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GEOMETRY OF MANIFOLDS

WHICH ADMIT CONSERVATION LAWS

by D.E. BLAIR^ and A. P. STONE <1 2)

1. Introduction.

A conservation law for an endomorphism h of the localized

module of differential forms on an analytic manifold is a 1-form 0

such that both 0 and h 6 are exact. Conservation laws defined in this

manner on manifolds can be quite easily related to conservation laws

in the sense of physics. The problem of the existence of conservation
laws on analytic manifolds in the case where h is cyclic or has distinct

eigenvalues has been the subject of several papers ([4], [5], [6], and

[7] for example). In these papers the differential concomitant [^, h]

of Nijenhuis has played an important role. The vanishing of [A, h]

is an integrability condition which guarantees the existence of certain

local coordinates.

The existence of conservation laws on C°° manifolds is again a

consequence of the condition that the Nijenhuis torsion [A, h\ vanish.

The proof of this fact in the case that h has distinct eigenvalues is

essentially given in [7] ; in the cyclic case use must be made of a

theorem due to E.T. Kobayashi [3].

The study of the geometry of manifolds which admit conserva-

tion laws was initiated in [1]. Specifically the authors studied the holo-

nomy group of a Riemannian manifold which carries a cyclic vector

1-form h which is covariant constant. In this paper the study of the

geometry of Riemannian manifolds which carry conservation laws is

continued. The manifolds which are investigated admit a structure h_
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with distinct eigenvalues. The integrability condition that A is covariant

constant is also imposed. The more general case in which h is cyclic
will be considered in a later paper.

Notation and definitions are given in Section 2. In Section 3
there is a brief discussion of the geometry of a manifold carrying a

structure A as described in the previous paragraph. A result obtained

in Theorem 3.1 is that such a manifold is flat. Section 4 is then

devoted to a study of the structure induced by It on an immersed
manifold.

2. Preliminaries.

^ Let M be an (n + l)-dimensional Riemannian manifold and let

V denote covariant differentiation with respect to the Riemannian

connexion on M. If p G M the tangent space at p is denoted by M .

Since a structure h on a manifold M which admits conservation

laws is only locally defined, we will consider an w-dimensional mani-

fold N immersed (rather than imbedded) in M ; that is, there exists a
mapping ^ : N ——> M such that for each p G N, the differential

of the immersion B : Np ——> M^) is one-to-one. If <p itself is

one-to-one N is a submanifold and is a hypersurface of M.

The tensor field h_ can of course be viewed as an endomorphism

of the localized module of vector fields E(M) as well as the localized

module of 1-forms 8(M). No distinction in notation is made between

h and its adjoint, and it should be clear from the context whether h

is acting on vector fields or on 1-forms. The endomorphism/y is often

called a vector-valued 1-form.

An induced structure on the immersed manifold N is defined by
setting

ABX = BA'X + a(X) C (2.1)

where X € Np and C is the unit normal to N in M. Thus (2.1) defines

an endomorphism h
1
 of E(N) and a 1-form a€ 8(N). The manifold

N is said to be invariant under h if X G B(Np) implies AX E B(Np )
also.

If h is singular at a point pEM, a non-singular transformation

h* can always be found such that VxA = VxA* and [h_,h] = [h* ,h*]
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for every vector field X. One simply sets A* = jft + a\ where a is a

suitable non-zero constant.

The second fundamental form II on N and the Weingarten map

W are given by the Gauss-Weingarten equations

VexBY = BVxY + II (X , Y) C (2.2)

VBX^-^^ (2-3)

where X, Y G N and V denotes covariant differentiation with respect

to the induced Riemannian connexion on N. If II or equivalently W

vanishes we say that N is totally geodesic in M.

3
Covariant derivatives on M (or N) with respect to X^ or -— will

OUf

usually be denoted by V^ (or V/). Similarly partial derivatives such

8fl.
as —f

- will be denoted by a, / . The Riemannian curvature tensor and
3^ Jfi

the connexion coefficients will be denoted by R and F^ respectively.

The Nijenhuis torsion [A, h] ofh is given as in [2] by

[h, h] (X , Y) = ̂ [X , Y] + [hX ,AY] -h [hX , Y] -h[X, hY] (2.4)

for any X, Y G E(M). Since V is covariant differentiation with respect

to the Riemannian connexion on M, it is easily verified that

[h,h] (X ,Y) = ̂ h^h-^^h}X--{h^^h--^^h)'Y (2.5)

for any X, YGE(M).

A useful result from [5] is that if h has constant distinct eigen-

values and vanishing Nijenhuis torsion then there exist (locally) coor-
a

dinates u^ , i = 0 , 1 , . . . , n, such that the vector fields _ — form
OUs

an eigenvector basis for E(M). Moreover this result yields a basis of

conservation laws for 8(M).

3. The distinct eigenvalue case.

Suppose that h has distinct eigenvalues \ , . . . , \ which are

non-zero at a point p G M . If Vx^ = 0 f
01
 ̂  XGE(M), then the
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a
existence of a basis for E(M) of eigenvectors — , 0 < i < n, is assured

OUf

since [h_»h} vanishes as a consequence of formula (2.5). The following

theorem summarizes several consequences of the integrability condi-
^ 3

tion that VvA = 0, for Xe E(M). The vector fields — will be denotedA- Qlif

by Yy and the Riemannian metric on M will be denoted by G with

G(Y,,Yp=G,,.

THEOREM 3.1. -Leth have distinct non-zero eigenvalues \Q ,..., X^
- 3

and suppose that Vx^ = 0 for all X e E(M). Let Y^ = — denote the
OUf

corresponding eigenvectors. Then the following results are obtained :

(a) the eigenvalues \ are all constant

(b) 7^=0,^7.

(c) VyYy = F^Yy (no summation).

(d) rj, = f(u,)

(e) R = 0

(f) G^ . = Gf. ^ = 0, i , /, k distinct positive integers between 0

and n.

Proof. — Since coordinates UQ ,u^ , . . . ,^ exist such that the
a

Y, = — and since each eigenvalue X/ is a function of u^ alone (i.e.,
OUs

\ = \(Uf), 0 < i < n) we have X^ y = 0 when z =^ /. Note then that

(V^A)Y^ = Vf(AY? -hV^f and if the condition V/Yy = V^ is
used in the preceding equation one obtains by routine calculations

the results that
(V,A) Y^ - (V^A) Y/ = (X^ - X/) V,Y/

and also

(V,A)Y/ = 0</I -A)V,Y, 4- X^V, .

Thus the statements (a), (b), and (c) of the theorem are established.

We remark that the result (a) was also obtained in [1].

The Riemannian curvature tensor R is given by

R(Y,, Y,) Y, = R/,(Y,) = V/^Y, - V,V/Y,
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and thus R^(Y^) = 0 when i , / , k are distinct positive integers ranging

over (0 , 1 ,... , n) : otherwise if 7 = k and i 1=- /, we have

R/,(Y/) = V/V,Y, = r^Y, .

Hence since G(R^(Y? ,Y? = 0, it follows that T^ / = 0 and R = 0

and the results (d) and (e) are established.

The result (f) is obtained by observing that

V^=G(V^,Y,)+G(Y,,V/y,)

and hence G .̂ y = G/y ^ = 0 when < , ; , k are distinct positive integers

ranging over (0 , 1 , . . . , n). Thus the i - / entry in the matrix which

represents G depends only on the variables u^ and u,, and the proof

of Theorem 3.1 is completed.

We remark that in Theorem 3.1 the condition that VxA = 0 is

equivalent to the condition that h commute with parallel transport.

Specifically if 7 : [0,1] ——> M is a closed piecewise differentiable

curve starting and ending at P € M, and r denotes parallel translation

around 7 with respect to the Riemannian connexion, then

V^AX = (V^,A)X + AV^X ,

where 7* is the tangent vector field to 7. Hence if X^ is a vector at

P G M, and X = rXo , Z = rZ^ with Z^ = hX^ , then Z = AX if and

only if h is covariant constant. In particular, if Y^ is an eigenvector

of A and h is covariant constant then^rY/ = rh\^ == T\Y^ = \rY/

and TY/ is an eigenvector of h corresponding to X,, and thus M is

flat since the holonomy group at P is trivial.

4. The immersed manifold N.

We now turn our attention to a study of the geometry of the

immersed manifold N. As indicated in Section 2 if h is a vector-

valued 1-form on M, then locally an endomorphism h
1 and a 1-form

a are defined on N by the relation

A B X = B A ' X + a ( X ) C
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where X is tangent to N. The endomorphism A is assumed to be non-

singular and have distinct eigenvalues. Let Y be an eigenvector of h

with eigenvalue X and let Y = BX + bC. Then

AY = XBX -h \bC = BA'X + a(X) C + bhC ;

and hence X is an eigenvector of h
1
 with eigenvalue X if and only if

AC is proportional to C. That is, X is an eigenvector Qfh
1
 with eigen-

value X if and only if AC = vC, for some v =^= 0. If now {Y^},

( = 0 , 1 , . . . , ^

is a basis of eigenvectors (for Mp) of h with eigenvalues X / , then

C = £ a^i and hC = 2 a/X/Y/ = 2 va^f. Since the X/s are distinct,

v = \ for some ; and the remaining a^s vanish. That is, C is an eigen-

vector of A with eigenvalue v and in this case a(X) is given by

a(X) = b(\-v) .

The preceding discussion can now be summarized by the following

theorem.

THEOREM 4.1. — Let h be non-singular and have distinct eigen-

values on M and suppose that N is immersed in M. Then there exists

locally an endomorphism h
1
 on N with n of the eigenvalues ofh if

and only if C is a fixed direction of A.

Now let X^ , . . . , X^ denote an eigenvector basis of A' for Np

with corresponding eigenvalues X^ ,.. ., X,,. The following proposition

gives a necessary and sufficient condition that N be invariant under jh.

PROPOSITION 4.2. — N is invariant under h if and only if every

eigenvector \^ ofh, Y, ^= C, is tangent to N (i.e., Y, = BX/, 1 < i < n).

Proof. - Suppose that Y/ E B(Np), i = 1 , 2 , . . . , n. If X E Np ,

then BX = 2 fl,.Y/ since the Y/s form a basis for B(Np) and hence

ABX = 2 fl/X/Y^ is also in B(Np). Conversely if N is invariant under

A_ then a = 0. Hence if Y = BX 4- bC is an eigenvector other than C

then 0 = a(X) = b(\ — v) ; but since X =^= v we must have b = 0 and

hence YEB(Np).

In the remainder of this paper the condition that h is covariant• • ' ^^/ /^ "̂~
constant will be denoted by VA = 0 instead of Vx^ = 0 for every
X E E(M) or for every X e Mp .
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/^

THEOREM 4.3. — Let Vh = 0 and suppose C is an eigenvector of

h_ ; then VA' = 0 on N iff N is invariant under h or N is totally

geodesic.

Proof. - Let hC = vC ; then

VBY (
ABX

)
 =

 (^BY-^)
 Bx + AB

 ̂ X
 +

 ^(Y , X) C

for any X, Y E N . On the other hand V^QiBX) can also be computed

from formula (2.1) and the two calculations then compared. The result

is

(VBY/O Bx == ̂ (Y .^x) - ̂ "(Y.x)+ (VycO (X)}c + B(VY^) x
- a(X) BWY .

-^
Hence if Vjfe = 0 we must have

i/IKX , Y) - II (h'X, Y) = (Vy a) (X) (4. la)

(Vy^)X=a(X)WY , (4.1b)

for all X, Y E N , and the theorem is established.

Note that if h'X = XX, X € N p then (4. la) can be rewritten as

(v - X) II(X , Y) = (Vy a) (X) . (4.1c)

The following corollaries are easily established.

COROLLARY 1. — If VA = 0, then a is covariant constant iff N

is totally geodesic.

COROLLARY 2. - // VA = 0 and N is invariant under h, then N

is totally geodesic.

COROLLARY 3. - // VA = 0 and N is invariant under h or N is

totally geodesic, then N is flat.

If the unit normal C in (2.1) is a fixed direction of A and if A is

covariant constant and has distinct eigenvalues then conservation laws

for h
1
 exist on N when N is totally geodesic in M. These conservation

laws 0 G 8(N) have the form 0 = 2 a^du^ where ^ = a^u^), a result

which is obtained in [7]. One can also obtain the following theorem.
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THEOREM 4.4. - Let hC = vC ; if VA = 0 wd N is totally geo-
desic in M, then a is a conservation law for h\

Proof. — From the equation (4. la) we have V^a = 0 so that a

is closed and hence locally exact. Since VA' = 0 there exist coordi-
3

nates u., 1 < i < n, such that X/ == — is an eigenvector basis for
9tif

n

E(N). Hence if a = ^ //d^/ one obtains the result that // y = 0 when

i = ^ = 7 as a consequence of Theorem 3.1 and the relation

X,a(X,) = a(V^,) + (V,a) (X,) .

Thus f^ = ff(Uf) and moreover the // are given explicitly by

f^ = X/a(X/) = a(V,X/) = r/V/ ,

and consequently h'a is also exact.

BIBLIOGRAPHIE

[1] D.E. BLAIR and A.P. STONEy A note on the holonomy group of

manifolds with certain structures, Proc. AMS, 21(1), (1969),

73-76.

[2] A. FROLICHER and A. NIJENHUIS, Theory of vector valued diffe-
rential forma, I \Ned. Akad. Wet. Proc. 59 (1956), 338-359.

[3] E.T. KOBAYASHI, A remark on the Nijenhuis tensor, Pacific J.

Math., 12, (1962), 963-977.

[4] H. OSBORN, The existence of conservation laws, I ;Ann. of Math.,

69 (1959), 105-118.

[5] H. OSBORN, Les lois de conservation,Aw72. Inst. Fourier, (Grenoble),
14 (1964), 71-82.

[6] A.P. STONE, Analytic conservation laws, Ann. Inst. Fourier,

(Grenoble), 16 (2), (1966), 319-327.



GEOMETRY OF MANIFOLDS 9

[7] A.P. STONE, Generalized conservation laws, Proc. AMS 18, (5),

(1967), 868-873.

Manuscrit re9u Ie 2 juin 1970

D.E. BLAIR
Department of Mathematics

Michigan State University

East Lansing, Michigan 48823 (USA)

and A.P. STONE
Department of Mathematics

University of Illinois at Chicago Circle

Box 4348, Chicago, 111. 60680 (USA)


