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GEOMETRY OF K-TRIVIAL MOISHEZON MANIFOLDS :

DECOMPOSITION THEOREM AND HOLOMORPHIC GEOMETRIC

STRUCTURES

INDRANIL BISWAS, JUNYAN CAO, SORIN DUMITRESCU, AND HENRI GUENANCIA

Abstract. Let X be a compact complex manifold such that its canonical bundle KX is
numerically trivial. Assume additionally that X is Moishezon or X is Fujiki with dimension
at most four. Using the MMP and classical results in foliation theory, we prove a Beauville-
Bogomolov type decomposition theorem for X . We deduce that holomorphic geometric
structures of affine type on X are in fact locally homogeneous away from an analytic subset
of complex codimension at least two, and that they cannot be rigid unless X is an étale
quotient of a compact complex torus. Moreover, we establish a characterization of torus
quotients using the vanishing of the first two Chern classes which is valid for any compact
complex n-folds of algebraic dimension at least n − 1. Finally, we show that a compact
complex manifold with trivial canonical bundle bearing a rigid geometric structure must
have infinite fundamental group if either X is Fujiki, X is a threefold, or X is of algebraic
dimension at most one.
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1. Introduction

The topic of geometric structures on manifolds, especially the automorphism groups of

such structures, is classical. The fundamental works of several leading mathematicians, such

as C. F. Gauss, B. Riemann, F. Klein, S. Lie and E. Cartan, created the foundation of

this field. In particular, E. Cartan introduced and studied what is now known as Cartan

geometry. These are geometric structures infinitesimally modelled on homogeneous spaces
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[Sh]. These geometric structures are flat when they are actually locally modelled (not just

infinitesimally) on homogeneous spaces [Sh].

Important new results pertaining to the partition of a geometric manifold into orbits

of local automorphisms of the geometric structure were obtained by Gromov in [Gro] (see

also the elegant expository work [DG]). In [Gro] Gromov introduced the rigid geometric

structures (see Definition 2.1) as a broad class of geometric structure for which a (local)

automorphism is completely determined by its finite order jet at any given point. Affine and

projective connections on the tangent bundle, pseudo-Riemannian metrics and conformal

structures in dimension ≥ 3 are important examples of rigid geometric structures (they are

also examples of Cartan geometries). On the other hand, symplectic structures and foliations

are not rigid.

Earlier works, [BD1, BD2, BD3, Du1, Du2, BDG], which were inspired by [Gro, DG], aimed

to adapt Gromov’s ideas and arguments to holomorphic geometric structures on compact

complex manifolds. In that vein, the third-named author proved the following theorem:

Theorem 1.1 ([Du2]). Let X be a compact Kähler manifold X with trivial first Chern class

bearing a holomorphic geometric structure φ of affine type. Then

(i) φ is locally homogeneous.

(ii) If φ is rigid, then X is covered by a compact complex torus.

It is important to keep in mind that the proof of the first statement relies in an essential

way on the Bochner principle, while the second statement uses the Beauville–Bogomolov

decomposition theorem [Bea, Bo].

1.1. A Beauville-Bogomolov decomposition theorem for Moishezon manifolds.

The goal of the present paper is to generalize Theorem 1.1 to compact complex manifolds

with trivial first Chern class that are not necessarily Kähler. A distinguished class of such

manifolds is provided by compact Fujiki manifolds; see Section 3.2 for explicit non-Kähler

examples. At the moment, there is no Bochner principle available in full generality, and

a structural result in the spirit of the Beauville-Bogomolov theorem is unknown as well

(see Conjecture 3.5). In short, it is expected that compact Fujiki manifolds with trivial

canonical bundle are made up from irreducible Kähler varieties (i.e. Calabi-Yau or symplectic

holomorphic) with at most terminal singularities using

• small modifications,

• products,

• finite étale quotients.

Our first result gives a partial answer to the above expectation.

Theorem A. Let X be a compact Fujiki manifold such that c1(X) = 0 ∈ H2(X, R). Assume

that one of the following holds:

◦ X is Moishezon, or

◦ dimX ≤ 4.
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Then, there exists a finite étale cover X ′ −→ X and a decomposition

X ′ ≃ T ×
∏

i∈I

Yi ×
∏

j∈J

Zj

where T is a compact complex torus, the Yi’s are irreducible Calabi-Yau manifolds and the

Zj’s are irreducible holomorphic symplectic manifolds.

Moreover, each factor Yi (respectively, Zj) in the decomposition is bimeromorphic to a

Kähler variety with terminal singularities which is irreducible Calabi-Yau (respectively, irre-

ducible holomorphic symplectic).

We refer to Definition 3.4 and the remarks below it for the definitions of irreducible

Calabi-Yau manifolds and irreducible holomorphic symplectic manifolds, which mimic the

definition in the singular Kähler case provided in e.g. [GGK, CGGN] and coincide with the

usual definitions in the smooth Kähler case.

From the second part in the statement of Theorem A and the properties Kähler ICY and

IHS varieties [GGK, CGGN], we deduce

• A Bochner principle for holomorphic tensors on X ,

• A polystability result for TX with respect to some movable classes,

• Finiteness results for the linear part of the fundamental group of X ,

see Theorem 3.6 and Corollary 3.7.

In the Moishezon case, we provide alternative purely algebraic arguments to study the

semistability of the tangent bundle, cf Section 3.1 and Proposition 3.3.

An important application of the Bochner principle is provided by the following partial

generalization of the first item of Theorem 1.1 in the case of Moishezon manifolds or Fujiki

manifolds with dimension at most four.

Corollary B. Let X be as in Theorem A. Then there exists a Zariski open subset U ⊂
X, whose complement has complex codimension at least two, such that any holomorphic

geometric structure φ of affine type on X is locally homogeneous on U .

As an easy application, we show that if a compact Fujiki manifoldX with trivial first Chern

class bears a rigid holomorphic geometric structure, then π1(X) is infinite (see Theorem 4.5).

A few words on the proof of Theorem A.

First,X admits a projective/Kähler bimeromorphic model which itself admits a singular min-

imal model Xmin in that same category by results in the Minimal Model Program ([BCHM]

and [Dr] in the projective case, and [HP1] and [DHP] in the Kähler case in dimension at

most four). Next, an easy application of the negativity lemma shows that Xmin has torsion

canonical bundle, so that one can apply to Xmin the decomposition theorem proved in [HP2]

and [BGL] in the projective and Kähler case respectively. From there, one can show that

the polystable decomposition of TX induces regular foliations with compact leaves. Using
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Reeb stability theorem and the Barlet space of cycles on X , one can then obtain the product

structure on X .

If one could prove that a compact Kähler manifold with zero numerical dimension has

a minimal model, then Theorem A would be valid for any compact Fujiki manifold with

vanishing first Chern class.

1.2. Uniformization by compact complex tori. Invoking Theorem A, we give several

characterizations of compact complex manifolds covered by a compact complex torus, in part

in the spirit of the second item in Theorem 1.1.

Theorem C. Let X be a compact complex manifold of dimension n such that c1(X) =

0 ∈ H2(X, R), and denote by a(X) the algebraic dimension of X. Assume that one of the

following holds:

◦ a(X) ≥ n− 1 and c2(X) = 0 ∈ H4(X, R), or

◦ X is either Moishezon or Fujiki of dimX ≤ 4, and X bears a rigid holomorphic

geometric structure of affine type.

Then there exists a finite étale cover T −→ X where T is a complex torus.

Let us comment on each case individually.

• If X is Kähler, then this uniformization result is a classical consequence of Yau’s solution

of the Calabi conjecture [Ya]. This problem has also recently attracted a lot of attention in

the singular projective or Kähler setting (see [GKP16] or [CGG]).

In the case where X is Moishezon, then the conclusion of Theorem C follows from the

polystability of TX proved in Theorem 3.6 coupled with the results of Demailly-Peternell-

Schneider [DPS] on hermitian flat manifolds (see Corollary 3.8). It should be mentioned

again that Theorem 3.6 is deeply connected to the recent progress on our understanding of

singular Kähler varieties with zero first Chern class [HP2, BGL].

• The case where a(X) = n − 1 is treated in Corollary 3.13. An important ingredient

of the proof is a result of Lin [Lin] which shows that X can be deformed to a Moishezon

manifold. In order to reduce our situation to the Moishezon case previously established, we

need to prove that the Albanese map of X is étale trivial, which we show to hold for any

Fujiki manifold with trivial first Chern class (see Theorem 3.11).

It should be mentioned that while compact Kähler manifolds with numerically trivial

canonical bundle are known to admit algebraic approximation [Ca], it is not known whether

all Fujiki class C manifolds with numerically trivial canonical bundle admit algebraic ap-

proximations.

• Finally, the case where X is Moishezon or Fujiki of dimension at most four is showed in

Theorem 4.1, and partially generalizes the second item in Theorem 1.1. The assumptions are

used in order to get a decomposition theorem for X (see Theorem 3.6). A crucial observation
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is that given a rigid structure on a manifold Y — which need not be simply connected

— one can globally extend local Killing vector fields as long as any linear representation

π1(Y ) −→ GL(N,C) is trivial (see Remark 2.5). This observation allows us to apply the

finiteness result established in [GGK] for linear representations of the fundamental group of

minimal models with vanishing augmented irregularity, see Corollary 3.7.

1.3. Rigid holomorphic structures and fundamental groups. Our last result shows

that in many instances, compact complex manifolds with trivial canonical bundle bearing a

rigid holomorphic geometric structure have infinite fundamental group. The following result

is a combination of Corollary 4.5 and Corollary 5.2.

Theorem D. Let X be a compact complex manifold X with trivial canonical bundle KX

bearing a rigid holomorphic geometric structure of affine type. Assume that X satisfies one

of the following assumptions:

◦ X is a Fujiki manifold, or

◦ dimX = 3, or

◦ the algebraic dimension of X is at most one.

Then the fundamental group of X is infinite.

Theorem D also holds for the holomorphic projective connections, and also for the holomor-

phic conformal structures, even though these two geometric structures are not of affine type

(see Definition 2.1). This is because on manifolds with trivial canonical bundle, these two

geometric structures lift to global representatives which are of affine type, namely, a holomor-

phic affine connection and a holomorphic Riemannian metric respectively (see Proposition

5.3). It may be mentioned that the particular case of holomorphic Riemannian metrics was

settled earlier in [BD3]; however, the proof in [BD3] is of very specific nature and it works

only in that particular context.

On the other hand, Theorem D does not hold in general for non-affine geometric structures.

Indeed, according to Definition 2.1, holomorphic embeddings of a compact complex manifold

in complex projective space CPN are rigid holomorphic geometric structures (of order 0). So

simply connected complex projective manifolds admit rigid holomorphic geometric structures

(of order 0) of non-affine type.

To give a more illuminating example of a rigid geometric structure of non-affine type which

is not locally homogeneous, recall that a compact complex torus T n = Cn/Λ (here Λ is a

cocompact lattice in Cn), which admits a nontrivial holomorphic map to an elliptic curve,

can be endowed with a holomorphic foliation that is not translation invariant [Gh1]. This

combined with the standard holomorphic parallelization of the holomorphic tangent bundle

of T n produces a holomorphic rigid geometric structure of non-affine type in the sense of

Gromov (see Definition 2.1 and Definition 2.2) which is not locally homogeneous.

Also rational homogeneous manifoldsX are simply connected and admit holomorphic rigid

geometric structures of affine type. Indeed, a basis of H0(X, TX) defines such a structure
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on X (see Definition 2.2 and Remark 4.3). In this case TX is globally generated and KX is

not trivial.

The strategy of the proof of Theorem D is the following.

• In the Fujiki case (Corollary 4.5), this is a consequence of Theorem A (see second

remark below the theorem) since the case of non-maximal algebraic dimension had been

treated before in [BD2]. As an interesting consequence, we establish Corollary 4.6 asserting

that on a compact complex manifold with trivial canonical bundle, any holomorphic rigid

geometric structure of affine type φ admits non-zero locally Killing vector fields. Such vector

fields can be chosen to be global if X is simply connected.

• To address the non-Fujiki case, the key result that we prove is Theorem 5.1, which

asserts that the automorphism group of (X, φ) contains a maximal abelian Lie subgroup

A whose orbits in X are closed and coincide with the fibers of a holomorphic submersion

π : X −→ B over a compact simply connected Moishezon manifold with globally generated

canonical bundle KB. Moreover, the fibers of π are compact complex tori and the family π

is not isotrivial (or equivalently, KB is not holomorphically trivial and A is non-compact).

The fibrations constructed in Theorem 5.1 cannot exist if X is a compact Kähler Calabi-

Yau manifold and we conjecture that they should neither exist in the broader context when

M is a compact simply connected complex manifold with trivial canonical bundle (see Re-

mark 5.4).

2. Holomorphic rigid geometric structures

2.1. Definitions and examples. In this section we recall the context, definitions as well

as some basics about the rigid geometric structures in the sense of Gromov [DG, Gro].

To fix notation, consider a complex manifold X of (complex) dimension n. Given any

integer r ≥ 0, associate to it the principal bundle of r–frames Rr(X) −→ X , which is the

bundle of r–jets of local holomorphic coordinates on X (i.e., r–jets of local biholomorphisms

from Cn to X). It is a holomorphic principal bundle over X with structure group Dr(Cn)

(or simply Dr) which is the group of r–jets, at origin, of local biholomorphisms of Cn fixing

the origin. Notice that Dr is a complex affine algebraic group. Let us now recall a basic

definition from [DG, Gro].

Definition 2.1. A holomorphic geometric structure (of order r) on the complex manifold X

is a holomorphic Dr–equivariant map φ : Rr(X) −→ Z, with Z being a complex algebraic

variety endowed with an algebraic action of the above group Dr. The geometric structure φ

is said of affine type if the complex variety Z is actually affine.

To give examples of holomorphic geometric structures, holomorphic maps from X to a

complex algebraic variety Z are evidently holomorphic structures of order 0; they are of

affine type if Z is affine. Holomorphic tensors on X are holomorphic geometric structures on

X of affine type of order one. Holomorphic affine connections on the holomorphic tangent

bundle TX are holomorphic geometric structures of affine type on X of order two [Gro,
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DG]. Holomorphic fields of planes, holomorphic flags, holomorphic foliations, holomorphic

projective connections and holomorphic conformal structures are all holomorphic geometric

structures of non-affine type.

A local biholomorphism f : U −→ V between two open subsets U and V of X is called

a local automorphism (or local isometry) with respect to a holomorphic geometric structure

φ on X of order r if its natural lift to a map between the corresponding frame bundles

f (r) : Rr(U) −→ Rr(V )

takes each fiber of φ to a fiber of φ. This is the natural notion of local symmetry which

coincides with the usual one in each of the examples of geometric structures.

The natural notion of a linearized symmetry is the following.

A (local) holomorphic vector field defined on an open subset U ⊂ X is called a Killing

vector field, with respect to φ, if its local flow acts on U through local automorphisms (or

local isometries).

The group Aut(X, φ) of all global automorphisms (isometries) of (X, φ) is a complex Lie

subgroup of the group Aut(X) of biholomorphisms of X . Its unique maximal connected

subgroup Aut0(X, φ) is a complex Lie subgroup of the unique maximal connected subgroup

Aut0(X) of the group of biholomorphisms of X . The Lie algebra of Aut0(X, φ) is the finite

dimensional Lie algebra consisting of all globally defined holomorphic Killing vector fields

with respect to φ.

Let s be a nonnegative integer. The s–jet of the geometric structure φ of order r is the

geometric structure of order (r + s) on X defined by the map

φ(s) : Rr+s(X) −→ Z(s) (2.1)

given by φ, where Z(s) is the variety of s–jets of holomorphic maps from Cn to Z. We

note that Z(s) is naturally endowed with an algebraic action of Dr+s by pre-composition

[Ben, DG, Gro]; recall that Rr+s(X) is a principal Dr+s–bundle over X . For these actions

of Dr+s on Z(s) and Rr+s(X), the above map φ(s) is Dr+s–equivariant.

The (r + s)–jet of a local biholomorphism of X is called an isometric jet of order s (with

respect to φ) if its canonical lift to Rr+s(X) takes any fiber of the map φ(s) in (2.1) to some

fiber of φ(s). This is the natural definition of an isometry of order s [Ben, DG, Gro].

Definition 2.2. A holomorphic geometric structure φ is called rigid of order l (in the sense

of Gromov) if any (l + 1)–isometric jet of φ is uniquely determined by its underlying l–jet.

In other words, the forgetful map from (l + 1)–isometric jets l jets is injective.

Holomorphic affine connections are rigid of order one in the sense of Gromov (see [Ben,

DG, Gro]). This is because any local biholomorphism, that fixes a point and preserves a con-

nection, is actually linearized in local exponential coordinates around the fixed point, which

means that such local biholomorphisms are completely determined just by their differential

at the fixed point.
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Holomorphic Riemannian metrics are rigid holomorphic geometric structures of order one.

Holomorphic conformal structures for dimension at least three, as well as holomorphic projec-

tive connections, are rigid holomorphic geometric structures of order two. The holomorphic

symplectic structures, and the holomorphic foliations, are examples of non-rigid geometric

structures [Ben, DG, Gro].

The orbits, in X , of local isometries of φ are locally closed, and moreover the holomorphic

tangent space to a given orbit space at any point of the orbit is spanned by the local

holomorphic Killing vector fields [Ben, DG, Gro]. The sheaf of local Killing vector fields of

a rigid holomorphic geometric structure is locally constant. Its stalk at any point is a finite

dimensional Lie algebra which is known as the Killing algebra of φ.

2.2. Two important results. In this section, we would like to recall two results about

holomorphic geometric structures that we will use extensively in this article.

To state the next result, recall that a complex manifold X satisfies the Bochner principle

if any holomorphic tensor field on X vanishing at one point is vanishing identically. For

instance, a compact Kähler manifold X with c1(X) = 0 satisfies the Bochner principle, but

other classes of examples exist. The following result was proved by the third-named author

in [Du2, Lemma 3.2]:

Lemma 2.3 ([Du2]). Let X be a complex manifold satisfying the Bochner principle. Then

any holomorphic geometric structure of algebraic affine type on X is locally homogeneous.

The next result is an extendibility type result for local Killing fields relative to a rigid

geometric structure on a simply connected manifold. It was first proved by Nomizu, [No],

in the case Killing vector fields for real analytic Riemannian metrics and then extended to

any rigid geometric structure by [Am, DG, Gro].

Theorem 2.4 ([No, Am, DG, Gro]). Let X be a complex manifold bearing a rigid holomor-

phic geometric structure φ and let ξ be a local Killing field for φ. If X is simply connected,

then ξ extends to a global holomorphic vector field on X.

Remark 2.5. The arguments in the proof of Theorem 2.4 actually show that one can

replace the assumption that π1(X) is trivial by the weaker property that any complex linear

representation π1(X) −→ GL(n,C) is trivial, where n = dimX .

2.3. Orbits of isometries and algebraic reduction. Recall that the algebraic dimen-

sion a(X) of a compact complex manifold X is the degree of transcendence over C of the

field of meromorphic functions M(X) on X . It is known that a(X) ∈ {0, . . . , dimX}
[Ue]. By definition, two bimeromorphic compact complex manifolds have the same algebraic

dimension.

Compact complex manifolds X with maximal algebraic dimension (a(X) = dimX) are

called Moishezon manifolds [Ue, p. 26, Definition 3.5]. It is the class of manifolds for which

the meromorphic functions separate points in general position. Moishezon studied them in
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[Mo] and proved that each of them is birational to some smooth complex projective manifold

[Mo], [Ue, p. 26, Theorem 3.6].

More generally, a compact complex manifold is said to be in Fujiki class C (or a Fujiki

manifold for short) if it is the meromorphic image of a compact Kähler manifold. A basic

result of Varouchas says that a compact complex manifold belongs to Fujiki class C if and

only if it is bimeromorphic to a compact Kähler manifold [Va, Section IV.3]. Manifolds lying

in Fujiki class C share many of the features of compact Kähler manifolds.

The following classical result is known as the algebraic reduction theorem.

Theorem 2.6 ([Ue, p. 25, Definition 3.3], [Ue, p. 26, Proposition 3.4]). Let X be a compact

connected complex manifold of dimension n and algebraic dimension a(X) = n − d. Then

there exists a bi-meromorphic modification

Ψ : X̃ −→ X

and a holomorphic surjective map

t : X̃ −→ V ,

with connected fibers, where V is a (n− d)–dimensional projective manifold, such that

t∗(M(V )) = Ψ∗(M(X)) (2.2)

as subspaces of M(X̃).

Consider the meromorphic fibration

πred : X −→ V (2.3)

given by t ◦ Ψ−1 in Theorem 2.6; it is called the algebraic reduction of X . If the algebraic

dimension of X is zero, then the target of this algebraic reduction is a point. Note that

for manifolds with maximal algebraic dimension Theorem 2.6 is equivalent to the earlier

mentioned theorem of Moishezon.

Theorem 2.1 in [Du1] asserts that the fibers of the algebraic reduction of X are contained

in the orbits of local isometries of φ (see also Theorem 3 in [Du3]). In the special case where

X is simply connected, the following result is a direct consequence of Theorem 2.1 in [Du1].

Theorem 2.7. Let X be a compact complex simply connected manifold equipped with a

holomorphic rigid geometric structure φ. Then there exists

• an open dense subset U ⊂ X whose complement X \U is an analytic subspace of X

and πred (see (2.3)) is defined on U , and

• a connected complex abelian Lie subgroup A of the automorphisms group Aut(X, φ)

of (X, φ),

such that the fiber of πred through any z ∈ U is contained in the A–orbit of z. Moreover, A

is a maximal connected abelian subgroup in Aut(X, φ). Furthermore, A coincides with the

identity component of the automorphism group Aut(X, φ′) of the rigid geometric structure φ′

which is constructed as the juxtaposition of φ with a basis of the vector subspace of H0(X, TX)

spanned by the globally defined holomorphic Killing vector fields for φ.
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Proof. Given the extendibility result Theorem 2.4, Theorem 2.1 in [Du1] (see also Theorem

3 in [Du3]) implies that there is a open subset U ⊂ X as in the statement of the theorem

such that the fiber of πred through any z ∈ U is contained in the Aut0(X, φ)–orbit of z.

Fix a basis {X1, · · · , Xk} ⊂ H0(X, TX) of the Lie algebra of Aut0(X, φ). Let φ
′ denote

the holomorphic rigid geometric structure on X obtained by juxtaposing φ with this family

of holomorphic vector fields {X1, · · · , Xk}.
Denote by A = Aut0(X, φ

′) the connected component, containing the identity element,

of the automorphism group Aut(X, φ′) of φ′. By construction, A is a maximal connected

abelian subgroup in Aut(X, φ). �

The following proposition is proved using Theorem 2.4.

Proposition 2.8. Let X be a compact complex manifold with trivial canonical bundle. If

X admits a holomorphic rigid geometric structure which is locally homogeneous on an open

dense subset, then the fundamental group of X is infinite.

Proof. Let φ be a holomorphic rigid geometric structure on X satisfying the condition of

being locally homogeneous on an open dense subset U . To prove the proposition by con-

tradiction, assume that the fundamental group of X is finite. Replace X by its universal

cover, and also replace φ by its pull-back through this finite covering map. Note that this

pull-back of φ is again locally homogeneous on the inverse image of U (which is also an open

dense subset). Therefore, we can assume that X is simply connected and compact, and φ is

locally homogeneous on an open dense subset.

Denote by n the complex dimension of X . Since φ is locally homogeneous on an open

dense subset of X , we may choose local holomorphic Killing vector fields X1, · · · , Xn that

span TX over a nonempty open subset of X . By Theorem 2.4, the vector fields Xi extend as

global holomorphic sections of TX on X . When contracted by X1

∧
· · ·

∧
Xn, a nontrivial

holomorphic section ω ∈ H0(X, KX) defines a holomorphic function on X . This function

must be constant, by the maximum principle, and it is nonzero at the points where the

vector fields X1, · · · , Xn are linearly independent. Consequently, this constant function is

nonzero, which in turn implies that the vector fields Xi are linearly independent at every

point of X . Hence the vector fields X1, · · · , Xn span TX on entire X .

In particular, the holomorphic tangent bundle of X is trivial, in other words, X is a

parallelizable manifold, and hence it is biholomorphic to the quotient of a complex Lie group

G by a cocompact lattice of it [Wa]. Consequently, the fundamental group of X is infinite,

which contradicts the fact that X is simply connected. �

The following classical lemma will be useful in the proof of Theorem D; its proof can be

found in [BD2, Lemma 2.5].

Lemma 2.9. Let X be a compact complex manifold with trivial canonical bundle KX , and

let A be a connected complex Lie group acting on it through complex automorphisms. Then



GEOMETRY OF K-TRIVIAL MOISHEZON MANIFOLDS 11

the choice of any ω ∈ H0(X, KX) \ {0} produces a smooth finite A–invariant measure on

X.

3. Moishezon manifolds with vanishing first Chern class

Recall that the holomorphic tangent bundle of a compact Kähler manifold, with numeri-

cally trivial canonical bundle, is polystable, this being an immediate consequence of Calabi’s

conjecture proved by Yau [Ya]. The aim in this section is to prove a similar result in the

set-up of Moishezon manifolds.

3.1. Semistability of the tangent bundle. The main result from this section, Proposi-

tion 3.3, states a strong semistability property for the tangent bundle of Moishezon mani-

folds with trivial first Chern class. Its proof is purely algebraic and relies on a deep result

of Campana and Păun [CP] recalled below. In § 3.2, we will prove a strengthened result

using (independent) analytic methods, but that only applies to some movable classes unlike

Proposition 3.3.

Theorem 3.1 ([CP, Theorem 1.1]). Let X be a projective manifold, and let F ⊂ TX be a

holomorphic foliation. Let α ∈ MovNS(X) be a movable class such that the minimal slope

µα,min(F) > 0, i.e., for any quotient F −→ G, the slope of G with respect to α is strictly

positive. Then F is algebraically integrable and a general leaf of it is rationally connected.

Recall that if X is a compact Fujiki manifold of dimension n, then the movable cone

Mov(X) ⊂ Hn−1,n−1
BC (X, R) is defined to be the closed convex cone generated by all the

Bott-Chern classes of the form [f∗(ω1 ∧ · · · ∧ ωn−1)]BC where f : Y −→ X ranges over all

Kähler modifications of X and ω1, · · · , ωn−1 range over all Kähler metrics in Y .

When X is Moishezon, one can further define the cone of movable curves MovNS(X) ⊂
N1(X)R as the closed convex cone generated by the numerical classes of curves of the form

[f∗(A1 ∩ · · · ∩An−1)] where f : Y −→ X ranges over all projective modifications of X and

A1, · · · , An−1 range over all ample divisors on Y .

The following proposition shows that Theorem 3.1 continues to holds whenX is Moishezon.

Proposition 3.2. Theorem 3.1 remains true under the weaker assumption that X is a

Moishezon manifold.

Proof. Let f : X ′ −→ X be a projective modification. Let df : TX ′ −→ f ∗TX be the

differential of f . For any foliation F ⊂ TX , we have the integrable subsheaf

F ′ := (df)−1(f ∗F) ⊂ TX ′.

Take α as in the statement of Theorem 3.1. Then f ∗α ∈ N1(X
′)R defined by (D ·f ∗α) :=

(f∗D ·α) for any D ∈ N1(X) is a movable class on X ′. For any subsheaf E ′ ⊂ F ′, if E ⊂ F
is its image under df , then we have µα(E) = µf∗α(E ′), because f ∗E and E ′ are isomorphic

outside of the exceptional divisor of f . This shows that F ′ satisfies the assumptions of
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Theorem 3.1. Therefore, the leaves of F ′ are algebraic, and a general leaf of it is rationally

connected.

If x ∈ X is a general point, the leaf Fx of F through x is the image under f of the leaf

F ′
x ⊂ X ′ of F ′ through the point f−1(x). In particular, Fx is open in its Zariski closure

F x ⊂ f(F ′
x), which is rationally connected. This concludes the proof of the proposition. �

Now we will prove the semistability of TX by using Proposition 3.2.

Proposition 3.3. Let X be a Moishezon manifold with c1(X) = 0. Let α ∈ MovNS(X) be

a movable class. Then the following two hold:

(1) The tangent bundle TX is semistable with respect to α.

(2) Take α ∈ MovNS(X)◦, and consider a filtration of TX such that the successive

quotients are torsionfree and stable of same slope with respect to α:

0 = F0 ( F1 ( F2 ( · · · ( Fr = TX

(from the first statement it follows that such a filtration exists). Then c1(Fi+1/Fi) =

0 for every 0 ≤ i ≤ r − 1.

Proof. Assume that TX is not semistable with respect to α. Take F1 ⊂ TX to be the

maximal semistable subsheaf, meaning the first nonzero term in the Harder–Narasimhan

filtration of TX with respect to α. Then

c1(F1) · α >
rankF1

n
c1(TX) · α = 0.

We first show that F1 is a foliation, following [Pe]. There is a natural map given by Lie

bracket ∧2
F1 −→ [F1, F1] −→ TX/F1 (3.1)

which is OX–linear. Since F1 is semistable, it follows that
∧2F1 is semistable with respect

to α; note that

µα(
∧2

F1) = 2µα(F1) > µα(F1).

Therefore, we have

µα(
∧2

F1) > µα,max(TX/F1),

and hence the image of the homomorphism
∧2F1 −→ TX/F1 in (3.1) is zero. Consequently,

we have [F1, F1] ⊂ F1, and hence F1 is a foliation.

Proposition 3.2 says that F1 is algebraically integrable and a general leaf of it is rationally

connected. In particular, X is uniruled. On the other hand, if π : X ′ −→ X is a modifica-

tion such that X ′ is projective, then c1(KX′) is effective, and hence X ′ can’t be uniruled for

trivial reasons. In view of this contradiction we conclude that TX is semistable with respect

to α.

Proof of the second statement of the proposition: We will prove using induction that

c1(Fi+1/Fi) = 0 for all 0 ≤ i ≤ r − 1.
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The induction hypothesis says that c1(Fi+1/Fi) = 0 for every 0 ≤ i < k. By the first

part of the proposition we know that

µα(Fi+1/Fi) = 0 (3.2)

for every 0 ≤ i ≤ r − 1. Take β ∈ Hn−1,n−1(X)
⋂
H2n−2(X, Q) close to α. Since α is

in the interior of the movable cone, it follows that β is still movable. By applying the first

part of the proposition to β it is deduced that TX is semistable with respect to β. Then

µβ(Fk+1) ≤ 0. This combined with the induction hypothesis gives that

µβ(Fk+1/Fk) ≤ 0.

Since this holds for every β close to α, using (3.2) it follows that c1(Fk+1/Fk) = 0. �

3.2. Fujiki manifolds with vanishing first Chern class. In light of the Beauville-

Bogomolov decomposition theorem for Kähler manifolds and its generalization to singular

varieties ([Dr2, GGK, HP2, BGL]), it is natural to introduce the following definition.

Definition 3.4. Let X be a compact Fujiki manifold of dimension n such that KX is linearly

trivial. One says that X is an

• irreducible Calabi-Yau manifold (ICY) if for any finite étale cover f : Y −→ X and

any integer 0 < p < n, one has H0(Y, ΩpY ) = {0}.
• irreducible holomorphic symplectic manifold (IHS) if there exists a holomorphic sym-

plectic form σ ∈ H0(X, Ω2
X) such that for any finite étale cover f : Y −→ X , one

has
⊕n

p=0H
0(Y, ΩpY ) ≃ C[f ∗σ] as C-algebras.

Let us make a few remarks about the above definition.

• If X is Kähler, an ICY or IHS manifold is automatically simply connected (as follows

from the Beauville-Bogomolov decomposition theorem), hence our definitions are consistent

with the ones existing in the Kähler case already. We expect that the same holds in the

Fujiki setting, but we do not know how to prove it. We refer to Corollary 3.7 for a partial

result in that direction.

• Definition 3.4 can be extended to the case where X has at most canonical singularities,

by replacing the sheaf of holomorphic forms ΩpX by that of reflexive holomorphic forms Ω
[p]
X

and replacing étale covers by quasi-étale covers. We refer to [CGGN, Definition 6.11] for

details.

• If X is a compact Fujiki manifold with c1(X) = 0 ∈ H2(X, R), then KX is holomor-

phically torsion by [To, Theorem 1.5]. In particular, a finite étale cover of X has trivial

canonical bundle.

• A Fujiki manifold X which is ICY is automatically Moishezon. Indeed, any Kähler

modification X ′ satisfies h0(X ′, Ω2
X′) = 0 hence it is projective by Kodaira’s theorem.

We will now give standard examples of non-Kähler ICY and IHS manifolds. They are

(small) modifications of Kähler ICY and IHS varieties with at most terminal singularities,

and it is expected that they are all obtained in this fashion, see Conjecture 3.5 below and
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the evidence for it provided by Theorem 3.6 in the Moishezon and low-dimensional cases.

Irreducible Calabi-Yau threefolds. A rich source of examples comes out of the or-

dinary double point Vn := {
∑n

i=0 z
2
i = 0} ⊂ Cn+1 for n ≥ 2. The singularity (Vn, 0) is

isolated, Gorenstein (as hypersurface singularity). If n = 2, V2 ≃ C2/{±1} is a quotient

singularity, but for n ≥ 3, it is not anymore the case as one can see using Schlessinger’s

theorem asserting that isolated quotient singularities of codimension at least three are rigid.

The ODP can be seen as a cone over a smooth projective quadric Qn. In particular, one

can resolve the singular point by blowing up the origin once. Let π : Ṽn −→ Vn be the

blow-up map. Then KṼn
= π∗KVn + (n − 2)Qn−1, hence Vn is canonical and terminal if

n ≥ 3.

If n = 3, small resolutions exist. It can be seen in many different ways. The quickest way

is to rewrite V3 ≃ {xy = zt} ⊂ C4 and consider the graph V̂3 ⊂ V3×P1 of the meromorphic

function x
z
= t

y
. It can be described explicitly as

V̂3 := {((x, y, z, t), [u : v]) ∈ C4 × P1; xy = zt, xv = zu, yv = tu},

and the exceptional locus is simply {0} × P1. Choosing the meromorphic function x
t
= z

y

would have provided another small resolution. One recognizes the blow up of the two Weil

(non Cartier) divisors (x = z = 0) and (y = t = 0).

Alternatively, consider the blow up of the origin Ṽ3. It is isomorphic to the restriction L|Q2

of the total space L of OP3(−1) to the projective quadric Q2 ≃ P1 × P1. The normal bundle

of the zero section P3 ⊂ L is isomorphic to OP3(−1) hence the normal bundle of Q2 ⊂ Ṽ3
is isomorphic to OQ2

(−1) hence its restriction to any ruling of the quadric is isomorphic to

OP1(−1). By the Nakano-Fujiki criterion, one can contract either family of P1s to a smooth

space V̂ 3, hence get a small resolution with exceptional locus isomorphic to P1. Contracting

the other family of P1s provides another small resolution.

If f : X
2:1−→ P3 is a double cover of the projective space ramified over a surface B,

then KX = f ∗(KP3 + 1
2
B) is trivial if and only if deg(B) = 8. In order to create singular

examples, one will consider octic surfaces B with s isolated singularities locally isomorphic

to V2. The resulting X will then have s isolated singularities locally isomorphic to V3, which

we can resolve by the procedure explained above, which glues globally. We therefore get

a small resolution π : X̂ −→ X with trivial canonical bundle (actually there are 2s such

resolutions). Such varieties X and X̂ have been extensively studied by Clemens [Cle].

We claim that such an X̂ is an ICY threefold. Indeed, X̂ is simply connected [Cle,

Corollary 1.19], and for p ∈ {1, 2}, one has successively

H0(X̂, Ωp
X̂
) ≃ H0(X, Ω

[p]
X )

≃ Hp(X, OX)

≃ Hp(P3, f∗OX)

≃ Hp(P3, OP3 ⊕OP3(−4))
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which is indeed zero. The first two identities are consequences of [GKKP, Theorem 1.4]

and [GKP11, Proposition 6.9], the third one comes from Leray spectral sequence given

that Rqf∗OX = 0 if q > 0 since f is finite. The fourth one is a classic result for cyclic

covers, see for example [KM, 2.50]. Alternatively, if one does not want to rely on the simple

connectedness of X̂ , one can use the decomposition theorem for X [HP2]. Indeed, since

X has isolated non quotient singularity, no finite quasi-étale cover of X can split a torus;

hence X is irreducible. Since it is of odd dimension, it must be an ICY variety, hence so

is X̂ which follows from [GKKP, Theorem 1.4] given that quasi-étale covers of X are in

one-to-one correspondence with étale covers of X̂ since X̂ −→ X is small.

Finally, one can find examples of such manifolds X̂ that are not projective algebraic, or

equivalently Kähler. A great reference for that topic, which includes a survey of [Cle] is

the PhD thesis of J. Werner that has recently been translated into English in [W]. Given

any B as before, it follows from Clemens results [W, Theorem 4.3] that one can find one

small resolution X̂ −→ X such that the exceptional curves C1, . . . , Cs satisfy a non-trivial

relation
∑s

i=1mi[Ci] = 0 in H2(X̂,Q) and mi ≥ 0, which prevents X̂ from being Kähler.

More precisely, the result cited guarantees that there exists a non-trivial relation between the

[Ci] without the information on the sign of the mi, but then changing the small resolution

of each ODP has the effect of switching the sign of mi. Now, by choosing B to be certain

specific Chmutov octic, one can see that no small resolution of the resulting double solid X

is Kähler, see [W, § 6].

Irreducible holomorphic symplectic manifolds. The key construction here is the

so-called Mukai flop. Let us briefly recall what it is and refer to e.g. [GHJ, Example 21.7]

for more details. Let X be an 2n-dimensional Kähler (irreducible) holomorphic symplectic

manifold containing a submanifold P ⊂ X isomorphic to Pn. The existence of a holomor-

phic symplectic form imposes NP |X ≃ Ω1
P and one can then see that the projective bundle

P(Ω1
P ) −→ P is isomorphic to the first projection of the incidence variety D ⊂ Pn × (Pn)∨;

i.e. D = {(x,H)|x ∈ H}. In particular, if Z −→ X is the blow-up of P , then the excep-

tional divisor is isomorphic to D and, moreover, the restriction of the normal ND|Z to any

fiber of D −→ (Pn)∨ is isomorphic to OPn−1(−1) as one can see by using the adjunction

formula twice (once for D ⊂ P n× (Pn)∨ and once for D ⊂ Z) . Using again Nakano-Fujiki’s

criterion, one can contract all such fibers in Z to a obtain a smooth manifold X ′

Z

X X ′

p q

φ

which can then easily be shown to be holomorphic symplectic.

The important property of the Mukai flop X ′ of X is as follows. Set P ′ := q(D) ≃ Pn.

For dimensional reasons, there exists an isomorphism H2(X, R) −→ H2(X ′, R). Let ω ∈
H2(X, R) and let ω′ ∈ H2(X ′, R) be the corresponding class. We have p∗ω = q∗ω′+a[D] for

some a ∈ R. Now, if ℓ ⊂ P andH ⊂ Pn is an hyperplane containing ℓ, then ℓ̃ := ℓ×{H} ⊂ D
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is a curve such that p∗ℓ̃ = ℓ, q∗ℓ̃ = 0 as cycles and OZ(D)|ℓ̃ ≃ OP1(−1). In particular,

ω · ℓ = p∗ω · ℓ̃ = −a. One can do the same operation with a line ℓ′ ⊂ P ′ and find ω′ · ℓ′ = a

so that

ω · ℓ = −ω′ · ℓ′. (3.3)

We now give a general construction of non-Kähler IHS manifolds obtained as the Mukai

flop of certain projective IHS manifolds as described in [GHJ, Example 21.9]. Assume that

X admits two disjoint submanifolds P1, P2 ≃ Pn and let X ′ be the Mukai flop of P1. The

map X 99K X ′ is therefore isomorphic near P2. Assume further that the Picard number of

X is two and that there exists a non-trivial morphism X −→ Y to a projective variety Y

contracting both P1 and P2. If ℓi is a line on Pi, then Rℓ1 = Rℓ2 ∈ H4n−2(X, R) since

ρ(X) = 2. If α is a Kähler class on X , we have α · ℓi > 0 for i ∈ {1, 2}, hence
ℓ1 = λℓ2 for some λ > 0. (3.4)

If X ′ were to admit a Kähler class ω′, then the corresponding class ω ∈ H2(X, R) would

satisfy

ω · ℓ1 = −ω′ · ℓ′1 < 0 and ω · ℓ2 = ω′ · ℓ2 > 0

(as follows from (3.3)), which contradicts (3.4). Hence X ′ cannot be Kähler. Explicit

examples of IHS manifolds X satisfying the requirements have been constructed by Yoshioka

and Namikawa; see references in [GHJ, Example 21.9].

3.3. The decomposition theorem. We would like to propose the following statement on

the structure of Fujiki manifolds with vanishing first Chern class, generalizing the well-known

Beauville-Bogomolov decomposition theorem.

Conjecture 3.5 (Decomposition Conjecture). Let X be a compact Fujiki manifold such that

c1(X) = 0 ∈ H2(X, R). Then there exists a finite étale cover X ′ −→ X such that

X ′ ≃ T ×
∏

i∈I

Yi ×
∏

j∈J

Zj

where

(i) T is a complex torus,

(ii) For all i ∈ I, Yi an irreducible Calabi-Yau manifold,

(iii) For all j ∈ J , Zj is an irreducible holomorphic symplectic manifold.

Moreover, there exist bimeromorphic maps Yi 99K Ŷi (respectively, Zj 99K Ẑj), isomorphic

in codimension one, such that Ŷi is a projective ICY variety with terminal singularities

(respectively, Zj is a Kähler IHS variety with terminal singularities).

The goal of this section is to establish the above conjecture assuming either that X is

Moishezon or that it satisfies dimX ≤ 4, which will enable us to refine the statements

obtained in § 3.1 above.

Theorem 3.6. Let X be a Fujiki manifold such that 0 = c1(X) ∈ H2(X, R). Assume that

one of the following holds:
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• X is Moishezon, or

• dimX ≤ 4.

Then the Decomposition Conjecture holds for X.

Moreover, there exists a Zariski open set U ⊂ X, whose complement X \U has codimension

at least two, satisfying the condition that there is an incomplete Ricci-flat Kähler metric ω

on U for which the following two hold:

(i) (Bochner principle). For every holomorphic tensor σ ∈ H0(X, TX⊗p ⊗ T ∗X⊗q) the

restriction σ
∣∣
U
is parallel with respect to ω.

(ii) (Polystability). There exists a subset Λ ⊂ Mov(X) with non-empty interior such

that TX is polystable with respect to λ. More precisely, there is a holomorphic de-

composition of the tangent bundle

TX =

ℓ⊕

i=1

Fi (3.5)

satisfying the conditions that Fi is locally free,

c1(Fi) = 0 ∈ H2(X, R)

and Fi is stable with respect to any λ ∈ Λ. Additionally, over the subset U , the

decomposition in (3.5) is orthogonal and Fi
∣∣
U
is parallel with respect to ω. Finally,

one can take Λ ⊃ MovNS(X)◦ if X is Moishezon.

Proof. We proceed in several steps.

Step 1. Existence of a good minimal model.

Let X ′ −→ X be a modification such that X ′ is Kähler. Since KX is torsion, we know

that κ(X ′) = 0 and the numerical dimension nd(KX′) = 0. We have two cases:

◦ If X ′ is projective (i.e., if X is Moishezon), then we can apply [BCHM] and in

particular [Dr, Corollary 3.4] to find a birational model X ′
99K Xmin with terminal

singularities and torsion canonical bundle KXmin
.

◦ If X ′ is merely Kähler but dimX ≤ 4, then if follows from [HP1, Theorem 1.1]

in dimension three and [DHP, Theorem 1.1] in dimension four that there exists a

bimeromorphic model X ′
99K Xmin with terminal singularities and nef canonical

bundle KXmin
.

Let us resolve the indeterminacies of φ : X 99K Xmin as follows

Z

X Xmin

p q

φ

(3.6)

where Z is smooth Kähler.
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We claim that the map φ is an isomorphism in codimension one and that KXmin
is torsion.

Indeed, write

KZ = p∗KX +
∑

aiEi and KZ = q∗KXmin
+
∑

bjFj ,

where
∑
Ei (respectively,

∑
Fj) is the exceptional locus of p (respectively, q). As X and

Xmin are terminal, we have ai, bj > 0 for all indices i, j. Set D :=
∑
aiEi −

∑
bjFj =

q∗KXmin
− p∗KX . Then D is p-nef and p∗D ≤ 0, so that by the negativity lemma (see e.g.

[Wan, Lemma 1.3]), we actually have D ≤ 0. Similarly, −D is q-nef and q∗(−D) ≤ 0 so

−D ≤ 0. All in all, D = 0. This implies that q∗KXmin
= p∗KX is torsion, hence so is

KXmin
. Moreover, since that coefficients ai, bj are positive, then we also get

∑
Ei =

∑
Fj

which implies that φ is isomorphic in codimension one. Our claim follows.

In the following, we denote by U ⊂ X the maximal Zariski open subset over which φ is

defined and is an isomorphism. By the above, the codimensions of X \ U and Xmin \ φ(U)
are at least two.

Step 2. Bochner principle.

Let α ∈ H2(X, R) be Kähler class on Xmin. By [EGZ, Pa], there exists a positive current

ωmin ∈ α

with bounded potentials on Xmin whose restriction to the regular locus Xreg
min of Xmin is a

genuine Kähler Ricci flat metric with finite volume equal to αn. Define

ω := φ∗(ωmin

∣∣
φ(U)

),

where φ is as in (3.6); it is a Kähler Ricci flat metric on U . Since
∫
U
ωn < +∞, the Kähler

manifold (U, ω) is incomplete unless X = U is already Kähler (see [GGK, Proposition 4.2]).

By [CGGN, Theorem A] every reflexive holomorphic tensor onXreg
min is parallel with respect

to ωmin. Since U and φ(U) have complements of codimension at least two, there are natural

isomorphisms

H0(U, TX⊗a ⊗ T ∗X⊗b) ≃ H0(X, TX⊗a ⊗ T ∗X⊗b)

and

H0(φ(U), TX⊗a
min ⊗ T ∗X⊗b

min) ≃ H0(Xreg
min, TX

⊗a
min ⊗ T ∗X⊗b

min)

for all integers a, b ≥ 0. Statement (i) follows immediately.

Step 3. Polystability of TX.

The tangent bundle TXmin of Xmin holomorphically decomposes as

TXmin
=

r⊕

i=1

Fmin
i ,

where each Fmin
i is α-stable with zero first Chern class and its restriction to the regular locus

of Xmin is a parallel subbundle with respect to ωmin (see [GGK, Proposition D] and [CGGN,
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Remark 3.5]). Using φ, we get a similar holomorphic decomposition

TX =

r⊕

i=1

Fi

valid over U for some parallel subbundles Fi ⊂ TU with respect to ω. Taking the saturation

of Fi in TX , we get reflexive subsheaves — still denoted by Fi — and a homomorphism⊕r
i=1 Fi −→ TX which is an isomorphism over U , hence it is an isomorphism everywhere.

Next, we check that c1(Fi) = 0. This is easy to see because

p∗c1(Fi) = q∗c1(F
min
i ) +

∑
ciEi =

∑
ciEi

for some ci ∈ Z (see (3.6) for p, q). Recall that the divisors Ei are exceptional for both p

and q. In particular, for any γ ∈ H2n−2(X) we have

c1(Fi) · γ = p∗c1(Fi) · p∗γ =
∑

ciEi · p∗γ = 0

using the projection formula.

The same arguments show that Fi is stable with respect to

β := p∗(q
∗αn−1) ∈ Hn−1,n−1(X) ∩H2n−2(X, R).

The class β is movable for being a limit of the classes p∗((q
∗α + εγ)n−1) as ε → 0, where

γ ∈ H2(Z, R) is a fixed Kähler class. Finally, [GKP, Remark 3.5] shows that the set

Λ ⊂ Mov(X) of movable classes with respect to which Fi is stable has non-empty interior

for every i = 1, · · · , r. This together with the condition c1(Fi) = 0 implies that TX is

polystable with respect to any λ ∈ Λ.

It remains to see that if X is Moishezon, then for any λ ∈ MovNS(X)◦ and any index i, Fi
is λ-stable. We know from Proposition 3.3 that Fi is λ-semistable. Arguing by contradiction,

one can consider the maximal destabilizing sheaf Gi ⊂ Fi. It is a proper, λ-stable subsheaf

with µλ(Gi) = 0. Now, given any α ∈ N1(X)R, we have λ + εα ∈ MovNS(X) for 0 ≤ ε ≪ 1,

hence µλ+εα(Gi) ≤ 0 by Proposition 3.3. This implies that c1(Gi) · α ≤ 0. Since this holds

for any α ∈ N1(X)R, we deduce that c1(Gi) = 0 ∈ N1(X)R. This is a contradiction with the

fact that Fi is stable with respect to some movable class and satisfies c1(Fi) = 0, hence it

shows the claim.

Step 4. The splitting of X.

The validity of Bochner principle implies that the Albanese map of our manifold X is

étale trivial (see proof of [CGGN, Theorem 4.1] or Theorem 3.11 below). This implies that

a finite étale cover X ′ −→ X splits as a product X ′ ≃ T × Y where T is a complex torus

and Y is a compact Fujiki manifold Y such that KY is trivial and H0(Y ′, Ω1
Y ′) = 0 for any

finite étale cover Y ′ −→ Y . Up to replacing X with Y , one can assume that the augmented

irregularity of X vanishes. In particular, the augmented irregularity of Xmin vanishes as

well. Using [HP2] or [BGL], one can find a finite quasi-étale cover g : X ′
min −→ Xmin which

further decomposes as a product

X ′
min ≃

∏

i∈I

Zi
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where the Zi are irreducible singular ICY or IHS varieties in the sense of loc. cit.

Set V := φ(U) ⊂ Xreg
min. The restriction g|g−1(V ) is étale and induces via φ a finite étale

cover U ′ −→ U that extends to a finite étale cover f : X ′ −→ X for some compact manifold

X , which follows from [DeGr, Theorem 3.4] and purity of branch locus. We therefore have

the following diagram

X ′ X ′
min

X Xmin

ψ

f g

φ

(3.7)

From now on, we replace X with X ′. By induction, one can assume that Xmin ≃ Y × Z

where Y and Z are compact Kähler with terminal singularities of respective dimensions k

and ℓ, not necessarily irreducible (i.e., they can be a product of lower dimensional ICY or IHS

varieties). On X , we have an induced splitting of the tangent bundle into regular foliations

TX = F ⊕ G.
Next, we will show that F has smooth compact leaves with finite holonomy. It is clear that

a general leaf is compact, hence smooth since F is regular. Indeed, if x ∈ U , then the leaf Fx
of F though x is included in the strict transform by φ of the leaf Y ×{z} where φ(x) = (y, z).

Now we want to show that if F is a general (compact) leaf of F , then the volume
∫
F
ωk of F

with respect to a fixed hermitian metric ω is bounded uniformly independently of F , which

will show that all leaves of F are compact by Bishop theorem; smoothness will then follow

from the regularity of F .

In order to show the volume bound, let W be a Kähler desingularization of the graph of

φ, with projections p : W −→ X and q : W −→ Y × Z. Set

r := prZ ◦ q : W −→ Z

so that the cycles Wz := r−1(z) are homologous (and smooth) for z general. When z ∈ Z

varies (say in a dense open subset of Z), the varieties Fz := p(Wz) form a family of smooth

leaves of F sweeping out a dense open set of X . Moreover, p induces a bimeromorphic map

between Wz and Fz. In particular, we have
∫
Fz
ωk =

∫
Wz
p∗ωk. Pick a Kähler metric ωW

such that ωW ≥ p∗ω. Then we have
∫
Fz
ωk ≤

∫
Wz
ωkW which is independent of z (general)

since the Wz are homologous and ωW is closed.

Finiteness of the holonomy can be showed as follows. Let x ∈ X and let Fx be the leaf

of F though x. Choose a transversal S to F at x (e.g. a neighborhood of x in the leaf of

G through x). Choose a chart near x given by the unit polydisk where the leaves of F are

given by the affine subspaces (z1 = a1, . . . , zℓ = aℓ), a ∈ Dℓ, and where ω ≥ C−1ωeucl.

Then a leaf of F can hit S at most Cn
∫
F
ωk times, and that number is bounded above

independently of F .

Using the holomorphic version of Reeb stability theorem (see for example [HW, Proposi-

tion 2.5]) it is concluded that F induces a holomorphic map X −→ Ck(X), where Ck(X) is

the Barlet space of (compact) cycles of X of dimension k. The map is defined by associating

to x the cycle |Gx| · Fx where Fx is the leaf of F though x and Gx is the holonomy group
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of Fx, i.e., the image of π1(Fx) −→ Diff(S, x) which is finite by what we explained above.

We let CF be the image of the map X −→ Ck(X). This is a compact complex variety and

one can check that it has only quotient singularities and that it has dimension ℓ (see [HW,

Theorem 2.4]). We now consider the product map

f : X −→ CF × CG.

From the local description of the foliations provided by Reeb stability theorem, it follows

that dfx is an isomorphism for x general. As a consequence, f(X) is compact of dimension

n, hence f is surjective. Since F and G are transverse with smooth compact leaves, a leaf of

F can intersect a leaf of G only finitely many times, hence f is finite. If the degree of f were

greater than one, we could find two points x, x′ ∈ U such that f(x) = f(x′). That is, the

leaves Fx and Gx would intersect again at the point x′. This is a contradiction with the fact

that over U via φ, Fx and Gx correspond to Y × {z} and Z × {y} where φ(x) = (y, z). In

particular, their only intersection point on Y ×Z is the point (y, z). In conclusion, f is finite

and generically 1 : 1. Since the source and target of f are normal, Zariski’s main theorem

implies that f is isomorphic.

It follows from the construction that F is isomorphic to pr∗1TCG
(and similarly for G) via

f . Moreover, we have seen that a (general) leaf of F , which isomorphic to a copy of CG via

f , is bimeromorphic to a copy of Y and that map is actually isomorphic in codimension one.

After iterating the construction, one will split X ≃
∏

j∈J Xj where Xj is bimeromorphic and

isomorphic in codimension one to a possibly singular ICY or IHS Kähler variety.

It is then straightforward to check that this implies thatXj itself is an ICY or IHS manifold

in the sense of Definition 3.4. The theorem is proved. �

Recall that if X is a compact complex manifold, the augmented irregularity of X is defined

as

q̃(X) := sup{q(Y )
∣∣Y −→ X finite étale} ∈ N ∪ {∞},

where q(•) = h0(•, Ω1
•) is the usual irregularity. Using Theorem 3.6, the results in [GGK]

and [BGL] yield the following

Corollary 3.7. Let X be a compact Fujiki manifold such that c1(X) = 0 ∈ H2(X, R) and

q̃(X) = 0. Assume either that X is Moishezon or that dimX ≤ 4.

Then π1(X) does not admit any finite-dimensional representation with infinite image (over

any field). Moreover, for each k ∈ N, π1(X) admits only finitely many k-dimensional complex

representations up to conjugation.

Proof. In view of the proof of Theorem 3.6, there exists a bimeromorphic map φ : X 99K

Xmin where Xmin is a Kähler variety with klt singularities, zero first Chern class, and zero

augmented irregularity. The last property comes from the fact that φ is isomorphic in

codimension one, hence there is a one-to-one correspondence between finite étale covers of

X and finite quasi-étale covers of Xmin.
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If Z is a desingularization of the graph of φ, it follows from Takayama’s result [Ta] that

the maps p : Z −→ X and q : Z −→ Xmin induce isomorphic maps at the level of

fundamental groups

p∗ : π1(Z)
≃−→ π1(X) and q∗ : π1(Z)

≃−→ π1(Xmin) (3.8)

The corollary is an now an application of [GGK, Theorem I] in the projective case and

the combination of Theorem A and Corollary 3.10 in [BGL] in the Kähler case. �

Corollary 3.8. Let X be a compact Fujiki manifold such that 0 = c1(X) ∈ H2(X, R) and

0 = c2(X) ∈ H4(X, R). Assume either that X is Moishezon or that dimX ≤ 4. Then X

admits a finite étale cover T −→ X where T is complex torus.

Proof. We use the notation from Theorem 3.6. Consider the vector bundle

p∗TX =
r⊕

i=1

p∗Fi,

where each p∗Fi has vanishing first Chern class. By the arguments in the proof of Theorem

3.6, each p∗Fi is stable with respect q∗α. Since stability is an open condition, p∗Fi is also

stable with respect to a Kähler class θ on X ′. As the first Chern class of p∗Fi vanishes, the

Bogomolov–Gieseker’s inequality says that

c2(p
∗Fi) · θn−2 ≥ 0.

As c2(p
∗TX) =

∑
c2(p

∗Fi) = 0, we conclude that c2(p
∗Fi) · θn−2 = 0 for every i. By

Simpson’s correspondence, p∗Fi is hermitian flat, and hence p∗TX is hermitian flat. This

implies that TX
∣∣
U

is unitary flat as well, and therefore using fact that the complement

X \ U ⊂ X is of codimension at least two it follows that TX too is unitary flat. By [DPS],

X is Kähler and it follows that X admits a finite étale cover by a torus. �

Remark 3.9. The proof of the corollary above shows that one can weaken the assumption

0 = c2(X) ∈ H4(X, R) and replace it by the existence of a modification f : Y −→ X

such that Y admits a Kähler form ω satisfying c2(X) · f∗[ωn−2] = 0.

Remark 3.10. A compact complex manifold in Fujiki class C bearing a holomorphic affine

connection has vanishing Chern classes [At, Theorem 4 on p. 192–193]. Therefore Corollary

3.8 implies that any compact complex Moishezon manifold admitting a holomorphic affine

connection also admits an étale covering by an abelian variety.

3.4. Étale triviality of the Albanese map. We now prove the étale triviality of the

Albanese map for complex manifolds in Fujiki class C with numerically trivial canonical

bundle, following the strategy of [Fu, Lemma 6.1] (see also [CGGN, Theorem 4.1]).

Theorem 3.11. Let X be a compact complex manifold in Fujiki class C such that c1(X) =

0 ∈ H2(X, R). Then after taking some finite étale cover, there is a decomposition

X = T × Z,

where T is a torus, and h1,0(Z ′) = 0 for any finite étale cover Z ′ −→ Z.
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Proof. Since the canonical bundle KX is torsion [To, Theorem 1.5], we can assume, by

replacing X with a finite unramified covering of it, that X is a compact complex manifold

in the Fujiki class such that its canonical bundle KX is holomorphically trivial.

The key point is to prove that the canonical pairing on X

H0(X, TX) ×H0(X, ΩX) −→ H0(X, OX) ≃ C

given by the natural contraction is a perfect pairing (i.e., it is non-degenerate). We first

prove that H0(X, TX) and H
0(X, ΩX) have the same complex dimension. This follows from

Serre duality, Hodge symmetry and triviality of KX :

h0(TX) = hn(KX ⊗ ΩX) = hn(ΩX) = h1(KX) = h1(OX) = h0(ΩX).

Let Aut0(X) be the connected component containing the identity element of the group of

holomorphic automorphisms of X . Its Lie algebra is H0(X, TX). Let alb : X −→ A(X)

be the Albanese map. This map is equivariant with respect to the Jacobi homomorphism

ρ : Aut0(X) −→ T (X)

with T (X) being the compact complex torus given by the connected component of the group

of holomorphic automorphisms of the Albanese manifold A(X). The differential of ρ is a

homomorphism of Lie algebras

dρ : H0(X, TX) −→ H0(X, ΩX)
∗,

The kernel of dρ is the Lie subalgebra l ⊂ H0(X, TX) consisting of holomorphic vector fields

on X that are tangent to the fibers of the map alb; they are characterized as follows (see

[Fu, Proposition 6.7]):

l = {V ∈ H0(X, TX) | θ(V ) = 0 ∀ θ ∈ H0(X, ΩX)}.

If l 6= {0}, then X is bimeromorphic to a unirational manifold [Fu, Proposition 5.10]. In this

case KX does not admit nontrivial holomorphic sections (also [Fu, Corollary 5.11]). Since

KX is holomorphically trivial, we conclude that l = {0}. Consequently dρ is injective.

Since dimH0(X, TX) = dimH0(X, ΩX), we conclude that the injective homomorphism

dρ is an isomorphism. As T (X) is connected, and dρ is surjective, it follows that ρ is

surjective as well.

Moreover, the kernel of the Jacobi homomorphism ρ is known to be a linear algebraic group

[Fu, Corollary 5.8]. In particular, kernel(ρ) has only finitely many connected components.

Since the Lie algebra of kernel(ρ) is trivial, it is a finite group. Consequently, Aut0(X) is

a compact complex Lie group, and ρ : Aut0(X) −→ T (X) is a finite covering map. This

map factors though a complex Lie group homomorphism p : Aut0(X) −→ A(X) satisfying

alb(φ(x)) = alb(x) + p(φ), ∀ x ∈ X. (3.9)

It is now easy to conclude that alb is an étale trivial fiber bundle onto A(X) (see for

example [Fu, Lemma 6.1] or [CGGN, Theorem 4.1]). We recall the argument here for the
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reader’s convenience. Consider the finite étale base change X ×A(X) Aut0(X) −→ Aut0(X)

by p and let Z = alb−1(0). By (3.9), the map

Z × Aut0(X) −→ X ×A(X) Aut0(X)

(z, φ) 7−→ (φ(z), φ)

is well-defined, isomorphic and commutes with the projections to the factor Aut0(X). This

implies our claim on alb, and one can check the connectedness of F by observing that the

finite factor in the Stein factorization of alb is étale and has a section by the universal

property of the Albanese map.

Finally, the Albanese map of X×A(X)Aut0(X) ≃ Z×Aut0(X) coincides with the projec-

tion to the second factor. In particular, we have h1,0(Z) = 0. Now, if Z ′ −→ Z is an étale

cover such that h1,0(Z ′) 6= 0, we repeat the construction on Z ′ to split off another torus

factor after a further étale cover of Z ′, and the process stops after finitely many steps. �

Let X be a compact manifold in Fujiki class C with trivial canonical bundle. It is said

to admit an algebraic approximation if there is a small deformation X −→ ∆ of X , with

X = X0 being the central fiber, and a sequence of points ti ∈ ∆, i ∈ N, converging to 0,

such that all the fibers Xti are Moishezon.

Lemma 3.12. Let X be a compact complex manifold in Fujiki class C such that c1(X) = 0 ∈
H2(X, R) and c2(X) = 0 ∈ H4(X, R). Assume that X admits an algebraic approximation.

Then X admits a finite unramified covering by a compact complex torus.

Proof. By Theorem 3.11, up to a finite étale cover, we have a decomposition X = T × Z

where h1,0(Z) = 0 and T is a compact complex torus. The given condition that c2(X) = 0

implies that c2(Z) = 0. Let X −→ ∆ be an algebraic approximation of X and let t0 ∈ ∆

such that Xt0 is Moishezon. Since c2(X) = 0, it follows that c2(Xt0) = 0.

Corollary 3.8 applies to the Moishezon manifolds Xt0 to show that a finite étale cover

of Xt0 is an abelian variety. Since X −→ ∆ is C∞-trivial, one can extend the latter

cover to a finite étale cover of the family X −→ ∆. This enables us to assume that Xt0

is torus. Since t 7−→ b1(Xt) is constant and both X and Xt0 are Fujiki, it follows that

h1,0(X) = h1,0(Xt0) = dimX . Since X = T ×Z and h1,0(Z) = 0, we get dimT = dimX

so that X = T is a compact complex torus. �

Corollary 3.13. Let X be a compact complex manifold in Fujiki class C such that c1(X) =

0 ∈ H2(X, R) and c2(X) = 0 ∈ H4(X, R). Assume that X has algebraic dimension

a(X) = dimX − 1. Then X admits a finite étale cover T −→ X where T is a compact

complex torus.

Proof. This is a direct consequence of Lemma 3.12 and of the approximation result [Lin,

Corollary 1.4] stating that a Fujiki class C manifold X of algebraic dimension a(X) =

dimX − 1 admits an algebraic approximation. �

Remark 3.14. While compact Kähler manifolds with numerically trivial canonical bundle

are known to admit algebraic approximation [Ca], it is not known whether all Fujiki class C
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manifolds with numerically trivial canonical bundle admit algebraic approximations. Despite

the unobstructedness of the Kuranishi space ([Po, Theorem 1.2] and [ACRT, Theorem 3.3]),

a major stumbling block in adapting the arguments in [Ca] is the fact that Fujiki class C
manifolds are not stable under deformations, already in dimension three [Cam].

4. Geometric structures on Moishezon manifolds

The aim in this section is to prove the following theorem on holomorphic geometric struc-

tures on Fujiki manifolds with numerically trivial canonical bundle that are either Moishezon

or of dimension no greater than four.

Theorem 4.1. Let X be a compact Fujiki manifold such that c1(X) ∈ H2(X, R) vanishes.

Assume either that X is Moishezon or that dimX ≤ 4.

(i) There exists a Zariski open set U ⊂ X, whose complement has complex codimension

at least two, such that any holomorphic geometric structure φ of affine type on X is

locally homogeneous on U .

(ii) If there exists a rigid holomorphic geometric structure φ of affine type on X, then

there exists a finite étale cover T −→ X, where T is a complex torus. The pull-back

of φ on T is translation invariant.

Remark 4.2. If Conjecture 3.5 were to hold, then the proof of Theorem 4.1 below would

apply to show that its conclusions are valid for any compact Fujiki manifold with trivial

first Chern class. A weaker but unconditional result will be proven in that direction (see

Corollary 4.5).

Proof. Let U be the Zariski open set defined in the statement of Theorem 3.6, then the first

statement follows from Lemma 2.3 and the Bochner principle proved in Theorem 3.6.

Next assume that φ is rigid. From Theorem 3.6 we know that X satisfy the Decomposition

conjecture. Hence one can find a finite étale cover X ′ = T × Y −→ X where Y has zero

augmented irregularity and is either Moishezon or has dimension at most four. Since the

tangent bundle of T is trivial, φ induces a rigid holomorphic geometric structure φY of affine

type on Y as explained in the proof of [Du2, Theorem 2]. By the first part, φY is locally

homogeneous on a Zariski open set of Y .

We claim that there exists g : Y ′ −→ Y a finite étale cover such that any complex

linear representation of ρ : π1(Y
′) −→ GL(n,C) is trivial, where n = dim Y . Indeed, by

Corollary 3.7 there are only finitely many classes {[ρi]
∣∣ i ∈ I} of such representations up

to conjugation and each ρi has finite image. The sought cover g then corresponds to the

subgroup of finite index of π1(Y ) obtained as the intersection ∩Iker(ρi). Up to replacing Y

with Y ′, we can therefore assume that π1(Y ) has no non-trivial complex representation of

dimension n. Moreover, up to applying Theorem 3.6 again, one can assume that Y =
∏

i∈I Yi
is a product of ICY and IHS manifolds.

In view of Remark 2.5, non-trivial local Killing fields for the rigid structure φY (which

exist since φY is locally homogeneous on a non-empty Zariski open set of Y ) can be extended
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globally to Y . In particular, we find that H0(Y, TY ) 6= 0. Now, if we set ni = dimYi, then

the identity KYi ≃ OYi implies that H0(Yi, TYi) ≃ H0(Yi, Ω
ni−1
Yi

), and the latter space is zero

by the very definition of ICY and IHS manifolds. In particular, we must haveH0(Y, TY ) = 0,

which provides the expected contradiction. �

Remark 4.3. In Theorem 4.1 the condition on triviality of c1(X) is essential. To illustrate

this, consider the complex projective line equipped with two holomorphic nonzero global

vector fields v1 and v2 such that the two divisors div(v1) and div(v2) are actually disjoint.

The geometric structure φ on the complex projective line given by v1, v2 is a holomorphic

rigid geometric structure of affine type. Note that φ is not locally homogeneous on any

nonempty open subset of the projective line. Indeed, the quotient v1/v2, which is a non-

constant meromorphic function, is actually a scalar invariant of φ; it is not a constant on

any nonempty open subset of the projective line.

The following is derived using Theorem 4.1.

Corollary 4.4. Let T be a compact complex torus. Let π : X −→ B be a holomorphic

principal T –bundle over a compact Moishezon manifold B with numerically trivial canonical

bundle KB. Then there exists a T -invariant Zariski open set U ⊂ X, whose complement has

complex codimension at least two, such that any holomorphic geometric structure φ of affine

type on X is locally homogeneous on U . If such a φ is moreover rigid, then the fundamental

group of X must be infinite.

Proof. Theorem 1.5 of [To] shows that there exists a positive integer l such that K⊗l
B is

holomorphically trivial. We consider the index one cover B′ −→ B; this is a finite unramified

cover of B such that KB′ is trivial. For convenience of the reader, we recall its construction.

Fix a nonzero holomorphic section σ : B −→ K⊗l
B , take a connected component B′ ⊂ KB

of the inverse image of σ(B) for the map KB −→ K⊗l
B defined by v 7−→ v⊗l. The induced

map B′ −→ B is the cover we are looking for. Up to replacing X with X ×B B
′, we may

assume that KB is trivial.

We claim that KX is trivial. Indeed, since X is a principal T -bundle, any trivialization ΩT
of KT glues to a trivialization ΩX/B of KX/B . If ΩB is a trivialization of KB, then ΩX/B ∧ΩB
yields a trivialization of KX .

Consider the Zariski open dense subset U ⊂ B defined in the statement of Theorem 3.6.

Also consider the Zariski open set π−1(U) ⊂ X . We will prove that any holomorphic

geometric structure of affine type on X is locally homogeneous on π−1(U).

To prove this by contradiction, assume that there exists a holomorphic geometric structure

of affine type on X which is not locally homogeneous on π−1(U). By Lemma 2.3, there exist

a point x ∈ π−1(U), integers a, b ≥ 0 and a nontrivial holomorphic section

η ∈ H0(X, (TX)⊗a ⊗ (T ∗X)⊗b) \ {0} (4.1)

such that η(x) = 0; note that this condition implies that a+ b > 0.
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Since KX is trivial, contraction by TX of a fixed nonzero holomorphic section of KX

produces a holomorphic isomorphism TX ≃ Λn−1(T ∗X) where n = dimCX . Therefore, the

section η in (4.1) produces

s ∈ H0(X, (T ∗X)⊗r) \ {0},
where r = (n− 1)a+ b, such that s(x) = 0.

Then the proof of Theorem 1.2 in [BD2] shows that s is the pull-back of a holomorphic

section t ∈ H0(B, (T ∗B)⊗r); the condition that s(x) = 0 implies that t(π(x)) = 0. Since

π(x) ∈ U , this is in contradiction with the Bochner principle proved in Theorem 3.6.

Finally, assume that φ is rigid. As in the proof of Theorem 4.1, since φ is locally homoge-

neous on an open dense subset of X , Proposition 2.8 shows that the fundamental group of

X is infinite. �

As a consequence of Theorem 4.1 we have the following:

Corollary 4.5. Let X be a compact complex manifold in Fujiki class C such that c1(TX) ∈
H2(X, R) vanishes. If X bears a holomorphic rigid geometric structure of affine type, then

the fundamental group of X must be infinite.

Note that the conclusion of Corollary 4.5 is weaker than that of Theorem 4.1 (ii), but it

applies to any Fujiki manifold (see Remark 4.2).

Proof. This follows from Theorem 4.1 if X is a Moishezon manifold. Assume that X is not

a Moishezon manifold. Since the algebraic dimension of X is not maximal, Theorem 4.2 of

[BD2] implies that the fundamental group of X is infinite. �

Another consequence of Theorem 4.1 is the following:

Corollary 4.6. Let X be a compact complex manifold with c1(X) = 0 ∈ H2(X, R). Then

any holomorphic rigid geometric structure of affine type on X admits a non-trivial Lie algebra

of (local) Killing vector fields.

Proof. To prove by contradiction, assume that the Lie algebra of Killing vector fields for φ is

trivial. Then Theorem 2.1 of [Du1] (see also Theorem 3 of [Du2]) implies that the fibers of

the algebraic reduction of X have dimension zero, meaning X is Moishezon. But Theorem

4.1 says that φ is locally homogeneous on an open dense subset of X . Consequently, the Lie

algebra of Killing vector fields is transitive on an open dense subset in X , in particular, the

Lie algebra of Killing vector fields is non-trivial. In view of this contradiction the proof is

complete. �

5. Automorphism group and fibrations by complex tori

This section is devoted to generalizing Corollary 4.5 to other classes of manifolds, namely

compact complex manifolds with algebraic dimension at most one and trivial canonical

bundle and compact complex threefolds with trivial canonical bundle (see Corollary 5.2).

The combination of Corollary 4.5, and Corollary 5.2 yields Theorem D.



28 I. BISWAS, J. CAO, S. DUMITRESCU, AND H. GUENANCIA

The following statement is the main result of this section, from which we will easily derive

Corollary 5.2.

Theorem 5.1. Let X be a compact simply connected complex manifold with trivial canonical

bundle KX . Assume that X bears a holomorphic rigid geometric structure φ of affine type.

Then the following statements hold:

(i) There exists a holomorphic submersion π : X −→ B to a simply connected Moishe-

zon manifold B with globally generated canonical bundle KB such that the fibers of π

are complex tori.

(ii) The fibration π is not isotrivial. Equivalently, KB is not trivial.

(iii) There exists a maximal connected abelian subgroup A of the automorphism group

Aut(X, φ) whose orbits coincide with the fibers of π. Moreover, A is noncompact and

its (real) maximal compact subgroup K acts freely and transitively on the fibers of π

(hence X is a C∞ principal K–bundle over B).

Proof. Take a simply connected compact complex manifold X endowed with a rigid holo-

morphic geometric structure φ of affine type. As done in the proof of Theorem 2.7, consider

the Lie subalgebra of H0(X, TX) corresponding to the subgroup Aut0(X, φ) ⊂ Aut0(X),

and fix a basis

{X1, · · · , Xk} ⊂ Lie(Aut0(X, φ)) ⊂ H0(X, TX)

of this subalgebra. Note that the latter subalgebra is non-trivial (i.e., k ≥ 1) by Corollary 4.6

coupled with Theorem 2.4.

Let φ′ = (φ, X1, · · · , Xk) be the rigid geometric structure on X ; its automorphism group

is denoted by Aut(X, φ′). From Theorem 2.7 we know that the maximal connected subgroup

A := Aut0(X, φ
′) of Aut(X, φ′) is abelian. Since A preserves a smooth measure on X (see

Lemma 2.9) its orbits are compact and they coincide with the orbits of the maximal compact

(real) subgroup

K ⊂ A (5.1)

(see Section 3.7 in [Gro] and Section 3.5.4 in [DG]). It should be mentioned that the proof

in [Gro, DG] first shows that the stabilizer A(x) of any point x ∈ X for the action of A on

X is an algebraic group, and hence the stabilizer has only finitely many connected compo-

nents; then their proof uses the main result of [Mon] which asserts that for a homogeneous

space A/A(x) with a finite A–invariant measure, if A(x) has only finitely many connected

components, then A/A(x) is compact and furthermore the action of the maximal compact

(real) subgroup K of A on A/A(x) is transitive.

Step 1. All A–orbits in X have the same dimension.

Arguing by contradiction, assume that there exists an A–orbit

O ⊂ X

whose dimension is strictly less than the maximum of the dimensions of the A-orbits in X .

Since A and K (see (5.1)) orbits are the same, from the above property of O it follows
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immediately that the stabilizer Ko ⊂ K of a point o ∈ O for the action of K is a real Lie

subgroup of positive dimension. The maximal connected subgroup K0
o ⊂ Ko is a compact

connected abelian group, and hence we have

K0
o = (S1)l (5.2)

for some positive integer l. The action of K0
o linearizes locally (on some neighborhood of

o in X), meaning it is locally isomorphic to the linear action of K0
o on ToX given by the

differential of the action of K0
o on X . The group K being abelian, the action of K0

o on the

tangent space of the orbit ToO is actually trivial; indeed, the action ofK0
o on ToO is conjugate

to the restriction, to K0
o , of the adjoint action of K on the quotient Lie(K)/Lie(K0

o ) of Lie

algebras. Moreover, K0
o preserves the orthogonal complement

Vo = (ToO)⊥ ⊂ ToX (5.3)

with respect to any K0
o–invariant Hermitian form on ToX . Fix a K0

o–invariant Hermitian

form on ToX .

Denote by Ao the stabilizer of o ∈ O ⊂ X for the action of A on X . It is a complex

Lie subgroup of A; in fact Ao is identified with a complex algebraic subgroup of Dr+s for

some integer s [Gro, DG]. Denote by C the smallest connected complex Lie subgroup of A

containing K0
o ; the Lie algebra of C is the image of Lie(K0

o )⊕
√
−1Lie(K0

o ) in Lie(A). Since

the K0
o–action on ToX is linearizable, the C-action on ToX is linearizable as well (in fact,

it is linearizable with respect to the same coordinates). More precisely, C is isomorphic to

(C∗)l acting on Vo diagonally (see (5.2) and (5.3)); in other words, Vo splits as a direct sum

of complex lines

Vo = L1 ⊕ · · · ⊕ Lp, (5.4)

such that on each direct summand Li the group C acts through a character defined by

(t1, · · · , tl) 7−→ t
n1,i

1 · tn2,i

2 · . . . · tnl,i

l (5.5)

for every (t1, · · · , tl) ∈ (C∗)l. Note that C acts trivially on ToO, because K0
o acts trivially

on ToO.

Assume that the character of C in (5.5) corresponding to an eigenline Li in (5.4) is not

trivial, in other words, nj,i 6= 0 for some 1 ≤ j ≤ l (see (5.5)). Then Li \ {0} ⊂ Vo is

a C–orbit; the origin 0 ∈ Vo is an accumulation point of this orbit. From this it follows

that for any open neighborhood U ⊂ X of o on which the K0
o–action is linearizable, there

are C–orbits (and hence A–orbits) in U \ (U
⋂

O) for which o ∈ U
⋂
O is an accumulation

point.

But this contradicts the fact that the orbits of A in X are locally closed (in fact they are

compact). Therefore, we conclude that nj,i = 0 for all 1 ≤ j ≤ l and 1 ≤ i ≤ p (see

(5.5)).

Consequently, the K0
o–linear action on ToX must be trivial, and hence the K0

o–action is

trivial on the open neighborhood of o where the action is linearized. Using analyticity, this

implies that the K0
o–action on X is trivial. This is a contradiction because l is (5.2) is

positive.
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Therefore, we conclude that all A–orbits in X have the same dimension.

Step 2. The action of K on X is free.

Take any point x0 ∈ X ; let K(x0) ⊂ K be the connected component, containing the

identity element, of the stabilizer of x0 for the action of K on X . Since K(x0) is compact,

its action linearizes on a neighborhood of x0 in X . For any k ∈ K(x0), the differential

dk(x0) acts trivially on Tx0(Kx0) = Tx0(Ax0); indeed, as mentioned earlier, this action is

induced by the restriction, to K(x0), of the adjoint representation of K, and this adjoint

action is trivial because K is abelian. Since K(x0) is compact, the orthogonal complement of

Tx0(Kx0) = Tx0(Ax0) ⊂ Tx0X , for a K(x0)–invariant Hermitian form on Tx0X , is actually

K(x0)–invariant.

On the other hand, the differential dk(x0) acts trivially on Tx0X/Tx0(Ax0) because the

action of any element of A (in particular of k) preserves each A–orbit; in other words, k acts

trivially on the space of A–orbits.

This implies that the linear action of K(x0) on Tx0X is trivial. From this it follows that

the action of K(x0) on X is trivial; indeed, the action of K(x0) is linearizable, so on any

open neighborhood of x0 ∈ X on which the action of K(x0) is linearizable, the action of

K(x0) is trivial, because the action of K(x0) on Tx0X is trivial. In view of this, since the

A–action, and therefore the K–action, on X is faithful, we now conclude that the group

K(x0) is trivial. Consequently, the action of K on X is actually free.

Step 3. Fibers of X −→ X/K are tori.

It now follows that X , equipped with the action of K, has the structure of a real principal

K–bundle over the smooth real manifold B = X/K. The K–orbits are complex subman-

ifolds because they are also A–orbits and A is a complex Lie group acting holomorphically

on X . This implies that B is also a complex manifold, and the projection

π : X −→ X/K = B (5.6)

is in fact a holomorphic submersion.

Since A is abelian, and any A–orbit Ax0 is identified with A/(A(x0)) with A(x0) being

the stabilizer of x0 for the action of A on X , the holomorphic tangent bundle T (Ax0) is

holomorphically trivial. In fact, a holomorphic trivialization of T (Ax0) is gotten by fixing a

basis of the abelian Lie algebra Lie(A)/Lie(A(x0)) (the adjoint representation of A is trivial

because A is abelian). As every A–orbit is compact with its holomorphic tangent bundle

trivialized by commuting holomorphic vector fields, we conclude that every A–orbit in X is

a compact complex torus [Wa].

Step 4. KB is globally generated.

First, recall that since the fibers of π in (5.6) are connected and X is simply connected,

the base B is simply connected as well.
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Denote by m the complex dimension of the fibers of π. Take a point

b ∈ B . (5.7)

Choose a family of holomorphic vector fields on X belonging to the Lie algebra of A

(X1, · · · , Xm)

(they are chosen from the fundamental vector fields for the A–action) satisfying the condition

that their restrictions to π−1(b) span the tangent bundle T (π−1(b)). This implies that the

locus of all b′ ∈ B such that the restrictions of (X1, · · · , Xm) to π
−1(b′) span T (π−1(b′)) is

an open dense subset of B whose complement is a closed complex analytic subspace.

Let

ω ∈ H0(X, KX) \ {0} (5.8)

be a trivializing section of KX . Then the holomorphic form

ω′ := iX1
◦ iX2

◦ · · · ◦ iXm
ω ∈ H0(X, Ωn−mX ) \ {0} , (5.9)

where n = dimCX , satisfies the equation

ω′ = π∗ω̂ (5.10)

for some ω̂ ∈ H0(B, KB) \ {0}, with π being the projection in (5.6). Note that ω̂(b′) 6= 0

for all b′ ∈ B such that the restrictions of (X1, · · · , Xm) to π−1(b′) span T (π−1(b′)); in

particular, ω̂(b) 6= 0 where b is the point in (5.7). Now moving b over B we conclude that

KB is generated by its global holomorphic sections.

Step 5. B is Moishezon.

Using the notation of Theorem 2.6, consider the algebraic reduction t : X̃ −→ V and set

ρ := π ◦ ψ : X̃ −→ B. We have a diagram as follows.

X̃ X B

V
t

ψ

ρ

π

The maps ρ and t are proper, surjective with connected fibers, and by Theorem 2.7, ρ

contracts every fiber of t. It is then classical that ρ factors through t, that is, there exists a

map σ : V −→ B such that ρ = σ ◦ t. Clearly, σ is surjective; since V is Moishezon, so is

B by Theorem 2 of [Mo].

Let us briefly recall how σ is constructed, for the reader’s convenience. Consider the

image Z of ρ × t : X̃ −→ B × V and the map g : Z −→ V induced by the projection

prV : B × V −→ V . Let ν : Zν −→ Z be the normalization of Z. Next, g is surjective,

proper and by assumption, one has |g−1(v)| = 1 for any v ∈ V . By Zariski main theorem,

the map gν : Zν −→ V is an isomorphism; set h := ν ◦ (gν)−1 : V −→ Z. If one defines
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σ : V −→ B by σ =: prB ◦ h, then we have ρ = σ ◦ t as desired, and have the following

commutative diagram:

X̃ Z B × V B

V

t

ρ

g

prB

σ

h

This completes the proof of (i).

Step 6. KB is not trivial and π is not isotrivial.

Argue by contradiction and assume that KB is trivial. We will prove that the group K has

a complex (torus) structure such that the quotient map π in (5.6) makes X a holomorphic

principal K–bundle over B. Since X is simply connected and B is Moishezon by the previous

step, this will contradict Corollary 4.4.

Going back to the proof, our assumption implies that the holomorphic section ω̂ ∈
H0(B, KB) \ {0} constructed in (5.10) does not vanish at any point, and hence ω̂ trivializes

KB holomorphically. In view of (5.9) and (5.10), this implies that the family of holomorphic

vector fields

{X1, · · · , Xm}
in (5.9) satisfies the condition that {X1(x), · · · , Xm(x)} ⊂ TxX are linearly independent

for every x ∈ X . Consequently, the natural evaluation map

β :
m⊕

j=1

C ·Xj −→ TX/B , (5.11)

where TX/B ⊂ TX is the relative holomorphic tangent bundle for π in (5.6), is a holomorphic

isomorphism. For any 1 ≤ j ≤ m, let X ′
j ∈ Lie(A) be the element corresponding to the

vector field Xj. Let

H ⊂ Lie(A) (5.12)

be the complex subspace generated by {X ′
1, · · · , X ′

m}. Let
Lie(K)C ⊂ Lie(A)

be the complex subspace generated by Lie(K) ⊂ Lie(A).

For any v ∈ Lie(K)C, there are complex valued functions f v1 , . . . , f
v
m on B such that the

holomorphic vector field v′ on X corresponding to v satisfies the equation

v′(b) =

m∑

j=1

f vj (b) ·X ′
j(b)

for all b ∈ B. Indeed, this follows immediately from the fact that β in (5.11) is an isomor-

phism. The functions f v1 , . . . , f
v
m are evidently holomorphic, and hence they are constants.

This implies that

Lie(K)C ⊂ H , (5.13)
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where H is the subspace in (5.12). On the other hand,

dimC H = m ≤ dimC Lie(K)C ,

because dimR Lie(K) = 2m. This and (5.13) together imply that H = Lie(K)C. But this

implies that Lie(K)C = Lie(K), because 2 · dimCH = 2 · dimC Lie(K)C = dimR Lie(K).

Since Lie(K) = Lie(K)C, we conclude that K is a complex Lie subgroup of A, in par-

ticular, K is a compact complex torus. Therefore, the projection π in (5.6) makes X a

holomorphic principal K–bundle over B.

Let us now show that π is not isotrivial arguing by contradiction. The fibers of π are

isomorphic as complex manifolds to a fixed torus T , and by a fundamental result of Fischer

and Grauert π is a holomorphic bundle over B. Since any trivialization of KT is preserved by

Aut0(T ) and Aut(T )/Aut0(T ) is finite, there exists p ≥ 1 such that pKX/B is trivial. As KX

is trivial, this implies that pKB is trivial, hence KB is trivial since it is globally generated

(alternatively, one can use the simple connectedness of X to go from KX/B torsion to KX/B

trivial). This a contradiction with what we have just proved.

The combination of our arguments in the current Step 6 show that, in particular, the

isotriviality of π is equivalent to the triviality of KB. Note that this was also proved by

Campana, Oguiso and Peternell, see [COP, Theorem 3.1]. This completes the proof of item

(ii).

Finally, one can now easily see that A is non-compact. Indeed, arguing by contradiction,

A coincides with its maximal compact subgroup K; so A is a compact complex torus. We

have seen that K acts freely and transitively on the fibers of π. Therefore, π defines an

principal A–bundle. This implies that X is a holomorphic principal compact torus bundle

over B. This leads to a contradiction as in the proof of item (ii). This completes the proof

of the theorem. �

As a by-product of the proof of Theorem 5.1 we obtain another proof of Corollary 4.5.

Another proof of Corollary 4.5. Take a compact, simply connected complex manifold X in

Fujiki class C with trivial canonical class and admitting a holomorphic rigid geometric struc-

ture. Theorem 5.1 shows that a maximal connected abelian subgroup A of Aut(X, φ) has

closed orbits in X , and these orbits coincide with the fibers of the fibration π defined in the

proof of item (i). Theorem 2.3 in [GW] (see also [Ho] for the particular case of C–actions)

proves that there is a compact complex torus K in A such that the A–orbits coincide with the

K–orbits. Moreover, the induced K–action on X is free and the quotient map X −→ X/K

gives a holomorphic principal K–bundle. This implies that the fibration π is isotrivial, so it

is a holomorphic principal bundle. This is in contradiction with item (ii) in Theorem 5.1. �

The following is an easy application of Theorem 5.1.

Corollary 5.2. Let X be a compact complex manifold with trivial canonical bundle bearing

a rigid holomorphic geometric structure. Assume that one of the following holds:
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◦ The dimension of X is at most three, or

◦ The algebraic dimension of X is at most one.

Then the fundamental group of X is infinite.

Proof. To prove by contradiction, assume that the fundamental group of X is finite. Replac-

ing X by it universal cover we will assume that X is simply connected.

Case a(X) ≤ 1.

Denote by A the maximal abelian subgroup of the automorphism group Aut(X, φ) in the

statement of Theorem 2.7. Then Theorem 2.7 shows that A acts on X with orbits containing

the fibers of the algebraic reduction of X . Since the algebraic dimension of X is at most

one, the dimension of the A–orbits is at least dimX − 1. If the action of A on X has an

open orbit, the geometric structure φ is locally homogeneous and Proposition 2.8 furnishes

a contradiction.

Let us now consider the case where the dimension of the A-orbits in X is dimX − 1.

Theorem 5.1 constructs a holomorphic submersion π : X −→ B over a compact simply

connected complex manifold B with globally generated canonical bundle KB such that the

fibers of π coincide with the A–orbits. Since the A-orbits in X coincide with the fibers of π,

we have dimB = 1. Therefore, B is a compact Riemann surface. This is a contradiction

because the canonical bundle of the only simply connected compact Riemann surface CP1

is not globally generated.

Case dimX ≤ 3.

Give the previously treated case and Theorem 4.1, we only need to address the case where

the threefold X has algebraic dimension two.

Then the A–orbits have dimension at least one. If the orbits have dimension two or three,

we conclude as in the proof of the previous case. If the dimension of the A–orbits in X is

one, then the fibration π : X −→ B constructed in Theorem 5.1 is an elliptic fibration;

its fibers are elliptic curves. Since the base B is simply connected the map from B to the

moduli space of elliptic curves lifts to a holomorphic map from B to the upper-half plane (the

Teichmüller space of elliptic curves). Since B is compact, it is a constant map. This implies

that π is isotrivial, which contradicts (ii) in Theorem 5.1. This finishes the proof. �

The following proposition is a consequence of Corollary 5.2.

Proposition 5.3. Let φ be a holomorphic projective connection on a compact complex man-

ifold X with trivial canonical bundle. Then the following two hold:

(i) X admits a holomorphic affine connection ∇ which is projectively isomorphic to φ.

(ii) If X has algebraic dimension at most one, or X is a threefold, then the fundamental

group of X is infinite.
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Proof. (i). Since KX = OX , there is a (global) holomorphic torsionfree affine connection

projectively equivalent to the projective connection φ [BD4, p. 7449, Lemma 5.6].

This can also be seen as a direct consequence of the results in [Gu] and [KO], which is

explained below. There exists a holomorphic affine connection representing the projective

connection φ if and only if the cocycle (3.2) in [KO] (defined as dlog(∆ij), where {∆ij} is the

1-cocycle of the canonical bundle KX) vanishes in H1(X, ΩX); see the explicit formula (3.6)

in [KO, p. 78–79]. This condition is satisfied if and only if the canonical bundle KX admits

a holomorphic affine connection (this coincides with the vanishing condition of the Atiyah

class for KX [At, p. 195, Theorem 5]; see also [Gu, p. 96–97] for an alternative approach).

In the particular case where X is compact and Kähler, this is equivalent to the vanishing of

the real first Chern class of X . In any case, the above condition is automatically satisfied

when, as it happens in our situation, KX is trivial.

(ii). Since a holomorphic affine structure is rigid geometric of affine type, this is indeed

a particular case of Corollary 5.2. �

Remark 5.4. The last argument in the proof of Corollary 5.2 (involving the Teichmüller

space) generalizes to the case where the fibers of the fibration π are polarized abelian vari-

eties. Hence non-isotrivial fibrations π as in Theorem 5.1 do not exist if X is a projective

manifold with trivial canonical bundle. The fibrations constructed in Theorem 5.1 neither

exist when X is a compact Kähler Calabi-Yau manifold (see Theorem 3.1 in [TZ] or Section

4 in [Ber]). We conjecture that they do not exist if X is a compact simply connected com-

plex manifold with trivial canonical bundle. This conjecture implies that compact simply

connected complex manifolds with trivial canonical bundle do not admit holomorphic rigid

geometric structures.
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