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Abstract In this paper, we introduce a new family of Riemannian metrics g̃λμν on the
three-sphere and study its geometric properties, starting from the description of their cur-
vature. Such metrics, which include the standard metric g0 and Berger metrics on S

3 as
special cases, are called “of Kaluza–Klein type”, because they are induced in a natural way
by the corresponding metrics defined on the tangent sphere bundle T1S

2(κ). Each sphere
(S3, g̃λμν) is a homogeneous space, and we obtain a full classification of its homogeneous
structures. Moreover, we introduce and study a natural almost contact structure (ϕ, ξ, η), for
which (ϕ, ξ, η, g̃λμν) is a (homogeneous) almost contact metric structure on the three-sphere.
Finally, we see that for a suitable family of Kaluza–Klein type metrics g̃ac on S

3, it is possible
to construct a two-parameter family of harmonic morphisms from (S3, g̃ac) to S

2(κ).

Keywords Kaluza–Klein metrics · Berger metrics · Unit tangent sphere bundles ·
Homogeneous Riemannian structures · Almost contact metric structures ·
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1 Introduction

Berger metrics are well known in Riemannian geometry. They are defined as the canonical
variation gλ, λ > 0, of the standard metric g0 of constant sectional curvature on S

3, obtained
deforming g0 along the fibers of the Hopf fibration, that is, putting

gλ|ξ⊥
1

= g0|ξ⊥
1
, gλ(ξ1, ·) = λ g0(ξ1, ·),
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880 G. Calvaruso, D. Perrone

where ξ1 denotes the standard Hopf vector field on S
3 and ξ⊥

1 is the orthogonal complement
of ξ1 with respect to g0. Berger spheres (S3, gλ) have been studied under several differ-
ent points of view. In particular, Berger spheres provide examples of homogeneous almost
contact metric three-manifolds (see [20] and references therein).

Denoting by θ1, θ2, θ3 the 1-forms dual to a suitable orthonormal frame field ξ1, ξ2, ξ3

(see (3.2) below) with respect to g0, an arbitrary Berger metric gλ on S
3 may be written as

gλ = λθ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3. It is then natural to generalize such a construction,
allowing deformations of the standard metric g0 not only in the direction of ξ1, but also of
ξ2 and ξ3. Thus, we consider on S

3 the three-parameter family of Riemannian metrics of the
form

g̃λμν = λ θ1 ⊗ θ1 + μθ2 ⊗ θ2 + ν θ3 ⊗ θ3, λ, μ, ν > 0.

Clearly, all Berger metrics are of the above form. In fact, gλ = g̃λ11. Riemannian metrics
g̃λμν turn out to be related to a class of well-known Riemannian g-natural metrics defined
on the unit tangent sphere bundle T1S

2(κ). For this reason, metrics g̃λμν will be called “of
Kaluza–Klein type.”

The paper is organized in the following way. We shall report in Sect. 2 some basic informa-
tion on Riemannian g-natural metrics on tangent and unit tangent sphere bundles. In Sect. 3,
after constructing a covering map from S

3(κ/4) to T1S
2(κ), we introduce a new family of

Riemannian metrics g̃λμν on the three-sphere, describing their Levi-Civita connection and
curvature. Such metrics, which include the standard metric g0 and Berger metrics on S

3 as
special cases, are called “of Kaluza–Klein type,” as they are induced in a natural way by the
corresponding metrics defined on the tangent sphere bundle T1S

2(κ). We obtain in Sect. 4
a classification of homogeneous structures on spheres of Kaluza–Klein type, generalizing
the results obtained by Gadea and Oubiña [20] on Berger spheres. In Sect. 5, we introduce
a natural almost contact structure (ϕ, ξ, η), for which (ϕ, ξ, η, g̃λμν) is a (homogeneous)
almost contact metric structure on the three-sphere. We study several contact metric proper-
ties (H -contact, Sasakian, and η-Einstein) on such spheres. In particular, we prove that g̃λμν
is a critical point of the functional “I (g) = integral of the scalar curvature” restricted to the
set of all associated metrics if and only if (S3, η, g̃λμν) is η-Einstein. Finally, in Sect. 6, we
see that for a suitable two-parameter family of Kaluza–Klein type metrics g̃ac on S

3, which
includes the standard metric g0 and Berger metrics as special cases, it is possible to construct
a corresponding family of harmonic morphisms hac : (S3, g̃ac) → S

2(κ).

2 Riemannian g-natural metrics on the unit tangent sphere bundle

Let (M, g) be an n-dimensional Riemannian manifold, ∇ its Levi-Civita connection, and
R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ] its curvature tensor. At any point (x, u) of its tangent bundle
T M , the tangent space of T M splits into the horizontal and vertical subspaces with respect
to ∇:

(T M)(x,u) = H(x,u) ⊕ V(x,u),

where V(x,u) is the kernel of dπ(x,u) and H(x,u) is the kernel of the connection map at (x, u).
For any vector X ∈ Mx , the horizontal lift of X is the unique vector Xh ∈ H(x,u), such that
dπXh = X , where π : T M → M is the canonical projection. The vertical lift of a vector
X ∈ Mx to (x, u) ∈ T M is a vector Xv ∈ V(x,u) such that Xv(d f ) = X f , for all functions
f on M . Here, we consider 1-forms d f on M as functions on T M (i.e., (d f )(x, u) = u f ).
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The map X → Xh is an isomorphism between the vector spaces Mx and H(x,u). Similarly,
the map X → Xv is an isomorphism between Mx and V(x,u). Horizontal and vertical lifts of
vector fields on M can be defined in an obvious way and are uniquely defined vector fields
on T M .

We also recall the definitions of the canonical vertical and the geodesic flow vec-
tor fields. The canonical vertical vector field on T M is defined, in terms of local coor-
dinates, by U = ∑

i ui∂/∂ui . For a vector u = ∑
i ui (∂/∂xi )x ∈ Mx , we see that

U(x,u) = ∑
i ui (∂/∂xi )v(x,u) = uv(x,u). The geodesic flow vector field on T M is given by

ξ(x,u) = ∑
i ui (∂/∂xi )h(x,u) = uh

(x,u). Both U and ξ do not depend on the choice of local
coordinates and are globally defined on T M .

Riemannian g-natural metrics form a wide family of Riemannian metrics on T M , intro-
duced by Kowalski and Sekizawa in [25]. Such metrics are the image of g under first-order
natural operators D : S2+T ∗ � (S2T ∗)T , which transform Riemannian metrics on manifolds
into metrics on their tangent bundles, where S2+T ∗ and S2T ∗ denote the bundle functors of
all Riemannian metrics and all symmetric (0, 2)-tensors over n-manifolds, respectively.

The class of g-natural metrics, which depend on six smooth functions from R
+ to R, has

been completely described in [5]. Given an arbitrary g-natural metric G on the tangent bun-
dle T M of a Riemannian manifold (M, g), there exist six smooth functions αi , βi : R

+ →
R, i = 1, 2, 3, such that

⎧
⎪⎨

⎪⎩

G(x,u)(Xh, Y h) = (α1 + α3)(r2)gx (X, Y )+ (β1 + β3)(r2)gx (X, u)gx (Y, u),

G(x,u)(Xh, Y v) = G(x,u)(Xv, Y h) = α2(r2)gx (X, Y )+ β2(r2)gx (X, u)gx (Y, u),

G(x,u)(Xv, Y v) = α1(r2)gx (X, Y )+ β1(r2)gx (X, u)gx (Y, u),

(2.1)

for every u, X, Y ∈ Mx , where r2 = gx (u, u). If dim M = 1, then βi = 0 for all i = 1, 2, 3.
Put

φi (t) = αi (t)+ tβi (t), α(t) = α1(t)(α1 + α3)(t)− α2
2(t),

φ(t) = φ1(t)(φ1 + φ3)(t)− φ2
2(t), (2.2)

for all t ∈ R
+. Then, a g-natural metric G on T M is Riemannian if and only if the following

inequalities hold for all t ∈ R
+:

α1(t) > 0, φ1(t) > 0, α(t) > 0, φ(t) > 0. (2.3)

Throughout the paper, when we consider an arbitrary Riemannian g-natural metric G on
T M , we implicitly suppose that G is defined via (2.1) by the functions αi , βi : R

+ → R, i =
1, 2, 3, satisfying (2.3).

In literature, there are some well-known Riemannian metrics on the tangent sphere bun-
dle, which turn out to be special cases of Riemannian g-natural metrics (satisfying (2.3)). In
particular:

• the Sasaki metric gS is obtained for α1 = 1 and α2 = α3 = β1 = β2 = β3 = 0.
• the Cheeger–Gromoll metric gGC [18,28] is obtained when α2 = β2 = 0, α1(t) =

β1(t) = −β3(t) = 1
1+t and α3(t) = t

1+t .

• metrics of Cheeger-Gromoll type hm,r [11] are obtained for α1(t) = 1
(1+t)m , α3 = 1 −

α1, α2 = β2 = 0, β1(t) = −β3(t) = r
(1+t)m , where m ∈ R and r ≥ 0.
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• Kaluza–Klein metrics, as commonly defined on principal bundles (see [35], Subsection
I.6 in [21], and Theorem 1, Definition 1 in the next Section), are obtained for α2 = β2 =
β1 + β3 = 0.

• The class of metrics of Kaluza–Klein type, which includes all examples above, is defined
by the geometric condition of orthogonality between horizontal and vertical distributions
[16,33]. Thus, a Riemannian g-natural metric G is of Kaluza–Klein type if α2 = β2 = 0.

Next, the tangent sphere bundle of radius r > 0 over a Riemannian manifold (M, g) is
the hypersurface Tr M = {(x, u) ∈ T M : gx (u, u) = r2}. The tangent space of Tr M , at a
point (x, u) ∈ Tr M , is given by

(Tr M)(x,u) = {Xh + Y v : X ∈ Mx , Y ∈ {u}⊥ ⊂ Mx }. (2.4)

When r = 1, T1 M is called the unit tangent (sphere) bundle.
By definition, g-natural metrics on T1 M are the restrictions of g-natural metrics of T M

to its hypersurface T1 M . As proved in [4], every Riemannian g-natural metric G̃ on T1 M is
necessarily induced by a Riemannian g-natural G on T M of the special form

⎧
⎪⎨

⎪⎩

G(x,u)(Xh, Y h) = (a + c) gx (X, Y )+ β gx (X, u)gx (Y, u),

G(x,u)(Xh, Y v) = G(x,u)(Xv, Y h) = b gx (X, Y ),

G(x,u)(Xv, Y v) = a gx (X, Y ),

(2.5)

for three real constants a, b, c and a smooth function β : [0,∞) → R. Such a metric G̃ on
T1 M only depends on the value d := β(1) of β at 1, and conditions (2.3) for G yield that G̃
is Riemannian if and only if

a > 0, α := a(a + c)− b2 > 0 and φ := a(a + c + d)− b2 > 0. (2.6)

Let now G̃ denote an arbitrary Riemannian g-natural metric on T1 M . Using the Schmidt’s
orthonormalization process, a simple calculation yields that the vector field on T M defined
by

N G
(x,u) = 1√

(a + c + d)φ
[−buh + (a + c + d)uv], (2.7)

for all (x, u) ∈ T M , is unit normal at any point of T1 M .
One then introduces the tangential lift X tG –with respect to G–of a vector X ∈ Mx to

(x, u) ∈ T1 M as the tangential projection of the vertical lift of X to (x, u) with respect to
N G , that is,

XtG = Xv − G(x,u)

(
Xv, N G

(x,u)

)
N G
(x,u) = Xv −

√
φ

a + c + d
gx (X, u) N G

(x,u). (2.8)

If X ∈ Mx is orthogonal to u, then XtG = Xv .
The tangent space (T1 M)(x,u) of T1 M at (x, u) is spanned by vectors of the form Xh and

Y tG , where X, Y ∈ Mx . In particular, ξ̃ = uh is the geodesic flow vector field on T1 M . The
Riemannian metric G̃ on T1 M , induced from G, is completely determined by formulae

⎧
⎪⎨

⎪⎩

G̃(x,u)(Xh, Y h) = (a + c) gx (X, Y )+ d gx (X, u)gx (Y, u),

G̃(x,u)(Xh, Y tG ) = G̃(x,u)(XtG , Y h) = b gx (X, Y ),

G̃(x,u)(XtG , Y tG ) = a gx (X, Y )− φ
a+c+d gx (X, u)gx (Y, u),

(2.9)

123



Geometry of Kaluza–Klein metrics on the sphere S
3 883

for all (x, u) ∈ T1 M and X, Y ∈ Mx . It should be noted that, by (2.9), b = 0 holds if and
only if horizontal and vertical lifts are orthogonal with respect to G̃. Moreover, condition
b = 0 characterizes metrics on T1 M induced by Riemannian g-natural metrics on T M of
Kaluza–Klein type.

We also explicitly remark that the Sasaki metric on T1 M is the Riemannian g-natural met-
ric of the form (2.9) with a = 1 and b = c = d = 0. Metrics of Cheeger-Gromoll type hm,r

on the tangent bundle T M induce on T1 M the one-parameter family of Riemannian g-natural
metrics, which does not depend on r , defined by b = d = 0 and a = 1/2m, c = 1 − a.
Metrics of Kaluza–Klein type on the tangent bundle T M induce on T1 M the three-parameter
family of Riemannian g-natural metrics for which b = 0 (and a, a + c > 0, a + c + d > 0).
Moreover, Kaluza–Klein metrics on the tangent bundle T M induce on T1 M the two-param-
eter family of Riemannian g-natural metrics for which b = d = 0 (and a, a + c > 0). For
metrics of Kaluza–Klein type, (2.9) reduces to

⎧
⎪⎪⎨

⎪⎪⎩

G̃(x,u)(Xh, Y h) = (a + c) gx (X, Y )+ d g(X, u)g(Y, u),

G̃(x,u)(Xh, Y tG ) = G̃(x,u)(XtG , Y h) = 0,

G̃(x,u)(XtG , Y tG ) = a(gx (X, Y )− gx (X, u)gx (Y, u)).

(2.10)

The Levi-Civita connection of an arbitrary Riemannian g-natural metric on T1 M was calcu-
lated in [1]. In the special case of a metric of Kaluza–Klein type, Proposition 5 of [1] yields
at once the following.

Proposition 1 At (x, u) ∈ T1 M, the Levi-Civita connection ∇̃ associated to an arbitrary
metric G̃ of Kaluza–Klein type, as described in (2.10), is given by

(∇̃Xh Y h)(x,u) = (∇X Y )hx +
{

−1

2
R(Xx , Yx )u − d

2a
[g(Yx , u) Xx + g(Xx , u) Yx ]

+d

a
g(Yx , u)g(Xx , u)]u

}tG
,

(∇̃Xh Y tG )(x,u) =
{

− a

2(a + c)
R(Yx , u)Xx + d

2(a + c)
g(Xx , u) Yx

+ d

2(a + c)(a + c + d)
[a g(R(Xx , u)Yx , u)+ (a + c) g(Xx , Yx )

− (2(a + c)+ d) g(Xx , u)g(Yx , u)]u
}h

+ (∇X Y )tGx ,

(∇̃XtG Y h)(x,u) =
{

− a

2(a + c)
R(Xx , u)Yx + d

2(a + c)
g(Yx , u) Xx

+ d

2(a + c)(a + c + d)
[a g(R(Xx , u)Yx , u)+ (a + c) g(Xx , Yx )

− (2(a + c)+ d) g(Xx , u)g(Yx , u)]u
}h

,

(∇̃XtG Y tG )(x,u) = −g(Yx , u)XtG
x ,

for all (x, u) ∈ T1 M and X, Y vector fields on M.

With regard to the curvature of Kaluza–Klein metrics described by (2.10) with d = 0,
from [3], we easily deduce the following.
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Proposition 2 Let (M, g) be a Riemannian manifold and G̃ be a Kaluza–Klein metric on
T1 M. Then:

(i) R̃(Xh, Y h)Zh =
{

R(X, Y )Z + a

4(a + c)
[R(R(Y, Z)u, u)X − R(R(X, Z)u, u)Y

−2R(R(X, Y )u, u)Z ]
}h

+
{

1

2
(∇Z R)(X, Y )u

}tG
,

(ii) R̃(Xh, Y tG )Zh =
{

− a

2(a + c)
(∇X R)(Y, u)Z

}h

+
{

a

4(a + c)
R(X, R(Y, u)Z)u + 1

2
R(X, Z)Y

}tG
,

(iii) R̃(XtG , Y tG )ZtG = {g(Y, Z)X − g(X, Z)Y }tG ,

for all x ∈ M, (x, u) ∈ T1 M and tangent vectors X, Y, Z ∈ Mx , where the operation of tan-
gential lift from Mx to (x, u) ∈ T1 M is only applied to vectors of Mx , which are orthogonal
to u.

Let now G̃ac denote a Kaluza–Klein metric on T1S
2(κ), determined by the real parameters

a, c, satisfying a, a + c > 0. Let J̃ be the standard complex structure of S
2 ≡ CP

1. We can
consider on T1S

2(κ) the global G̃-orthogonal frame field {( J̃ u)v(x,u), ( J̃ u)h(x,u), uh
(x,u)}. Note

that ||( J̃ u)v||2
G̃ac

= a and ||( J̃ u)h ||2
G̃ac

= ||uh ||2
G̃ac

= a + c.

Taking into account (2.10) and Proposition 2, a straightforward calculation yields that the
sectional curvatures on (T1S

2(k), G̃ac) satisfy

K (uh, ( J̃ u)h) = 1

a + c

(

κ − 3a κ2

4(a + c)

)

, K (( J̃ u)v, V ) = a κ2

4(a + c)2
,

for any V ∈ Span(uh, ( J̃ u)h). In particular, we have the following.

Proposition 3 If (M, g) = (S2(κ), g0) and G̃ac is a Kaluza–Klein metric on T1S
2, then

(T1S
2, G̃ac) has constant sectional curvature K̃ if and only if κ a = (a + c). In this case,

K̃ = 1/(4a) = κ/(4(a + c)).

3 Metrics of Kaluza–Klein type on S
3

We start with the description of a covering map from S
3(κ/4) to T1S

2(κ) in terms of quater-
nions, where S

n(c) denotes the standard sphere of constant sectional curvature c. Consider the
quaternions algebra H = {q = a1+a2i+a3 j+a4k : a1, a2, a3, a4 ∈ R}. Then, the unit sphere
is given by S

3(1) = {q ∈ H : ||q|| = 1}. For any q ∈ S
3(1), the map ϕq(z) := q̄zq defines an

orthogonal transformation of H, which leaves invariant R
3 = {q ∈ H : q = a2i +a3 j +a4k}.

More precisely, the map

� : S
3(1) → SO(3), q �→ ϕq ,
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describes S
3(1) as the universal covering of SO(3). Explicitly, for any q = (a1 +a2i +a3 j +

a4k) ∈ S
3(1), one has

ϕq(i) = (a2
1 + a2

2 − a2
3 − a2

4)i + 2(a2a3 − a1a4) j + 2(a1a3 + a2a4)k,

ϕq( j) = 2(a1a4 + a2a3)i + (a2
1 + a2

3 − a2
2 − a2

4) j + +2(a3a4 − a1a2)k,

ϕq(k) = 2(a2a4 − a1a3)i + 2(a1a2 + a3a4) j + (a2
1 + a2

4 − a2
2 − a2

3)k.

Then, if we put z1 = (a1 + ia2), z2 = (a3 + ia4) ∈ C, the matrix of SO(3) corresponding
to ϕq is given by

Aq =
⎛

⎜
⎝

|z1|2 − |z2|2 2Im(z1z2) −2Re(z1z2)

2Im(z1 z̄2) Re(z̄2
1 + z2

2) Im(z2
1 − z̄2

2)

2Re(z1 z̄2) Im(z̄2
1 + z2

2) Re(z1
2 − z̄2

2)

⎞

⎟
⎠

and we put �(q) = Aq for any q ∈ S
3(1). On the other hand, since

T1S
2(κ) = {

(x, u) ∈ R
3 × R

3 : x ∈ S
2(κ), u⊥x, ||u|| = 1

}
,

we can consider the diffeomorphism

ψ : T1S
2(κ) → SO(3), (x, u) �→ (

√
κ x,

√
κ u ∧ x, u),

and the inverse diffeomorphism

ψ−1 : SO(3) → T1S
2(κ), A = (c1 c2 c3) �→ (x, u) =

(
1√
κ

c1, c3

)

,

where the ci denote the columns of A ∈ SO(3). Then, introducing the homothety

τ : S
3(κ/4) → S

3(1), p �→
√
κ

2
p,

we have the covering map

F = ψ−1 ◦� ◦ τ : S
3(κ/4) → T1S

2(κ), p = 2√
κ

q �→
(

1√
κ
ϕq(i), ϕq(k)

)

. (3.1)

More explicitly, if p = (z1, z2), we have

F(z1, z2) =
(√

κ

4

(|z1|2 − |z2|2, 2z1 z̄2
)
,
κ

4

(−2Re(z1z2), z2
1 − z̄2

2

) )
.

We remark that the covering map F was also constructed in [10] by a different approach.
Consider now the unit vector fields {ξ1, ξ2, ξ3} on S

3(κ/4) defined, at any point p =
(x1, x2, x3, x4) ∈ S

3(κ/4), by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ1(p) =
√
κ

2 i p =
√
κ

2 (−x2, x1,−x4, x3),

ξ2(p) =
√
κ

2 j p =
√
κ

2 (−x3, x4, x1,−x2),

ξ3(p) =
√
κ

2 kp =
√
κ

2 (−x4,−x3, x2, x1).

(3.2)

The differential of the covering map F : S
3(κ/4) → T1S

2(κ) defined by (3.1) was calculated
in [10], proving the following formulae:

F∗ξ1 = −√
κ ( J̃ u)v, F∗ξ2 = uh, F∗ξ3 = ( J̃ u)h, where u = ϕq(k). (3.3)

123



886 G. Calvaruso, D. Perrone

Now, we consider on the standard three-sphere (S3(κ/4), g0) the 1-forms θ1, θ2, θ3 dual,
with respect to g0, to the unit vector fields {ξ1, ξ2, ξ3} on S

3(κ/4) defined by (3.2). Then, for
any arbitrary choice of three real constants λ,μ, ν > 0, we can introduce a corresponding
Riemannian metric on S

3, given by

g̃λμν = λ θ1 ⊗ θ1 + μθ2 ⊗ θ2 + ν θ3 ⊗ θ3. (3.4)

Let G̃ denote an arbitrary Riemannian g-natural metric of Kaluza–Klein type on T1S
2(κ),

determined by three real parameters a, c, d , satisfying a, a + c, a + c + d > 0. If we put

X1 = ( J̃ u)v, X2 = ( J̃ u)h, X3 = uh,

then {X1, X2, X3} is a global G̃-orthogonal frame field on T1S
2(κ), with

||X1||2G̃ = a, ||X2||2G̃ = a + c, ||X3||2G̃ = a + c + d.

Let now ηi denote the 1-forms G̃-dual of Xi , i = 1, 2, 3. Then, from (2.10), we get

G̃ = 1

a
η1 ⊗ η1 + 1

a + c
η2 ⊗ η2 + 1

a + c + d
η3 ⊗ η3

and the map F described in (3.1) determines a corresponding Riemannian metric F∗G̃ on
S

3, given by

g̃ = 1

a
(F∗η1)⊗ (F∗η1)+ 1

a + c
(F∗η2)⊗ (F∗η2)+ 1

a + c + d
(F∗η3)⊗ (F∗η3).

Now, (3.3) implies at once

F∗η1 = −√
k a θ1, F∗η2 = (a + c) θ3, F∗η3 = (a + c + d) θ2

and so,

g̃ = ka θ1 ⊗ θ1 + (a + c + d) θ2 ⊗ θ2 + (a + c) θ3 ⊗ θ3.

Thus, g̃ is exactly of the form (3.4). More precisely, g̃ is determined by three real parameters
λ,μ, ν > 0, given by λ = ka, μ = a + c + d, ν = a + c. So, we proved the following.

Theorem 1 The covering map F establishes a one-to-one correspondence between
Riemannian metrics g̃λμν on S

3 of the form (3.4) and metrics G̃ of Kaluza–Klein type on
T1S

2(κ) of the form (2.9), defined by parameters

a = λ/κ, b = 0, c = ν − λ/κ and d = μ− ν.

Note that if λ = μ = ν = 1, then (a + c =)aκ = 1 and d = 0. So, by Propo-
sition 2, (T 1S2(κ), G̃) has constant sectional curvature κ/4. Correspondingly, (S3, g̃) =
(S3(κ/4), g0).

Next, Berger metrics on S
3(κ/4) are of the form (3.4) with μ = ν = 1. Therefore, they

correspond via F to Kaluza–Klein metrics on T1S
2(k), satisfying a + c = 1 and d = 0.

Thus, we get the following result, which corresponds to Theorem 1.1 of [10].

Corollary 1 (i) The standard metric g0 on S
3(κ/4), obtained for λ = μ = ν = 1,

corresponds to the metric G̃ on T1S
2(k) defined by a = 1/κ , b = d = 0, c = 1−1/κ .

(ii) The Berger metrics on S
3(κ/4), obtained for μ = ν = 1, correspond to metrics G̃a

on T1S
2(k) defined by a = λ/κ , b = d = 0, c = 1 − λ/κ .

Both metrics G̃ and G̃a are of Cheeger-Gromoll type.
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The above results justify the following.

Definition 1 A Riemannian metric g on S
3 is said to be of Kaluza–Klein type if there exist

three real constants λ,μ, ν > 0, such that g = g̃λμν is described by (3.4). In particular, g is
said to be a Kaluza–Klein metric if μ = ν. By a sphere of Kaluza–Klein type, we shall mean
the sphere S

3 equipped with any Riemannian metric g̃λμν described by (3.4).

Let now g̃λμν be an arbitrary Riemannian metric of Kaluza–Klein type on S
3. We know

from the proof of Theorem 1 that F : (S3, g̃λμν) → (T1S
2(κ), G̃) is a local isometry, where

G̃ is the g-natural metric of Kaluza–Klein type determined by parameters a, c, d , such that
λ = κa, μ = a + c + d, ν = a + c. Then, starting from Proposition 1, it is easy to describe
the Levi-Civita connection ∇ of (S3, g̃λμν). In particular, for the global field {ξ1, ξ2, ξ3}
orthogonal with respect to g̃λμν , we obtain:

∇ξ1ξ1 = 0, ∇ξ2ξ1 =
√
κ(λ−μ+ν)

2ν ξ3, ∇ξ3ξ1 = −
√
κ(λ+μ−ν)

2μ ξ2,

∇ξ1ξ2 =
√
κ(λ−μ−ν)

2ν ξ3, ∇ξ2ξ2 = 0, ∇ξ3ξ2 =
√
κ(λ+μ−ν)

2λ ξ1,

∇ξ1ξ3 = −
√
κ(λ−μ−ν)

2μ ξ2, ∇ξ2ξ3 = −
√
κ(λ−μ+ν)

2λ ξ1, ∇ξ3ξ3 = 0.

(3.5)

It is well known that a vector field V is Killing if and only if ∇V is skew-symmetric. In
particular, from (3.5), we deduce at once that ξ1 (respectively, ξ2, ξ3) is a Killing vector field
if and only if μ = ν (respectively, λ = ν, λ = μ).

We shall now describe the curvature of an arbitrary sphere of Kaluza–Klein type (S3, g̃λμν).
By (3.4), we have that

e1 := 1√
λ
ξ1, e2 := 1√

μ
ξ2, e3 := 1√

ν
ξ3 (3.6)

is a global frame field on S
3, orthonormal with respect to g̃λμν . Then, the covariant deriva-

tives ∇ei e j can be deduced at once from (3.5). With regard to the curvature components with
respect to {e1, e2, e3}, a standard calculation then gives

R1212 = κ

4

[
(λ− μ)2 − ν2

λμν
+ 2

λ+ μ− ν

λμ

]

, R1213 = 0,

R1313 = κ

4

[
(λ− ν)2 − μ2

λμν
+ 2

λ− μ+ ν

λν

]

, R1223 = 0,

R2323 = κ

4

[
(ν − μ)2 − λ2

λμν
− 2

λ− μ− ν

μν

]

, R1323 = 0.

(3.7)

Notice that the curvature of (S3, g̃λμν) could also be deduced from the description of the
curvature of (T1 M, G̃) given in [2], using the fact that F : (S3, g̃λμν) → (T1S

2(κ), G̃acd) is
an isometry when λ = κa, μ = a + c + d and ν = a + c.

Next, formulae (3.7) yield at once that the components of the Ricci tensor � with respect
to {ei } are given by

�11 = κ
[
λ2− (μ− ν)2

]

2λμν
, �22 = κ

[
μ2− (λ− ν)2

]

2λμν
, �33 = κ

[
ν2− (λ− μ)2

]

2λμν
,

�12 = 0, �13 = 0, �23 = 0.
(3.8)

In particular, �i i , i = 1, 2, 3, are exactly the Ricci eigenvalues of (S3, g̃λμν), with corre-
sponding eigenvectors ei . A direct calculation then proves the following.
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Theorem 2 Let (S3, g̃λμν) denote an arbitrary three-sphere of Kaluza–Klein type. Then, its
Ricci curvature is described by (3.8). In particular:

(i) (S3, g̃λμν) has three distinct Ricci eigenvalues if and only if λ,μ, ν satisfy restrictions

λ �= μ �= ν �= λ, λ �= μ+ ν, μ �= λ+ ν, ν �= λ+ μ. (3.9)

(ii) (S3, g̃λμν) has two distinct Ricci eigenvalues if and only if either
(i i)a exactly two of λ,μ, ν coincide; or (i i)b one of them is the sum of the remaining
two.

(iii) the three Ricci eigenvalues of (S3, g̃λμν) coincide (and (S3, g̃λμν) has constant sec-
tional curvature) if and only if λ = μ = ν.

Berger metrics are included in case (i i)a of Proposition 2. Also the metrics corresponding
to case (i i)b have a special geometrical meaning. In fact, by (3.8), if either λ = μ+ ν, μ =
λ+ ν or ν = λ+ μ, then two Ricci eigenvalues vanish.

A Riemannian manifold (M, g) is said to be an Ivanov-Petrova manifold (shortly, an I P
manifold) if its skew-symmetric curvature operator

R(π) = |g(X, X)g(Y, Y )− g(X, Y )2|−1/2 R(X, Y ),

where π = Span(X, Y ), has constant eigenvalues on G+(2, n), the Grassmannian of all
oriented 2-planes. I P manifolds of dimension n ≥ 4 are completely classified. A three-
dimensional Riemannian manifold is I P if and only if either it has constant curvature, or its
Ricci tensor has rank 1 (see for example [15] and references therein). By Proposition 2, we
then have at once the following.

Corollary 2 A sphere (S3, g̃λμν) of Kaluza–Klein type is an I P manifold if and only if either
the three parameters λ,μ, ν coincide, or one of them is the sum of the remaining two.

4 Homogeneity properties of spheres of Kaluza–Klein type

First of all, we remark that (3.5) implies

[ξ1, ξ2] = −√
κ ξ3, [ξ2, ξ3] = −√

κ ξ1, [ξ3, ξ1] = −√
κ ξ2.

Hence, Proposition 1.9 of [34] yields the following.

Theorem 3 Any sphere of Kaluza–Klein type (S3, g̃λμν) has a Lie group structure, unique
up to isomorphisms, such that the vector fields ξ1, ξ2, ξ3 are left invariant. In particular,
(S3, g̃λμν) is a homogeneous space.

More precisely, the signs of the coefficients in the Lie brackets above, together with the
classification given in [26], yield that g̃λμν corresponds to a left invariant Riemannian metric
on SU (2), as it could be expected.

We shall now study homogeneous structures on spheres of Kaluza–Klein type. We first
recall some basic facts about homogeneous structures. For a detailed and systematic study,
we refer to [34]. We start with the following.

Definition 2 [34] Let (M, g) be a Riemannian manifold. A (Riemannian) homogeneous
structure on (M, g) is a tensor field T of type (1, 2) on M , such that the connection ∇̃ = ∇−T
satisfies

∇̃g = 0, ∇̃ R = 0, ∇̃T = 0. (4.1)
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The geometric meaning of the existence of a homogeneous structure is explained by the
renowned Theorem of Ambrose and Singer, which may be stated in the following way.

Theorem 4 [7,34] A connected, simply connected and complete Riemannian manifold
(M, g) is homogeneous if and only if it admits a homogeneous structure.

Each homogeneous structure on a connected, simply connected and complete Riemannian
manifold (M, g) gives a representation of M as quotient space G/H , where G is a Lie group
of isometries acting transitively on M . More precisely, ∇̃ = ∇ − T turns out to be the canon-
ical connection [24], associated to the corresponding reductive decomposition g = m ⊕ h of
the Lie algebra g of G.

It is well known that two different homogeneous structures T1 and T2 on (M, g) give rise
to either different decompositions g = m1 ⊕ h1 = m2 ⊕ h2 of the same Lie algebra g, or
to representations of (M, g) corresponding to some nonisomorphic Lie algebras g1 and g2.
In particular, the following special case was pointed out by the first author in [14], in more
general pseudo-Riemannian settings.

Suppose that (M, g) is a connected, simply connected and complete Riemannian man-
ifold, admitting a global orthonormal frame field {e1, ..., en} and some real constants γ k

i j ,

satisfying ∇ei e j = ∑
k γ

k
i j ek for all i, j . Then, M has a Lie group structure, unique up to

isomorphisms, such that ei are left invariant vector fields and g is left invariant. In fact, one
can then define a special homogeneous structure T on (M, g), putting

Tei := 1

2

∑

jk

γ k
i j e j ∧ ek, (4.2)

for all i , where e j ∧ ek(X) = g(e j , X)ek − g(ek, X)e j , and the above conclusion eas-
ily follows from Proposition 1.9 of [34]. It must be noted that if T satisfies (4.2), then
∇̃ei e j = ∇ei e j − T (ei , e j ) = 0 for all indices i, j .

The above comments on homogeneous structures, though brief, show that it is a natural
problem to classify all homogeneous structures of a given homogeneous space. Homoge-
neous structures on Berger spheres were obtained in [20]. We shall now obtain homogeneous
structures on spheres of Kaluza–Klein type, proving the following.

Theorem 5 Let (S3, g̃λμν) denote an arbitrary sphere of Kaluza–Klein type.

(i) If λ,μ, ν satisfy (3.9), then (S3, g̃λμν) only admits one homogeneous structure, given
by

T = γ 3
12 θ

1 ⊗ (θ2 ∧ θ3)+ γ 3
21 θ

2 ⊗ (θ1 ∧ θ3)+ γ 2
31 θ

3 ⊗ (θ1 ∧ θ2).

This homogeneous structure corresponds to the Lie group structure of (S3, g̃λμν).
(ii) When λ = μ+ν, the sphere (S3, g̃λμν) admits a one-parameter family of homogeneous

structures, given by

T = tθ1 ⊗ (θ2 ∧ θ3)+
√

k

μν(μ+ ν)

(
νθ2 ⊗ (θ1∧ θ3)− μθ3 ⊗ (θ1∧ θ2)

)
, t ∈ R.

For t = 0, T is the homogeneous structure corresponding to the Lie group structure
of (S3, g̃λμν).
Homogeneous structures of (S3, g̃λμν) when either μ = λ + ν or ν = λ + μ can be
easily deduced from this case, interchanging the coefficients λ,μ, ν and the indices
1, 2, 3 in a suitable way.
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(iii) When λ �= μ = ν, the homogeneous structures on (S3, g̃λμν) are given by

T = t θ1 ⊗ (θ2 ∧ θ3)+ 1

2μ

√
κ

λ
λ

(
θ2 ⊗ (θ1 ∧ θ3)− θ3 ⊗ (θ1 ∧ θ2)

)
, t ∈ R.

For t = 1
2μ

√
κ
λ
(λ − 2μ), T is the homogeneous structure corresponding to the Lie group

structure of (S3, g̃λμν).
Homogeneous structures of (S3, g̃λμν) when either μ �= λ = ν or ν �= λ = μ easily

follow from this case.

Proof Let (S3, g̃λμν) be an arbitrary sphere of Kaluza–Klein type. We consider the corre-
sponding global orthonormal frame field {e1, e2, e3} described by (3.6) and put ∇ei e j =∑

k γ
k
i j ek for all indices i, j . By (3.5) and (3.6), γ k

i j is constant for all i, j, k. A homogeneous

structure T on (S3, g̃λμν) is uniquely determined by its components T k
i j with respect to {ei },

defined by

T (ei , e j ) :=
∑

k

T k
i j ek,

for all indices i, j = 1, 2, 3. We explicitly remark that the case of the special structure
described in (4.2) occurs when T k

i j = γ k
i j for all i, j, k. As {ei } is orthonormal, the Ambrose-

Singer equations (4.1) are equivalent to the following system:
⎧
⎪⎪⎨

⎪⎪⎩

T k
i j + T j

ik = 0, i, j, k = 1, 2, 3,

∇i� jk = −T r
i j�rk − T r

ik� jr , i, j, k = 1, 2, 3,

T r
jk T s

ir − T r
ik T s

jr − T r
i j T s

rk = ei (T s
jk)+ γ s

ir T r
jk − γ r

i j T s
rk − γ r

ik T s
jr , i, j, k, s = 1, 2, 3.

(4.3)

Notice that in dimension three, the curvature is completely determined by the Ricci tensor.
For this reason, in (4.3), we replaced the second Ambrose-Singer equation ∇̃ R = 0 by the
equivalent condition ∇̃� = 0.

Now, using formulae (3.5) and (3.8), we easily find that the components of ∇� satisfy

∇i� jk = γ k
i j (� j j − �kk), (4.4)

for all indices i, j, k. On the other hand, we know from (3.8) that �i j = 0 whenever i �= j .
Henceforth, the second equation in (4.3) becomes

∇i� jk = T k
i j (� j j − �kk). (4.5)

Comparing (4.4) with (4.5), we see that if (S3, g̃λμν) has three distinct Ricci eigenvalues,
then T k

i j = γ k
i j for all i, j, k. Thus, this sphere (S3, g̃λμν) of Kaluza–Klein type only admits

one homogeneous structure, namely, the one corresponding to the Lie group structure of the
manifold. By Proposition 2, (S3, g̃λμν) has three distinct Ricci eigenvalues if and only if the
coefficients λ,μ, ν satisfy restrictions (3.9). Considering the (0, 3)-tensor T (X, Y, Z) :=
g(T (X, Y ), Z) corresponding to T , we then obtain case (i) of Theorem 5.

We are now left with the case when the Ricci eigenvalues of (S3, g̃λμν) are not all distinct.
Obviously, if �11 = �22 = �33, then (S3, g̃λμν) has constant sectional curvature. By Propo-
sition 2, this case only occurs when λ = μ = ν, that is, when g̃λμν = λg0. Homogeneous
structures on the canonical sphere (S3, g0) were already classified in Theorem 3.1 of [20].

Hence, we only have to consider the case when a sphere (S3, g̃λμν) of Kaluza–Klein
type has exactly two distinct Ricci eigenvalues. Without loss of generality, we can assume
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�11 �= �22 = �33, which, by (3.8), holds if and only if either λ �= μ = ν or λ = μ+ ν. We
treat these two cases separately.

First case: λ = μ + ν. By (3.5) and (3.6), the Levi-Civita connection of (S3, g̃λμν) is now
completely determined by

γ 3
21 = −γ 1

23 =
√

k ν

μ(μ+ ν)
, γ 2

31 = −γ 1
32 = −

√
k μ

ν(μ+ ν)
, γ k

i j = 0 otherwise,

and (3.8), (4.4) yield that the only nonvanishing components of � and ∇� are, respectively,
given by

�11 = 2κ

μ+ ν
and ∇2�13 = ∇2�31 = 2κ

μ+ ν
γ 3

21, ∇3�12 = ∇3�21 = 2κ

μ+ ν
γ 2

31.

Applying the first two equations of (4.3), formulae above easily yield that when λ = μ+ν,
the components of an arbitrary homogeneous structure T on (S3, g̃λμν) satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T j
ik = −T k

i j ,

T 2
11 = T 3

11 = T 2
21 = T 3

31 = 0,

T 2
31 = γ 2

31, T 3
21 = γ 3

21

(4.6)

and so, T depends on three unknown functions T 3
12, T 3

22, T 3
32. We now take (i, j, k, s) =

(2, 2, 3, 2) in the third equation of (4.3). Using (4.6), we find

0 = T 3
22(γ

2
31 − γ 3

21) = −
√

k
μν(μ+ν) (μ+ ν) T 3

22 = −
√

k
μν(μ+ν)λ T 3

22

and so, T 3
22 = 0. Next, we take (i, j, k, s) = (3, 2, 3, 2) in the third equation of (4.3). Tak-

ing into account (4.6) and T 3
22 = 0, we obtain (T 3

32)
2 = 0, that is, T 3

32 = 0. Finally, using
T 3

22 = T 3
32 = 0 and (4.6), we take (i, j, k, s) = (1, 1, 3, 2), (2, 1, 2, 3), (3, 1, 3, 2) in the

third equation of (4.3) and we get e1(T 3
12) = 0, e2(T 3

12) = 0 and e3(T 3
12) = 0, respectively.

Henceforth, T 3
12 is a real constant. It is now easy to check that the third equation of (4.3)

is satisfied for any choice of indices i, j, k, s. Summarizing, when λ = μ + ν, an arbitrary
homogeneous structure T on (S3, g̃λμν) is completely determined by its components

T 3
12 = −T 2

13 = t, T 3
21 = −T 1

23 = γ 3
21, T 2

31 = −T 1
32 = γ 2

31, T k
i j = 0 otherwise,

where t is an arbitrary real constant. This gives case (ii) of Theorem 5.

Second case: λ �= μ = ν. Proceeding as in the previous case, we first calculate the compo-
nents of the Levi-Civita connection, the Ricci tensor and its covariant derivative with respect
to {ei }, obtaining

γ 3
12 = −γ 1

23 = 1

2μ

√
κ

λ
(λ− 2μ), γ 3

21 = −γ 1
23 = −γ 2

31 = γ 1
32 = 1

2μ

√
κ

λ
λ,

γ k
i j = 0 otherwise,

�11 = κλ

2μ2 , �22 = �33 = κ(2μ− λ)

2μ2 , �i j = 0 otherwise,
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and

∇2�13 = ∇2�31 = κ(λ− μ)

μ2 γ 3
21, ∇3�12 = ∇3�21 = κ(λ− μ)

μ2 γ 2
31,

∇i� jk = 0 otherwise.

The formulae above imply that the first two equations of (4.3) give again restrictions (4.6).
Therefore, even when λ �= μ = ν, the components of an arbitrary homogeneous structure T
on (S3, g̃λμν) may be expressed by means of three unknown functions T 3

12, T 3
22, T 3

32. Taking
into account (4.6), a long but straightforward calculation yields that the third equation of
(4.3) is now equivalent to the following system of partial differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1(T 3
12) = 0, e2(T 3

12) = 0, e3(T 3
12) = 0,

e1(T 3
22) = −T 3

32(T
3

12 − γ 3
12), e2(T 3

22) = −T 3
22T 3

32, e3(T 3
22) = −(T 3

32)
2,

e1(T 3
32) = T 3

22(T
3

12 − γ 3
12), e2(T 3

22) = (T 3
22)

2, e3(T 3
22) = T 3

22T 3
32.

(4.7)

More precisely, equations in the first row of (4.7) are obtained from the third equation of
(4.3) taking (i, j, k, s) = (1, 1, 3, 2), (2, 1, 2, 3), (3, 1, 3, 2), the ones in the second row
taking (i, j, k, s) = (1, 2, 3, 2), (2, 2, 2, 3), (3, 2, 3, 2), and the ones in the third row taking
(i, j, k, s) = (1, 3, 3, 2), (2, 3, 2, 3), (3, 3, 3, 2), respectively.

The first row of equations in (4.7) is equivalent to requiring that T 3
12 is a real constant. We

shall now prove that the remaining equations in (4.7) yield T 3
22 = T 3

32 = 0. In fact, the above
description of the Levi-Civita connection of (S3, g̃λμν) easily implies

[e1, e2] = −
√
κ

λ
e3, [e2, e3] = −

√
κ

λ

λ

μ
e1, [e3, e1] = −

√
κ

λ
e2. (4.8)

We now put u := T 3
22, v := T 3

32 and calculate the Lie brackets [ei , e j ](u), [ei , e j ](v) both
using (4.7) and (4.8). Taking into account the constancy of both T 3

12 and γ 3
12, comparison

between the corresponding Lie brackets gives
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T 3
12 − γ 3

12)u
2 =

√
κ
λ

u2,

(T 3
12 − γ 3

12)v
2 =

√
κ
λ
v2,

(T 3
12 − γ 3

12)uv =
√
κ
λ

uv,

u(u2 + v2) = −(T 3
12 − γ 3

12)
√
κ
λ
λ
μ

u,

v(u2 + v2) = −(T 3
12 − γ 3

12)
√
κ
λ
λ
μ
v.

(4.9)

Now, system (4.9) easily implies u = v = 0. In fact, if we assume u �= 0 (respectively,
v �= 0), then the first and fourth (respectively, second and fifth) equations of (4.9) yield
u2 + v2 = −(κ/μ) < 0, which cannot occur. So, T 3

22 = T 3
32 = 0, while T 3

12 is an arbitrary
real constant. Thus, we obtain case (iii) of Theorem 5 and this ends the proof ��
Remark 1 Case (i) of Theorem 5 emphasizes the fact that not all metrics of Kaluza–Klein type
admit as many homogeneous structures as Berger metrics. In fact, each Berger sphere admits
a one-parameter family of homogeneous structures [20]. On the other hand, it is evident that
conditions (3.9) are incompatible with Berger metrics and, more in general, with Kaluza–
Klein metrics. Case (ii) of Theorem 5 extends to Kaluza–Klein metrics the classification of
homogeneous structures on the Berger spheres obtained in [20].
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We end this Section by characterizing naturally reductive spaces among spheres of Kal-
uza–Klein type. We recall that, as proved in [6], a three-dimensional (simply connected)
homogeneous Riemannian manifold (M, g) is naturally reductive if and only if its Ricci
tensor is cyclic-parallel, that is, when

(∇X�)(Y, Z)+ (∇Y�)(Z , X)+ (∇Z�)(X, Y ) = 0, (4.10)

for all vector fields X, Y, Z tangent to M . Using the description of the Ricci tensor of
(S3, g̃λμν) and its covariant derivative given in formulae (3.8) and (4.4) respectively, a
straightforward calculation permits to check when (4.10) is satisfied for a metric g̃λμν of
Kaluza–Klein type.

We find that this is never the case when (S3, g̃λμν) has three distinct eigenvalues, coher-
ently with the results of [6]. On the other hand, if μ = ν, then all spheres (S3, g̃λμν) are
naturally reductive. Finally, if λ = μ+ ν, then (S3, g̃λμν) is naturally reductive if and only
if μ = ν. Thus, taking into account Definition 1, we have the following.

Theorem 6 A sphere (S3, g̃λμν) of Kaluza–Klein type is naturally reductive if and only if at
least two among parameters λ,μ, ν coincide. In particular, if g̃λμν is a Kaluza–Klein metric,
then (S3, g̃λμν) is naturally reductive.

5 Almost contact metric geometry on spheres of Kaluza–Klein type

We first recall some basic facts about almost contact and contact metric manifolds, referring
to [13] for further information. An almost contact structure on a (2n+1)-dimensional smooth
manifold M is a triple (ϕ, ξ, η), where ϕ is a (1, 1)-tensor, ξ a global vector field and η a
1-form, such that

η(ξ) = 1, ϕ2 = −I d + η ⊗ ξ. (5.1)

Then, ϕ(ξ) = 0, η ◦ ϕ = 0 and ϕ has rank 2n. The one-form η is said to be a contact form if
η ∧ (dη)n �= 0. A Riemannian metric g on M is called compatible with the almost contact
structure (ϕ, ξ, η) if

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ). (5.2)

Given an almost contact manifold (M2n+1, ϕ, ξ, η), one considers M2n+1 ×R and the almost
complex structure defined by

J

(

X, f
d

dt

)

=
(

ϕX − f ξ, η(X)
d

dt

)

.

The almost contact structure (ϕ, ξ, η) is said to be normal if and only if the almost complex
structure J is integrable. A necessary and sufficient condition for integrability of J is the
vanishing of its Nijenhuis tensor, which, expressed in terms of the Nijenhuis tensor of ϕ,
gives

[ϕ, ϕ] + 2dη ⊗ ξ = 0. (5.3)

Next, consider the 2-form �(X, Y ) := g(X, ϕY ). A normal almost contact metric manifold
is called quasi-Sasakian if d� = 0 [12]. If

�(X, Y ) = (dη)(X, Y ), (5.4)
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then η is said to be a contact form on M, ξ the Reeb vector field, g an associated metric, and
(M, η, g) (or (M, ϕ, ξ, η, g)) is called a contact metric manifold. We recall that the set A(η),
of all associated metrics of a given contact form η, is infinite dimensional (see p. 37 of [13]).
Moreover, each associated metric has the same volume element vg = (−1)n

2nn! η ∧ (dη)n .
A contact metric manifold is said to be K -contact if ξ is a Killing vector field, or equiva-

lently, the tensor h := Lξ ϕ vanishes. A Sasakian manifold is a normal contact metric man-
ifold. Any Sasakian manifold is K -contact, and the converse holds for three-dimensional
contact metric manifolds.

In [32], the second author introduced and studied H-contact manifolds. These are con-
tact metric manifolds whose Reeb vector field ξ is a critical point for the energy functional
restricted to the space X1(M) of all unit vector fields on (M, g), considered as smooth maps
from (M, g) into its unit tangent sphere bundle T1 M equipped with the Sasaki metric. It was
proved in [32] that (M, ϕ, ξ, η, g) is H -contact if and only if ξ is an eigenvector of the Ricci
operator. In particular, Sasakian and K -contact manifolds are H -contact.

We now consider an arbitrary Riemannian metric g̃λμν of Kaluza–Klein type on the three-
sphere S

3, as described in (3.4). Let {e1, e2, e3} be the global orthonormal frame field on
(S3, g̃λμν) given by (3.6), and {θ̄1, θ̄2, θ̄3} the basis of one-forms dual to {e1, e2, e3} with
respect to g̃λμν . We put

η := θ̄1, ξ := e1, ϕ := θ̄3 ⊗ e2 − θ̄2 ⊗ e3. (5.5)

Then, a straightforward calculation proves that conditions (5.1) are fulfilled and so (5.5)
defines an almost contact structure on S

3. Moreover, such structure and g̃λμν satisfy (5.2).
Hence, we have the following.

Proposition 4 Any sphere of Kaluza–Klein type (S3, g̃λμν) is an almost contact metric man-
ifold, whose almost contact structure (ϕ, ξ, η) is described by (5.5).

We explicitly remark that, by (5.2) and (5.5), {e2, e3 = −ϕe2} is an orthonormal frame
field on the contact distribution Ker η. Next, from (3.5) and (3.6), we easily get

[e1, e2] = −
√
κν

λμ
e3, [e2, e3] = −

√
κλ

μν
e1, [e3, e1] = −

√
κμ

λν
e2. (5.6)

We can now calculate dη and we find

dη(ξ, ·) = 0, dη(e2, e3) = −dη(e3, e2) = 1

2

√
κλ

μν
> 0,

which easily implies η ∧ dη �= 0 and

(dη)(X, Y ) = 1

2

√
κλ

μν
�(X, Y ), (5.7)

for all X, Y tangent to M . Thus, (5.4) holds if and only if κλ = 4μν. Moreover, taking into
account the description of the Ricci tensor of (S3, g̃λμν) we gave in (3.8), we see that ξ is a
Ricci eigenvector. Hence, we get the following.

Theorem 7 The one-form η of the almost contact metric manifold (S3, ϕ, ξ, η, g̃λμν) is
always a contact form. In particular, it is a contact metric manifold if and only if κλ = 4μν.
In this case, (S3, ϕ, ξ, η, g̃λμν) is also H-contact.
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By Theorem 7, for any real constant κ > 0, we find a two-parameter family of (H -)contact
structures of Kaluza–Klein type on S

3.
The above description of dη also permits to easily calculate condition (5.3), characterizing

normal almost contact structures. We also recall that an α-Sasakian manifold is an almost
contact metric manifold (M, ϕ, ξ, η, g), satisfying

(∇Xϕ)Y = α
(
g(X, Y )ξ − η(Y )X

)
, (5.8)

for all tangent vector fields X, Y , where α is a real constant. 1-Sasakian manifolds are Sasa-
kian manifolds. Using (3.5), (3.6), and (5.5), a direct calculation gives ∇ξ ϕ = 0 and

(∇e2ϕ)ξ = −
√
κ(λ−μ+ν)
2
√
λμν

e2, (∇e2ϕ)e2 =
√
κ(λ−μ+ν)
2
√
λμν

ξ, (∇e2ϕ)e3 = 0,

(∇e3ϕ)ξ = −
√
κ(λ+μ−ν)
2
√
λμν

e3, (∇e3ϕ)e2 = 0, (∇e3ϕ)e3 =
√
κ(λ+μ−ν)
2
√
λμν

ξ.

Then, also taking into account Eq. (5.7) and Theorem 7, we obtain the following.

Theorem 8 For the almost contact structure (ϕ, ξ, η) on (S3, g̃λμν), described in (5.5), the
following properties are equivalent:

(i) (ϕ, ξ, η) is normal;
(ii) (ϕ, ξ, η, g̃λμν) is quasi-Sasakian.

(iii) (ϕ, ξ, η, g̃λμν) is α-Sasakian. In this case, α =
√
κλ

2μ .
(iv) μ = ν, that is, g̃λμν is a Kaluza–Klein metric.

In particular, (S3, ϕ, ξ, η, g̃λμν) is Sasakian if and only if μ = ν and κλ = 4μ2.

By Theorem 8, there exists a one-parameter family of Sasakian Kaluza–Klein structures
on the three-sphere. The special case of the standard Sasakian structure of the canonical
sphere (S3(1), g0) is obtained when (λ = ν =)μ = κ/4.

As proved in Theorem 5.2 of [20], all Berger metrics, equipped with their natural almost
contact structure, are α-Sasakian. Theorem 8 extends this result and characterizes Kaluza–
Klein spheres as spheres of Kaluza–Klein type that carry a natural α-Sasakian structure.

An almost contact manifold (M, ϕ, ξ, η) is said to be homogeneous if there exists a con-
nected Lie group G of diffeomorphisms acting transitively on M and leaving η invariant. If
a Riemannian metric g satisfies (5.2) and G is a group of isometries, then (M, η, g) is said
to be a homogeneous almost contact metric manifold. Following [23] (see also [20]), this is
equivalent to requiring that there exists a homogeneous structure T on (M, g), such that the
corresponding canonical connection ∇̃ = ∇ − T satisfies ∇̃ϕ = 0 (and so, ∇̃η = 0 and
∇̃ξ = 0).

In the case of the almost contact structure (5.5) on a sphere (S3, g̃λμν) of Kaluza–Klein
type, such condition is obviously satisfied. In fact, by Theorem 3, each sphere (S3, g̃λμν)
is a Lie group, and vector fields e1, e2, e3 are left invariant. Henceforth, by (5.5), ϕ is also
left invariant, that is, ∇̃ϕ = 0, where ∇̃ is the canonical connection associated to the special
homogeneous structure corresponding to the Lie group structure of (S3, g̃λμν). Thus, we
proved the following.

Theorem 9 Every sphere (S3, g̃λμν) of Kaluza–Klein type, equipped with the almost contact
structure (ϕ, ξ, η) described in (5.5), is a homogeneous almost contact metric manifold. If
κλ = 4μν, then (S3, ϕ, ξ, η, g̃λμν) is a homogeneous contact metric manifold.
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The second author studied simply connected homogeneous contact metric three-mani-
folds [31], showing that such manifolds are three-dimensional Lie groups equipped with
a left invariant contact metric structure and completely classifying these Lie groups. The
above explicit description of homogeneous contact metric structures on (S3, g̃λμν) can be
considered as complementary to the classification obtained in [31].

We recall that an almost contact metric manifold (M, ϕ, ξ, η, g) is said to be η-Einstein
if its Ricci tensor � is of the form

� = Ag + Bη ⊗ η, (5.9)

where A, B are two smooth functions on M . Using (3.8) and (5.5), we can easily solve
Eq. (5.9) for an arbitrary sphere (S3, ϕ, ξ, η, g̃λμν) of Kaluza–Klein type. We obtain the
following.

Proposition 5 A sphere (S3, g̃λμν) of Kaluza–Klein type, equipped with the almost con-
tact structure (ϕ, ξ, η) described in (5.5), is η-Einstein if and only if one of the following
conditions holds:

(i) λ = μ+ ν. In this case, � = 2κ

λ
η ⊗ η.

(ii) μ = ν. In this case, � = κ(2μ− λ)

2μ2 g̃λμν + κ(λ− μ)

2μ2 η ⊗ η.

In particular, all Berger spheres, equipped with their natural almost contact structures, are
η-Einstein.

Next, given a compact orientable manifold M , a Riemannian metric g on M is a critical
point of the integral of the scalar curvature, I (g) = ∫

M r vg , defining a functional on the
set M1 of all Riemannian metrics of the same total volume, if and only if g is an Einstein
metric. This famous result, due to Hilbert (1915), may be found for example in [29]. Now,
let (M, η) be a compact contact three-manifold. In [30], the second author considered the
functional I (g) restricted to the set A(η) of all associated metrics and found a weaker critical
point condition. In fact, if (M, η) is a compact contact three-manifold, then g ∈ A(η) is a
critical point of the functional I restricted to A(η) if and only if ∇ξh = 0.

We now consider an arbitrary almost contact metric structure (ϕ, ξ, η, g̃λμν) on S
3. Using

(5.6), it is easily seen that h = Lξ ϕ is determined by

h(ξ) = 0, h(e2) =
√
κ λ

4μν

ν − μ

λ
e2, h(e3) = −

√
κ λ

4μν

ν − μ

λ
e3.

We can now use the above formulae and (3.5) to calculate ∇ξh. We find that ∇ξh = 0 if and
only if either μ = ν (and so, h = 0), or λ = μ+ ν. In particular, if we restrict to the contact
metric case and take into account Proposition 5, the characterization proved in [30] leads to
the following.

Theorem 10 Consider on S
3 an arbitrary contact metric structure (ϕ, ξ, η, g̃λμν), that is,

(ϕ, ξ, η) is described by (5.5) and κλ = 4μν. Then, g̃λμν is a critical point of the functional
I restricted to A(η) if and only if (S3, ϕ, ξ, η, g̃λμν) is η-Einstein.

Remark 2 All Berger spheres are homogeneous almost contact metric manifolds (see The-
orem 5.2 in [20]). Theorem 9 extends this result to arbitrary spheres of Kaluza–Klein type,
providing a three-parameter family of three-dimensional homogeneous almost contact metric
manifolds. Our study of almost contact metric geometry of spheres of Kaluza–Klein clarifies
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which properties of Berger spheres are specific and which ones hold for broader families of
metrics on S

3.
We also point out the fact that for a metric of Kaluza–Klein type on S

3, the roles of Hopf
vector fields ξ1, ξ2, ξ3 are perfectly interchanging. Hence, the construction and results of this
Section can be promptly adapted to introduce and study some almost contact and contact
metric structures on S

3, whose Reeb vector field is collinear to either ξ2 or ξ3.

6 Harmonic morphisms from Kaluza–Klein spheres into S
2

We briefly recall the definition of harmonic maps and morphisms. A (smooth) map f :
(M ′, g′) → (M, g) between two Riemannian manifolds is said to be harmonic if f is a
critical point of the energy functional E( f,�) := 1

2

∫
�

||d f ||2dvg′ , for any compact domain
� ⊂ M ′. Harmonic maps have been characterized as maps whose tension field τ( f ) = tr∇d f
vanishes.

A map ϕ : (M ′, g′) → (M, g) is a harmonic morphism if it pulls back (local) har-
monic functions to harmonic functions, that is, for any open set U of M with ϕ−1(U ) �=
∅ and any harmonic function f on (U, g|U ), the map f ◦ ϕ is a harmonic function on
(ϕ−1(U ), g′|ϕ−1(U )). A fundamental characterization states that a smooth map is a harmonic
morphism if and only if it is harmonic and horizontally weakly conformal [19,22]. In general,
it is not easy to construct examples of harmonic morphisms, since they give rise to an overde-
termined, nonlinear system of partial differential equations. We may refer to the monograph
[9] for a survey on harmonic morphisms.

Consider now (T M,G) and (T1 M, G̃) equipped with arbitrary Riemannian g-natural met-
rics. In [17], the present authors studied necessary and sufficient conditions for the canonical
projections π : (T M,G) → (M, g) and π1 : (T1 M, G̃) → (M, g) to be harmonic mor-
phisms. In particular, we proved the following result.

Theorem 11 [17] Let (M, g) be a Riemannian manifold of dimension n > 1 and (T1 M, G̃)
its unit tangent bundle, equipped with an arbitrary Riemannian g-natural metric G̃. Then,
the canonical projection π1 : (T1 M, G̃) → (M, g) is a harmonic morphism if and only if G̃
is a Kaluza–Klein metric.

Next, we recall the description of the Hopf map in terms of quaternions. Using the notations
introduced in Sect. 3, the Hopf map can be described as follows:

h : S
3(1) → S

2(1), q �→ ϕq(i) = (
2z1 z̄2, |z1|2 − |z2|2

)
.

Generalizing the above construction to the three-sphere S
3(κ/4) and the two-sphere S

2(κ),
the Hopf map is given by

h̃ : S
3(κ/4) → S

2(κ), p �→ 1√
κ
ϕq(i),

where q =
√
κ

2 p ∈ S
3(1). Finally, denoting by π1 : T1S

2(κ) → S
2(κ) the canonical projec-

tion, the Hopf map is explicitly given by

h̃ = π1 ◦ F : S
3(κ/4) → S

2(κ)

(z1, z2) �→
√
κ

4

(
2z1 z̄2, |z1|2 − |z2|2

)
.
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Let now G̃ac denote a Kaluza–Klein metric on T1S
2(κ), determined by two real parame-

ters a and c satisfying a, a + c > 0. We put V := Span(( J̃ u)v) and H := Span(uh, ( J̃ u)h),
and denote by G̃a the Kaluza–Klein metric of constant sectional curvature K = 1/(4a), that
is, by Proposition 3 and (2.10),

⎧
⎪⎨

⎪⎩

(G̃a)(x,u)(Xh, Y h) = κa gx (X, Y ),

(G̃a)(x,u)(Xh, Y tG ) = (G̃a)(x,u)(XtG , Y h) = 0,

(G̃a)(x,u)(XtG , Y tG ) = a(gx (X, Y )− gx (X, u)gx (Y, u)).

(6.1)

Then, formulae (2.10) (with d = 0) and (6.1) easily imply that the metric G̃ac satisfies

G̃ac = κa (G̃1/κ )|V + (a + c)(G̃1/κ )|H.

We denote by g̃ac = F∗G̃ac the Riemannian metric on the sphere S
3, corresponding to the

Kaluza–Klein metric G̃ac on T1S
2(κ). Then, g̃a = F∗G̃a has constant sectional curvature

K = 1/(4a). In particular, g̃1/κ has constant sectional curvature κ/4. For any real constant
λ > 0, we put ā = λ/κ and c̄ = 1 − (λ/κ). As F∗ξ1 = −√

k( J̃ u)v , where ξ1 is the Hopf
vector field, we have

ḡλ := F∗(G̃āc̄) = λ(g̃1/κ )|V ′ + (g̃1/κ )H′ ,

where V ′ = Span(ξ1) and H′ = ξ⊥
1 . Thus, ḡλ is obtained by deforming the metric g̃1/κ , of

constant sectional curvature κ/4, in the direction of the Hopf vector field, by a real constant
λ > 0. Therefore, metrics of the form ḡλ are exactly the Berger metrics on S

3( κ4 ).
Now, the map

F : (S3, g̃ac) → (T1S
2(κ), G̃ac)

is a Riemannian covering and so, a harmonic morphism. In fact, more in general, any Rie-
mannian submersion with discrete fibers is a harmonic morphism [9]. On the other hand,
by Theorem 11, the canonical projection π1 : (T1S

2(κ), G̃ac) → (S2(κ), g0) is a harmonic
morphism for any Kaluza–Klein metric G̃ac. As the composition of harmonic morphisms is
again a harmonic morphism, the map

h̃ac = π1 ◦ F : (S3, g̃ac) → (S2(κ), g0),

is a harmonic morphism. Hence, we proved the following.

Theorem 12 Let g̃ac denote a Kaluza–Klein metric on S
3. Then, the maps

h̃ac : (S3, g̃ac) → (S2(κ), g0)

form a two-parameter family of harmonic morphisms. In particular:

(i) if a = 1/κ and c = 1 − 1/κ , then the corresponding harmonic morphism h̃ac is the
Hopf map h̃ : S

3(κ/4) → S
2(κ);

(ii) if a = (λ/κ) > 0 and c = 1 − (λ/κ), then the corresponding maps h̃λ are harmonic
morphisms defined on Berger spheres.

It is worthwhile to compare the results of Theorem 12 with the rigidity result about har-
monic morphisms S

3(1) → M2 proved by Baird and Wood [8]. In fact, they proved that
any harmonic morphism from S

3(1) to a Riemannian surface M2 is essentially the simplest
possible one, as it coincides with the standard Hopf fibration h : S

3(1) → S
2(4) after an

orthogonal change of coordinates.
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We also recall that Montaldo and Ratto [27] used a different generalization of the Hopf
construction to obtain a family of harmonic morphisms from a 5-dimensional manifold with
singularities onto the Euclidean 2-sphere S

2.
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