to
the existing algorithms used in practice.

Appendix: Extension to higher degree. The error estimates derived in this
paper for linear and quadratic interpolation extend naturally to interpolation poly-
nomials of higher degree. We will briefly sketch here the cubic case.

The procedure to derive the error estimates in the cubic case goes one step further
than the quadratic case but the arguments used are the same. After subtracting the
equation m(x) − f(x) = ef (x) on the error in the function from all the p1 = p + 1
interpolating conditions (1.1) and expanding f by a Taylor’s formula of order three
around x ∈ B(∆), we get the following analog of (4.13)–(4.14):

∑

1≤k≤n

−eg
k(x)xk +

1

2

∑

1≤k,ℓ≤n

EH
kℓ(x)xkxℓ

− 1

6

∑

1≤k,ℓ,m≤n

Ec
kℓm(x)xkxℓxm = O(∆4) − ef (x),

∑

1≤k≤n

eg
k(x)(yi

k − xk) +
1

2

∑

1≤k,ℓ≤n

EH
kℓ(x)(y

i
k − xk)(yi

ℓ − xℓ)

+
1

6

∑

1≤k,ℓ,m≤n

Ec
kℓm(x)(yi

k − xk)(yi
ℓ − xℓ)(y

i
m − xm) = O(∆4) − ef (x),

for i = 1, . . . , p, where p1 = p + 1 is the number of points in the interpolation set
Y = {0, y1, . . . , yp} ⊂ B(∆), to be defined later. Here we have Ec

kℓm(x) = Ckℓm −
δ3f

δxkδxℓδxm
(x), where Ckℓm is the corresponding coefficient of the cubic interpolating

polynomial. Subtracting the first of these equations from the others, yields

∑

1≤k≤n

yi
k



eg
k(x) −

∑

1≤ℓ≤n

EH
kℓ(x)xℓ −

1

2

∑

1≤ℓ,m≤n

Ec
kℓm(x)xℓxm





+
1

2

∑

1≤k,ℓ≤n

yi
ky

i
ℓ



EH
kℓ(x) −

∑

1≤m≤n

Ec
kℓm(x)xm





+
1

6

∑

1≤k,ℓ,m≤n

yi
ky

i
ℓy

i
mE

c
kℓm(x) = O(∆4), i = 1, . . . , p.
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We denote the matrix of this linear system by Cp×p, which coincides with Mp×p. The

error bounds are given in terms of the norm of the inverse of Ĉp×p corresponding to

the scaled set Ŷ = Y/∆. The number of elements in the basis is given by

p1 = p+ 1 =

(

n+ 3

n

)

.(5.2)

In the cubic case the error estimates include the error in the third derivatives.

Theorem 5.3. Let Y = {0, y1, . . . , yp}, with p given by (5.2), be a poised set of
interpolation points contained in a (closed) ball B(∆) centered at 0. Assume that f
is thrice continuously differentiable in an open domain Ω containing B(∆) and that
the vector of the third-order derivatives is Lipschitz continuous in Ω with constant
γC > 0.

Then, for all points x in B(∆), we have that
• the error between the vector of the third-order derivatives of the fully cubic in-

terpolation model and the vector of the third-order derivatives of the function
satisfies

‖ec(x)‖ ≤ (αc
Cp

1

2 γC‖Ĉ−1
p×p‖)∆,

• the error between the Hessian of the fully cubic interpolation model and the
Hessian of the function satisfies

‖EH(x)‖ ≤ (αH
C p

1

2 γC‖Ĉ−1
p×p‖)∆2,

• the error between the gradient of the fully cubic interpolation model and the
gradient of the function satisfies

‖eg(x)‖ ≤ (αg
Cp

1

2 γC‖Ĉ−1
p×p‖)∆3,

• the error between the fully cubic interpolation model and the function satisfies

|ef (x)| ≤ (αf
Cp

1

2 γC‖Ĉ−1
p×p‖ + βf

CγC)∆4,

where αc
C , αH

C , αg
C, αf

C , and βf
C are small positive constants dependent on d = 3 and

independent of n and Y .

From these bounds in terms of ‖Ĉ−1
p×p‖, we could derive bounds in terms of

κ(Ĉ) = κ(M̂) and Λ, as explained in Subsections 4.3 and 4.4. Also, the extension to
polynomial interpolation of degree higher than cubic would follow in a similar fashion.
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