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Abstract

Understanding the geometry of neural network

loss surfaces is important for the development of

improved optimization algorithms and for build-

ing a theoretical understanding of why deep

learning works. In this paper, we study the ge-

ometry in terms of the distribution of eigenvalues

of the Hessian matrix at critical points of varying

energy. We introduce an analytical framework

and a set of tools from random matrix theory that

allow us to compute an approximation of this dis-

tribution under a set of simplifying assumptions.

The shape of the spectrum depends strongly on

the energy and another key parameter, φ, which

measures the ratio of parameters to data points.

Our analysis predicts and numerical simulations

support that for critical points of small index, the

number of negative eigenvalues scales like the 3/2
power of the energy. We leave as an open prob-

lem an explanation for our observation that, in

the context of a certain memorization task, the

energy of minimizers is well-approximated by

the function 1
2 (1− φ)2.

1. Introduction

Neural networks have witnessed a resurgence in recent

years, with a smorgasbord of architectures and configura-

tions designed to accomplish ever more impressive tasks.

Yet for all the successes won with these methods, we have

managed only a rudimentary understanding of why and in

what contexts they work well. One difficulty in extend-

ing our understanding stems from the fact that the neural

network objectives are generically non-convex functions

in high-dimensional parameter spaces, and understanding

their loss surfaces is a challenging task. Nevertheless, an

improved understanding of the loss surface could have a

large impact on optimization (Saxe et al.; Dauphin et al.,
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2014; Choromanska et al., 2015; Neyshabur et al., 2015),

architecture design, and generalization (Keskar et al.).

1.1. Related work

There is no shortage of prior work focused on the loss

surfaces of neural networks. Choromanska et al. (2015)

and Dauphin et al. (2014) highlighted the prevalence of

saddle points as dominant critical points that plague op-

timization, as well as the existence of many local minima

at low loss values. Dauphin et al. (2014) studied the dis-

tribution of critical points as a function of the loss value

empirically and found a trend which is qualitatively sim-

ilar to predictions for random Gaussian landscapes (Bray

& Dean, 2007). Choromanska et al. (2015) argued that the

loss function is well-approximated by a spin-glass model

studied in statistical physics, thereby predicting the exis-

tence of local minima at low loss values and saddle points

at high loss values as the network increases in size. Good-

fellow et al. observed that loss surfaces arising in prac-

tice tend to be smooth and seemingly convex along low-

dimensional slices. Subsequent works (Kawaguchi, 2016;

Safran & Shamir, 2016; Freeman & Bruna, 2016) have fur-

thered these and related ideas empirically or analytically,

but it remains safe to say that we have a long way to go

before a full understanding is achieved.

1.2. Our contributions

One shortcoming of prior theoretical results is that they are

often derived in contexts far removed from practical neu-

ral network settings – for example, some work relies on

results for generic random landscapes unrelated to neural

networks, and other work draws on rather tenuous connec-

tions to spin-glass models. While there is a lot to be gained

from this type of analysis, it leaves open the possibility that

characteristics of loss surfaces specific to neural networks

may be lost in the more general setting. In this paper, we

focus narrowly on the setting of neural network loss sur-

faces and propose an analytical framework for studying the

spectral density of the Hessian matrix in this context.

Our bottom-up construction assembles an approximation

of the Hessian in terms of blocks derived from the weights,

the data, and the error signals, all of which we assume to
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be random variables1. From this viewpoint, the Hessian

may be understood as a structured random matrix and we

study its eigenvalues in the context of random matrix the-

ory, using tools from free probability. We focus on single-

hidden-layer networks, but in principle the framework can

accommodate any network architecture. After establishing

our methodology, we compute approximations to the Hes-

sian at several levels of refinement. One result is a predic-

tion that for critical points of small index, the index scales

like the energy to the 3/2 power.

2. Preliminaries

Let W (1) ∈ R
n1×n0 and W (2) ∈ R

n2×n1 be weight ma-

trices of a single-hidden-layer network without biases. De-

note by x ∈ R
n0×m the input data and by y ∈ R

n2×m the

targets. We will write z(1) = W (1)x for the pre-activations.

We use [·]+ = max(·, 0) to denote the ReLU activation,

which will be our primary focus. The network output is

ŷiµ =

n1
∑

k=1

W
(2)
ik [z

(1)
kµ ]+ , (1)

and the residuals are eiµ = ŷiµ−yiµ. We use Latin indices

for features, hidden units, and outputs, and µ to index ex-

amples. We consider mean squared error, so that the loss

(or energy) can be written as,

L = n2ǫ =
1

2m

n2,m
∑

i,µ=1

e2iµ . (2)

The Hessian matrix is the matrix of second derivatives of

the loss with respect to the parameters, i.e. Hαβ = ∂2
L

∂θα∂θβ
,

where θα ∈ {W (1),W (2)}. It decomposes into two pieces,

H = H0 + H1, where H0 is positive semi-definite and

where H1 comes from second derivatives and contains all

of the explicit dependence on the residuals. Specifically,

[H0]αβ ≡ 1

m

n2,m
∑

i,µ=1

∂ŷiµ
∂θα

∂ŷiµ
∂θβ

≡ 1

m
[JJT ]αβ , (3)

where we have introduced the Jacobian matrix, J , and,

[H1]αβ ≡ 1

m

n2,m
∑

i,µ=1

eiµ

(

∂2ŷiµ
∂θα∂θβ

)

. (4)

We will almost exclusively consider square networks with

n ≡ n0 = n1 = n2. We are interested in the limit of

large networks and datasets, and in practice they are typ-

ically of the same order of magnitude. A useful charac-

1Although we additionally assume the random variables are
independent, our framework does not explicitly require this as-
sumption, and in principle it could be relaxed in exchange for
more technical computations.

terization of the network capacity is the ratio of the num-

ber of parameters to the effective number of examples2,

φ ≡ 2n2/mn = 2n/m. As we will see, φ is a critical

parameter which governs the shape of the distribution. For

instance, eqn. (3) shows that H0 has the form of a covari-

ance matrix computed from the Jacobian, with φ governing

the rank of the result.

We will be making a variety of assumptions throughout this

work. We distinguish primary assumptions, which we use

to establish the foundations of our analytical framework,

from secondary assumptions, which we invoke to simplify

computations. To begin with, we establish our primary as-

sumptions:

1. The matrices H0 and H1 are freely independent, a

property we discuss in sec. 3.

2. The residuals are i.i.d. normal random variables with

tunable variance governed by ǫ, eiµ ∼ N (0, 2ǫ). This

assumption allows the gradient to vanish in the large

m limit, specifying our analysis to critical points.

3. The data features are i.i.d. normal random variables.

4. The weights are i.i.d. normal random variables.

We note that normality may not be strictly necessary. We

will discuss these assumptions and their validity in sec. 5.

3. Primer on Random Matrix Theory

In this section we highlight a selection of results from the

theory of random matrices that will be useful for our anal-

ysis. We only aim to convey the main ideas and do not

attempt a rigorous exposition. For a more thorough intro-

duction, see, e.g., (Tao, 2012).

3.1. Random matrix ensembles

The theory of random matrices is concerned with proper-

ties of matrices M whose entries Mij are random variables.

The degree of independence and the manner in which the

Mij are distributed determine the type of random matrix

ensemble to which M belongs. Here we are interested

primarily in two ensembles: the real Wigner ensemble for

which M is symmetric but otherwise the Mij are i.i.d.; and

the real Wishart ensemble for which M = XXT where

Xij are i.i.d.. Moreover, we will restrict our attention to

studying the limiting spectral density of M. For a random

matrix Mn ∈ R
n×n, the empirical spectral density is de-

fined as,

ρMn
(λ) =

1

n

n
∑

j=1

δ(λ− λj(Mn)) , (5)

2In our context of squared error, each of the n2 targets may be
considered an effective example.
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where the λj(Mn), j = 1, . . . , n, denote the n eigenvalues

of Mn, including multiplicity, and δ(z) is the Dirac delta

function centered at z. The limiting spectral density is

defined as the limit of eqn. (5) as n → ∞, if it exists.

For a matrix M of the real Wigner matrix ensemble

whose entries Mij ∼ N (0, σ2), Wigner (1955) computed

its limiting spectral density and found the semi-circle law,

ρSC(λ;σ, φ) =

{

1
2πσ2

√
4σ2 − λ2 if |λ| ≤ 2σ

0 otherwise
. (6)

Similarly, if M = XXT is a real Wishart matrix with

X ∈ R
n×p and Xij ∼ N (0, σ2/p), then the limiting spec-

tral density can be shown to be the Marchenko-Pastur dis-

tribution (Marčenko & Pastur, 1967),

ρMP(λ;σ, φ) =

{

ρ(λ) if φ < 1

(1− φ−1)δ(λ) + ρ(λ) otherwise
,

(7)

where φ = n/p and,

ρ(λ) =
1

2πλσφ

√

(λ− λ−)(λ+ − λ)

λ± = σ(1±
√

φ)2 .

(8)

The Wishart matrix M is low rank if φ > 1, which explains

the delta function density at 0 in that case. Notice that there

is an eigenvalue gap equal to λ−, which depends on φ.

3.2. Free probability theory

Suppose A and B are two random matrices. Under what

conditions can we use information about their individual

spectra to deduce the spectrum of A + B? One way of

analyzing this question is with free probability theory, and

the answer turns out to be exactly when A and B are freely

independent. Two matrices are freely independent if

Ef1(A)g1(B) · · · fk(A)gk(B) = 0 (9)

whenever fi and gi are such that

Efi(A) = 0 , Egi(B) = 0 . (10)

Notice that when k = 1, this is equivalent to the defini-

tion of classical independence. Intuitively, the eigenspaces

of two freely independent matrices are in “generic posi-

tion” (Speicher, 2009), i.e. they are not aligned in any spe-

cial way. Before we can describe how to compute the spec-

trum of A + B, we must first introduce two new concepts,

the Stieltjes transform and the R transform.

3.2.1. THE STIELTJES TRANSFORM

For z ∈ C \ R the Stieltjes transform G of a probability

distribution ρ is defined as,

G(z) =

∫

R

ρ(t)

z − t
dt , (11)

from which ρ can be recovered using the inversion formula,

ρ(λ) = − 1

π
lim

ǫ→0+
ImG(λ+ iǫ) . (12)

3.2.2. THE R TRANSFORM

Given the Stieltjes transform G of a probability distribu-

tion ρ, the R transform is defined as the solution to the

functional equation,

R
(

G(z)
)

+
1

G(z)
= z . (13)

The benefit of the R transform is that it linearizes free con-

volution, in the sense that,

RA+B = RA +RB , (14)

if A and B are freely independent. It plays a role in free

probability analogous to that of the log of the Fourier

transform in commutative probability theory.

The prescription for computing the spectrum of A + B
is as follows: 1) Compute the Stieltjes transforms of ρA
and ρB ; 2) From the Stieltjes transforms, deduce the R
transforms RA and RB ; 3) From RA+B = RA + RB ,

compute the Stieltjes transform GA+B ; and 4) Invert the

Stieltjes transform to obtain ρA+B .

4. Warm Up: Wishart plus Wigner

Having established some basic tools from random matrix

theory, let us now turn to applying them to computing the

limiting spectral density of the Hessian of a neural network

at critical points. Recall from above that we can decom-

pose the Hessian into two parts, H = H0 + H1 and that

H0 = JJT /m. Let us make the secondary assumption

that at critical points, the elements of J and H1 are i.i.d.

normal random variables. In this case, we may take H0 to

be a real Wishart matrix and H1 to be a real Wigner matrix.

We acknowledge that these are strong requirements, and

we will discuss the validity of these and other assumptions

in sec. 5.

4.1. Spectral distribution

We now turn our attention to the spectral distribution of H
and how that distribution evolves as the energy changes.

For this purpose, only the relative scaling between H0 and

H1 is relevant and we may for simplicity take σH0
= 1 and

σH1
=

√
2ǫ. Then we have,

ρH0
(λ) = ρMP(λ; 1, φ), ρH1

(λ) = ρSC(λ;
√
2ǫ, φ) ,

(15)

which can be integrated using eqn. (11) to obtain GH0
and

GH1
. Solving eqn. (13) for the R transforms then gives,

RH0
(z) =

1

1− zφ
, RH1

(z) = 2ǫz . (16)
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Figure 1. Spectral distributions of the Wishart + Wigner approximation of the Hessian for three different ratios of parameters to data

points, φ. As the energy ǫ of the critical point increases, the spectrum becomes more semicircular and negative eigenvalues emerge.

We proceed by computing the R transform of H ,

RH = RH0
+RH1

=
1

1− zφ
+ 2ǫz , (17)

so that, using eqn. (13), we find that its Stieltjes transform

GH solves the following cubic equation,

2ǫφG3
H − (2ǫ+ zφ)G2

H +(z+φ− 1)GH − 1 = 0 . (18)

The correct root of this equation is determined by the

asymptotic behavior GH ∼ 1/z as z → ∞ (Tao, 2012).

From this root, the spectral density can be derived through

the Stieltjes inversion formula, eqn. (12). The result is illus-

trated in fig. 1. For small ǫ, the spectral density resembles

the Marchenko-Pastur distribution, and for small enough

φ there is an eigenvalue gap. As ǫ increases past a crit-

ical value ǫc, the eigenvalue gap disappears and negative

eigenvalues begin to appear. As ǫ gets large, the spectrum

becomes semicircular.

4.2. Normalized index

Because it measures the number of descent directions3,

one quantity that is of importance in optimization and in

the analysis of critical points is the fraction of negative

eigenvalues of the Hessian, or the index of a critical point,

α. Prior work (Dauphin et al., 2014; Choromanska et al.,

2015) has observed that the index of critical points typi-

cally grows rapidly with energy, so that critical points with

many descent directions have large loss values. The precise

form of this relationship is important for characterizing the

geometry of loss surfaces, and in our framework it can be

readily computed from the spectral density via integration,

α(ǫ, φ) ≡
∫ 0

−∞

ρ(λ; ǫ, φ) dλ = 1−
∫ ∞

0

ρ(λ; ǫ, φ) dλ .

(19)

Given that the spectral density is defined implicitly through

equation eqn. (18), performing this integration analytically

3Here we ignore degenerate critical points for simplicity.

is nontrivial. We discuss a method for doing so in the sup-

plementary material. The full result is too long to present

here, but we find that for small α,

α(ǫ, φ) ≈ α0(φ)

∣

∣

∣

∣

ǫ− ǫc
ǫc

∣

∣

∣

∣

3/2

, (20)

where the critical value of ǫ,

ǫc =
1

16
(1− 20φ− 8φ2 + (1 + 8φ)3/2) , (21)

is the value of the energy below which all critical points are

minimizers. We note that ǫc can be found in a simpler way:

it is the value of ǫ below which eqn. (18) has only real roots

at z = 0, i.e. it is the value of ǫ for which the discriminant

of the polynomial in eqn. (18) vanishes at z = 0. Also, we

observe that ǫc vanishes cubically as φ approaches 1,

ǫc ≈
2

27
(1− φ)3 +O(1− φ)4 . (22)

The 3/2 scaling in eqn. (20) is the same behavior that was

found in (Bray & Dean, 2007) in the context of the field

theory of Gaussian random functions. As we will see later,

the 3/2 scaling persists in a more refined version of this cal-

culation and in numerical simulations.

5. Analysis of Assumptions

5.1. Universality

There is a wealth of literature establishing that many prop-

erties of large random matrices do not depend on the details

of how their entries are distributed, i.e. many results are

universal. For instance, Tao & Vu (2012) show that the

spectrum of Wishart matrices asymptotically approaches

the Marcenko-Pastur law regardless of the distribution of

the individual entries, so long as they are independent, have

mean zero, unit variance, and finite k-th moment for k > 2.

Analogous results can be found for Wigner matrices (Ag-

garwal). Although we are unaware of any existing analy-
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Figure 2. Testing the validity of the free independence assump-

tion by comparing the eigenvalue distribution of H0 + H1 (in

blue) and H0 + QH1Q
T (in orange) for randomly generated or-

thogonal Q. The discrepancies are small, providing support for

the assumption. Data is for a trained single-hidden-layer ReLU

autoencoding network with 20 hidden units and no biases on 150

4× 4 downsampled, grayscaled, whitened CIFAR-10 images.

ses relevant for the specific matrices studied here, we be-

lieve that our conclusions are likely to exhibit some univer-

sal properties – for example, as in the Wishart and Wigner

cases, normality is probably not necessary.

On the other hand, most universality results and the tools

we are using from random matrix theory are only exact

in the limit of infinite matrix size. Finite-size corrections

are actually largest for small matrices, which (counter-

intuitively) means that the most conservative setting in

which to test our results is for small networks. So we

will investigate our assumptions in this regime. We expect

agreement with theory only to improve for larger systems.

5.2. Primary assumptions

In sec. 2 we introduced a number of assumptions we

dubbed primary and we now discuss their validity.

5.2.1. FREE INDEPENDENCE OF H0 AND H1

Our use of free probability relies on the free independence

of H0 and H1. Generically we may expect some alignment

between the eigenspaces of H0 and H1 so that free inde-

pendence is violated; however, we find that this violation

is often quite small in practice. To perform this analysis,

it suffices to examine the discrepancy between the distribu-

tion of H0 +H1 and that of H0 +QH1Q
T , where Q is an

orthogonal random matrix of Haar measure (Chen et al.,

2016). Fig. 2 show minimal discrepancy for a network

trained on autoencoding task; see the supplementary ma-

terial for further details and additional experiments. More

precise methods for quantifying partial freeness exist (Chen

et al., 2016), but we leave this analysis for future work.

5.2.2. RESIDUALS ARE I.I.D. RANDOM NORMAL

First, we note that eiµ ∼ N (0, 2ǫ) is consistent with the

definition of the energy ǫ in eqn. (2). Furthermore, because

the gradient of the loss is proportional to the residuals, it

vanishes in expectation (i.e. as m → ∞), which specializes

our analysis to critical points. So this assumptions seems

necessary for our analysis. It is also consistent with the pri-

ors leading to the choice of the squared error loss function.

Altogether we believe this assumption is fairly mild.

5.2.3. DATA ARE I.I.D. RANDOM NORMAL

This assumption is almost never strictly satisfied, but it is

approximately enforced by common preprocessing meth-

ods, such as whitening and random projections.

5.2.4. WEIGHTS ARE I.I.D. RANDOM NORMAL

Although the i.i.d. assumption is clearly violated for a net-

work that has learned any useful information, the weight

distributions of trained networks often appear random, and

sometimes appear normal (see, e.g., fig. S1 of the supple-

mentary material).

5.3. Secondary assumptions

In sec. 4 we introduced two assumptions we dubbed sec-

ondary, and we discuss their validity here.

5.3.1. J AND H1 ARE I.I.D. RANDOM NORMAL

Given that J and H1 are constructed from the residuals, the

data, and the weights – variables that we assume are i.i.d.

random normal – it is not unreasonable to suppose that their

entries satisfy the universality conditions mentioned above.

In fact, if this were the case, it would go a long way to vali-

date the approximations made in sec. 4. As it turns out, the

situation is more complicated: both J and H1 have sub-

structure which violates the independence requirement for

the universality results to apply. We must understand and

take into account this substructure if we wish to improve

our approximation further. We examine one way of doing

so in the next section.

6. Beyond the Simple Case

In sec. 4 we illustrated our techniques by examining the

simple case of Wishart plus Wigner matrices. This analysis

shed light on several qualitative properties of the spectrum

of the Hessian matrix, but, as discussed in the previous sec-

tion, some of the assumptions were unrealistic. We believe

that it is possible to relax many of these assumptions to pro-

duce results more representative of practical networks. In

this section, we take one step in that direction and focus on

the specific case of a single-hidden-layer ReLU network.
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6.1. Product Wishart distribution and H1

In the single-hidden-layer ReLU case, we can write H1 as,

H1 =

(

0 H12

H12
T 0

)

,

where its off-diagonal blocks are given by the matrix H12,

[H12]ab;cd =
1

m

∑

iµ

eiµ
∂

∂W
(2)
cd

∂ŷiµ

∂W
(1)
ab

=
1

m

m
∑

µ=1

ecµδadθ(z
(1)
aµ )xbµ .

(23)

Here it is understood that the matrix H12 is obtained from

the tensor [H12]ab;cd by independently vectorizing the first

two and last two dimensions, δad is the Kronecker delta

function, and θ is the Heaviside theta function. As dis-

cussed above, we take the error to be normally distributed,

ecµ =
(

∑

j

W
(2)
cj [z

(1)
jµ ]+ − ycµ(x)

)

∼ N (0, 2ǫ) . (24)

We are interested in the situation in which the layer width

n and the number of examples m are large, in which case

θ(z
(1)
aµ ) can be interpreted as a mask that eliminates half of

the terms in the sum over µ. If we reorder the indices so

that the surviving ones appear first, we can write,

H12 ≈ 1

m
δad

m/2
∑

µ̂=1

ecµ̂xbµ̂ =
1

m
In ⊗ êx̂T ,

where we have written ê and x̂ to denote the n×m
2 matrices

derived from e and x by removing the vanishing half of

their columns.

Owing to the block off-diagonal structure of H1, the

squares of its eigenvalues are determined by the eigenval-

ues of the product of the blocks,

H12H12
T =

1

m2
In ⊗ (êx̂T )(êx̂T )T . (25)

The Kronecker product gives an n-fold degeneracy to each

eigenvalue, but the spectral density is the same as that of

M ≡ 1

m2
(êx̂T )(êx̂T )T . (26)

It follows that the spectral density of H1 is related to that

of M ,

ρH1
(λ) = |λ|ρM (λ2) . (27)

Notice that M is a Wishart matrix where each factor is itself

a product of real Gaussian random matrices. The spectral

density for matrices of this type has been computed using
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Figure 3. Spectrum of H1 at initialization, using 4× 4 downsam-

pled, grayscaled, whitened CIFAR-10 in a single layer ReLU au-

toencoder with 16 hidden units. Error signals have been replaced

by noise distributed as N (0, 100), i.e. ǫ = 50. Theoretical pre-

diction (red) matches well. Left φ = 1/16, right φ = 1/4.

the cavity method (Dupic & Castillo, 2014). As the specific

form of the result is not particularly enlightening, we defer

its presentation to the supplementary material. The result

may also be derived using free probability theory (Muller,

2002; Burda et al., 2010). From either perspective it is pos-

sible to derive the the R transform, which reads,

RH1
(z) =

ǫφz

2− ǫφ2z2
. (28)

See fig. 3 for a comparison of our theoretical prediction for

the spectral density to numerical simulations4.

6.2. H0 and the Wishart assumption

Unlike the situation for H1, to the best of our knowledge

the limiting spectral density of H0 cannot easily be

deduced from known results in the literature. In principle

it can be computed using diagrammatics and the method

of moments (Feinberg & Zee, 1997; Tao, 2012), but this

approach is complicated by serious technical difficulties

– for example, the matrix has both block structure and

Kronecker structure, and there are nonlinear functions

applied to the elements. Nevertheless, we may make

some progress by focusing our attention on the smallest

eigenvalues of H0, which we expect to be the most relevant

for computing the smallest eigenvalues of H .

The empirical spectral density of H0 for an autoen-

coding network is shown in fig. 4. At first glance, this

distribution does not closely resemble the Marchenko-

Pastur distribution (see, e.g., the ǫ = 0 curve in fig. 1)

owing to its heavy tail and small eigenvalue gap. On the

other hand, we are not concerned with the large eigen-

values, and even though the gap is small, its scaling with

φ appears to be well-approximated by λ− from eqn. (8)

4As the derivation requires that the error signals are random, in
the simulations we manually overwrite the network’s error signals
with random noise.
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Figure 4. The spectrum of H0 at initialization of a single layer

ReLU autoencoder with 16 hidden units and 256 4 × 4 down-

sampled, grayscaled, whitened CIFAR-10 images. There are 16

null directions, and the corresponding zero eigenvalues have been

removed. The inset shows the values of the smallest 35 nonzero

eigenvalues. The positive value of the first datapoint reflects the

existence of a nonzero gap.

for appropriate σ. See fig. 5. This observation suggests

that as a first approximation, it is sensible to continue to

represent the limiting spectral distribution of H0 with the

Marchenko-Pastur distribution.

6.3. Improved approximation to the Hessian

The above analysis motivates us to propose an improved

approximation to RH(z),

RH(z) =
σ

1− σzφ
+

ǫφz

2− ǫφ2z2
, (29)

where the first term is the R transform of the Marchenko-

Pastur distribution with the σ parameter restored. As be-

fore, an algebraic equation defining the Stieltjes transform

of ρH can be deduced from this expression,

2 = 2
(

z − σ(1− φ)
)

G− φ
(

2σz + ǫ(1− φ)
)

G2
H

− ǫφ2
(

z + σ(φ− 2)
)

G3
H + zǫσφ3G4

H .
(30)

Using the same techniques as in sec. 4, we can use this

equation to obtain the function α(ǫ, φ). We again find the

same 3/2 scaling, i.e.,

α(ǫ, φ) ≈ α̃0(φ)

∣

∣

∣

∣

ǫ− ǫc
ǫc

∣

∣

∣

∣

3/2

. (31)

Compared with eqn. (20), the coefficient function α̃0(φ)
differs from α0(φ) and,

ǫc =
σ2

(

27− 18χ− χ2 + 8χ3/2
)

32φ(1− φ)3
, χ = 1+16φ−8φ2 .

(32)
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Figure 5. Evolution of the H0 spectral gap as a function of 1/φ,

comparing the Marcenko-Pastur (red) against empirical results for

a 16-hidden unit single-layer ReLU autoencoder at initialization

(black dots, each averaged over 30 independent runs). Dataset

was taken from 4×4 downsampled, grayscaled, whitened CIFAR-

10 images. A single fit parameter, characterizing the variance of

the matrix elements in the Wishart ensemble, is used.

Despite the apparent pole at φ = 1, ǫc actually vanishes

there,

ǫc ≈
8

27
σ2(1− φ)3 +O(1− φ)4 . (33)

Curiously, for σ = 1/2, this is precisely the same behavior

we found for the behavior of ǫc near 1 in the Wishart

plus Wigner approximation in sec. 4. This observation,

combined with the fact that the 3/2 scaling in eqn. (31) is

also what we found in sec. 4, suggest that it is H0, rather

than H1, that is governing the behavior near ǫc.

6.4. Empirical distribution of critical points

We conduct large-scale experiments to examine the distri-

bution of critical points and compare with our theoretical

predictions. Uniformly sampling critical points of varying

energy is a difficult problem. Instead, we take more of a

brute force approach: for each possible value of the index,

we aim to collect many measurements of the energy and

compute the mean value. Because we cannot control the

index of the obtained critical point, we run a very large

number of experiments (∼50k) in order to obtain sufficient

data for each value of α. This procedure appears to be a

fairly robust method for inferring the α(ǫ) curve.

We adopt the following heuristic for finding critical

points. First we optimize the network with standard gradi-

ent descent until the loss reaches a random value between

0 and the initial loss. From that point on, we switch

to minimizing a new objective, Jg = |∇θL|2, which,

unlike the primary objective, is attracted to saddle points.

Gradient descent on Jg only requires the computation of

Hessian-vector products and can be executed efficiently.
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Figure 6. Empirical observations of the distribution of critical points in single-hidden-layer tanh networks with varying ratios of param-

eters to data points, φ. (a) Each point represents the mean energy of critical points with index α, averaged over ∼200 training runs. Solid

lines are best fit curves for small α ≈ α0|ǫ− ǫc|
3/2. The good agreement (emphasized in the inset, which shows the behavior for small

α) provides support for our theoretical prediction of the 3/2 scaling. (b) The best fit value of ǫc from (a) versus φ. A surprisingly good fit

is obtained with ǫc = 1

2
(1− φ)2. Linear networks obey ǫc = 1

2
(1− φ). The difference between the curves shows the benefit obtained

from using a nonlinear activation function.

We discard any run for which the final Jg > 10−6;

otherwise we record the final energy and index.

We consider relatively small networks and datasets in

order to run a large number of experiments. We train

single-hidden-layer tanh networks of size n = 16, which

also equals the input and output dimensionality. For each

training run, the data and targets are randomly sampled

from standard normal distributions, which makes this

a kind of memorization task. The results are summa-

rized in fig. 6. We observe that for small α, the scaling

α ≈ |ǫ − ǫc|3/2 is a good approximation, especially for

smaller φ. This agreement with our theoretical predictions

provides support for our analytical framework and for the

validity of our assumptions.

As a byproduct of our experiments, we observe that the

energy of minimizers is well described by a simple func-

tion, ǫc =
1
2 (1− φ)2. Curiously, a similar functional form

was derived for linear networks (Advani & Ganguli, 2016),

ǫc = 1
2 (1 − φ). In both cases, the value at φ = 0 and

φ = 1 is understood simply: at φ = 0, the network has

zero effective capacity and the variance of the target distri-

bution determines the loss; at φ = 1, the matrix of hidden

units is no longer rank constrained and can store the entire

input-output map. For intermediate values of φ, the fact

that the exponent of (1 − φ) is larger for tanh networks

than for linear networks is the mathematical manifestation

of the nonlinear network’s better performance for the same

number of parameters. Inspired by these observations and

by the analysis of Zhang et al. (2016), we speculate that

this result may have a simple information-theoretic expla-

nation, but we leave a quantitative analysis to future work.

7. Conclusions

We introduced a new analytical framework for studying

the Hessian matrix of neural networks based on free

probability and random matrix theory. By decomposing

the Hessian into two pieces H = H0 + H1 one can

systematically study the behavior of the spectrum and

associated quantities as a function of the energy ǫ of a

critical point. The approximations invoked are on H0 and

H1 separately, which enables the analysis to move beyond

the simple representation of the Hessian as a member of

the Gaussian Orthogonal Ensemble of random matrices.

We derived explicit predictions for the spectrum and

the index under a set of simplifying assumptions. We

found empirical evidence in support of our prediction

that that small α ≈ |ǫ − ǫc|3/2, raising the question of

how universal the 3/2 scaling may be, especially given the

results of (Bray & Dean, 2007). We also showed how

some of our assumptions can be relaxed at the expense of

reduced generality of network architecture and increased

technical calculations. An interesting result of our numeri-

cal simulations of a memorization task is that the energy of

minimizers appears to be well-approximated by a simple

function of φ. We leave the explanation of this observation

as an open problem for future work.
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aux écoles polytechnique et normale, 5:253–257, 1905.
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