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GEOMETRY OF PERMUTATION LIMITS

MUSTAZEE RAHMAN, BÁLINT VIRÁG, AND MÁTÉ VIZER

Abstract. This paper initiates a limit theory of permutation valued processes, building

on the recent theory of permutons. We apply this to study the asymptotic behaviour of

random sorting networks. We prove that the Archimedean path, the conjectured limit of

random sorting networks, is the unique path from the identity to the reverse permuton

having minimal energy in an appropriate metric. Together with a recent large deviations

result (Kotowski, 2016), it implies the Archimedean limit for the model of relaxed random

sorting networks.

1. Introduction

The objective of this paper is two-fold. First, to develop a limit theory of permutation val-
ued stochastic processes that it is applicable to study their asymptotic properties. Second,
to apply this theory to study random sorting networks.

1.1. Permutations limits. Recently, the language of permutons has been developed to
study asymptotic properties of permutations. Examples within this theory include the study
of finite forcibility, pattern avoidance, property testing, pseudorandomness, the Mallows
model, etc. (see [7, 9, 11, 16] and references therein). We begin with a discussion of
permutons as it is pertinent to Theorem 1, our first result.

Let Sn be the symmetric group of n elements. The empirical measure of σ ∈ Sn is

(1.1) µσ =
1

n

∑

i

δ( 2i
n
−1,

2σ(i)
n

−1
).

This is a probability measure of [−1, 1]2. One defines a sequence of permutations {σn} with
size |σn| → ∞ to converge if µσn converges weakly to a Borel measure µ.

A permuton µ is a Borel probability measure on [−1, 1]2 with uniform marginals. (In
the literature, this definition is often w.r.t. the unit square [0, 1]2 but it is convenient for
us to use [−1, 1]2.) It is proven in [9] that limits of permutations in the above sense are
permutons and that every permuton may be realized as a limit of permutations.

In this paper we study not a sequence of single permutations but rather a sequence of
sequences of permutations. For an integer n, let [n] = {1, . . . , n}. Suppose that

(1.2) σn =
(

σn
t ; t ∈ [tn]

)

is a Sn-valued sequence. We say that σn is a permutation process of Sn, or simply a
permutation process when there is no ambiguity. We always set σn

0 to be the identity
permutation. Our goal is to find an appropriate representation of the limits of sequences of
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permutation processes growing both in the size, n, of the permutations and the length, tn,
of the sequence.

An example of a permutation process is a sorting network. A sorting network of Sn

is a path of minimal length from the identity idn = 1, . . . , n to the reverse permutation
revn = n, n− 1, . . . , 1 in the Cayley graph of Sn generated by the adjacent transpositions
(i, i + 1), for 1 ≤ i ≤ n − 1. It is a permutation process of length tn =

(

n
2

)

. The adjacent
transpositions are also called swaps. An example of a sorting network is the bubble sort
algorithm applied to revn and viewed in reverse time.

Another example of a permutation process is the interchange process on finite paths. In
this setting the permutation process is random. As the path lengths tend to infinity, the
interchange process converges in probability to a limit: stationary Brownian motion on an
interval. This is explained in Section 2.1.

1.2. Limits of permutation processes. Given a permutation process σn of Sn as in
(1.2), the rescaled trajectory of particle i ∈ [n] is the function

(1.3) Tn
i (t/tn) =

2σn
t (i)

n
− 1 for t ∈ [tn].

After linearly interpolating between the discrete times t/tn, we may consider Tn
i as a con-

tinuous function from [0, 1] to [−1, 1]. The trajectory process of σn, denoted Xn, is the
trajectory of a particle chosen uniformly at random:

(1.4) Xn =
1

n

n
∑

i=1

δTn
i
.

Observe that for every t ∈ [tn] the distribution of Xn(t/tn) is uniform over the set {2i
n −1; i ∈

[n]} due to σn
t being a permutation. Moreover, σn can be reconstructed from Xn and

tn.

Let C denote the space of continuous functions from [0, 1] to [−1, 1] in the topology of
uniform convergence. The trajectory process is then a Borel probability measure on C.
Given a sequence of permutation processes {σn}, its limit is defined to be the weak limit of
its associated trajectory processes as Borel probability measures on C. In other words, {σn}
converges if there is a stochastic process X = (X(t), 0 ≤ t ≤ 1) with continuous sample
paths such that for every uniformly continuous and bounded F : C → R,

(1.5) E [F (Xn)] =
1

n

n
∑

i=1

F (Tn
i )

n→∞−→ E [F (X)] .

Our first result characterizes the limits of permutation processes.

Definition 1. A permuton process is a [−1, 1]-valued stochastic process X = (X(t), 0 ≤
t ≤ 1) with continuous sample paths and such that X(t) ∼ Uniform[−1, 1] for every t.

Theorem 1. For each n, let σn = (σn
t ; t ∈ [tn]) be a permutation process of Sn with

tn → ∞ as n → ∞. Suppose {σn} converges to a limit X in the sense of (1.5). Then X
is a permuton process. Conversely, given any permuton process X, there is a sequence of
permutation processes that converges to X.
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Theorem 1 extends the limit theory of single permutations to permutation processes.
Indeed, if a sequence of permutation processes {σn} has a limit X then for every s ∈ [0, 1]
the limit of σn

⌊s tn⌋ is the permuton with the distribution of (X(0), X(s)). Moreover, for any

set of times s1, . . . , sk, the empirical measure of the k-tuples
(

σn
⌊sj tn⌋(i); 1 ≤ j ≤ k

)

as i

ranges over [n] converges weakly as measures rescaled onto [−1, 1]k to the distribution of
(X(s1), . . . , X(sk)).

1.3. Random sorting networks. Recall from the previous section that a sorting network
of Sn is a shortest path from idn to revn in the Cayley graph generated by adjacent
transpositions. The number of sorting networks of Sn was enumerated by Stanley [15],
and later a combinatorial bijection with staircase shaped Young tableaux was provided by
Edelman and Greene [6].

The number of permutations in a sorting network of Sn is always N :=
(

n
2

)

. A random
sorting network of Sn is a sorting network of Sn chosen uniformly at random. We denote
this random permutation process as RSNn = (RSNn

t ; 0 ≤ t ≤ N) (thus, RSNn
t is the t-th

permutation in RSNn).

The asymptotic behaviour of RSNn was first studied by Angel et. al. [3]. It is shown that,
as n → ∞, the spacetime process of swaps of RSNn converges to the product of semicircle
law and Lebesgue measure. It is also shown that, in the limit, the particle trajectories are
Hölder-1/2 continuous, and the support of the permutation matrix lies within a certain
octagon. Additional results about the asymptotic behaviour of RSNn have since been
proved; see for example [2] and the references therein. However, the main conjecture of [3],
the Archimedean path conjecture, remains open. To state the conjecture and our results
we first introduce the Archimedean measure.

The Archimedean measure is the unique probability measure on the plane with the prop-
erty that all of its projections onto lines through the origin have the Uniform[−1, 1] distri-

bution. Its density, supported on the unit disk, is given by
(

2π
√

1− x2 − y2
)−1

dxdy. It
is in fact the projection of the normalized surface area measure of the 2-sphere onto the
unit disk. Let (Ax,Ay) denote a random variable whose distribution is the Archimedean
measure. The Archimedean process A = (A(t); 0 ≤ t ≤ 1) is the permuton process defined
by

(1.6) A(t) = cos(πt)Ax + sin(πt)Ay.

The Archimedean path conjecture [3, Conjecture 2] states that for every t the random per-
mutationRSNn

⌊tN⌋ converges to the deterministic permuton (A(0),A(t)). The Archimedean

path is the permuton valued path A = (A(t); 0 ≤ t ≤ 1) such that

(1.7) A(t) ∼ (A(0),A(t)) for every 0 ≤ t ≤ 1.

Thus, the Archimedean path conjecture is that the empirical measures of permutations in
RSNn converges to the Archimedean path; see Figure 1. Observe that the Archimedean
process is a random sine curve. The sine curve conjecture [3, Conjecture 1] asserts that the
trajectories of particles are close to random sine curves with high probability; see Figure
2.
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Figure 1. Support of the Archimedean path (top) and RSN500 (bottom).
Bottom figure is from [3, Figure 5].

Figure 2. Some scaled particle trajectories from RSN2000 from [3, Figure 1].

The Archimedean path conjecture and the sine curve conjecture may be viewed under a
common framework as permuton processes as follows. It is a stochastic process version of
the Archimedean path conjecture (and implies it). It also implies that typical trajectories
of RSNn are close to sine curves.

Conjecture 1. RSNn converges in probability as a permutation process to the Archimedean
process (1.6).
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We emphasize that this conjecture states the random trajectory process of RSNn con-
centrates around a deterministic limit, which is the Archimedean process.

1.4. Variational characterization of Archimedean process. The (Dirichlet) energy
of a stochastic process X = (X(t); 0 ≤ t ≤ 1) is

E [X] = sup
Π

k
∑

i=1

E
[

|X(ti)−X(ti−1)|2
]

ti − ti−1
,

where the supremum is over all finite partitions Π = {0 = t0 < t1 < · · · < tk = 1} of [0, 1].

If X has continuously differentiable sample paths then E [X] =
∫ 1
0 E

[

X ′(t)2
]

dt. Thus, for

example, a simple calculation shows that E [A] = π2/3.

Theorem 2. Among all permuton processes X with the property that X(1) = −X(0), the
Archimedean process A uniquely minimizes the energy.

The theorem allows for a characterization of stationary random permutation processes
which converge to the Archimedean process in terms of the second moment of their speed.
Random sorting networks are invariant under ǫ-shifts which take a trajectory X(t) to
X(ǫ+ t). More precisely, the ǫ-shift makes the trajectory periodic with reversing boundary
conditions, so the ǫ-shift is defined as

(

(−1)⌊ǫ+t⌋X(ǫ+ t mod 1), 0 ≤ t ≤ 1
)

.

We call a random trajectory process ǫ-stationary if its distribution is invariant under ǫ-shift
of all individual particle trajectories.

Corollary 2.1. Let Xn be a tight sequence of random trajectory processes that are ǫn-
stationary with ǫn → 0. Assume that

(1.8) lim sup
t→0

lim sup
n→∞

E
[

(Xn(t)−Xn(0))2
]

t2
≤ π2

3
.

Then the sequence converges in probability to the deterministic limit given by the Archimedean
process.

The trajectory process of RSNn is N−1–stationary because of stationarity of the swaps
of RSNn, [3, Theorem 1]. Tightness of the random trajectory process of RSNn follows
from [3, Theorem 3], which states that for any δ > 0, with probability tending to 1, all
individual trajectories Tn of the particles in RSNn satisfy

|Tn(t)− Tn(s)| ≤
√
8 |s− t|1/2 + δ for every s, t.

Corollary 2.1 is proved in Section 4.

Random sorting networks can also be studied in the setting of large deviation theory
of the interchange process on paths. Consider the discrete time interchange process on
the n-path, which is the path graph with n vertices. A random sorting network is the
interchange process on the n-path conditioned to be at revn in the shortest possible time
N . Instead, one can consider relaxed random sorting network, which is the interchange
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process conditioned to be close to revn in time n2+α for some α ∈ (0, 1). One can study
the relaxed network using large deviation theory in the following sense.

Suppose we fix a permuton process X that satisfies X(0) = −X(1). One can ask what
is the probability that the trajectory of a relaxed random sorting network on the n-path is
close to X. This is the problem addressed in [12]. It is shown that this probability satisfies
a large deviation principle whose rate function is the energy of X. Then Theorem 2 implies
relaxed random sorting networks have to be close to the Archimedean process with high
probability. This proves the Archimedean path conjecture for the relaxed networks.

1.5. Variational characterization of Archimedean path. The 2-Wasserstein distance
(henceforth, Wasserstein distance) between two Borel probability measures µ, ν on a metric
space K is defined by

(1.9) W (µ, ν)2 = inf
couplings (V,W ) s.th. V∼µ,W∼ν

E
[

d(V,W )2
]

.

We study permutons in the Wasserstein metric, whereby K = [−1, 1]2 in the Euclidean
metric. Let id denote the identity permuton (X,X) and rev denote the reverse permuton
(X,−X), where X ∼ Uniform[−1, 1].

Theorem 3. Let µ = (µ(t); 0 ≤ t ≤ 1) be a permuton valued path from µ(0) = id to
µ(1) = rev. Then the energy of µ in the Wasserstein metric satisfies E [µ] ≥ E [A] = π2/6,
where A is the Archimedean path (1.7). If there is equality then µ(t) = A(t) for every t.

The main tool used in proving Theorem 3 should be of independent interest. We show
that for a permuton valued path µ, there exists a [−1, 1]2–valued stochastic process X such
that the fixed time distributions of X is given by µ and the energy of X in the L2-metric
equals the energy of µ in the Wasserstein metric. One may think of X as being an optimal
coupling of the measures along µ. We prove such a ‘realization theorem’ for measure valued
paths in a fairly general setting as stated in Theorem 5.

A motivation for Theorem 3 is that the Wasserstein distance is a natural metric on
permutons. It is also related to sorting networks in the following way. A two-sided random
sorting network is a shortest sequence of permutations from idn to revn so that in each
step the permutation is multiplied by an adjacent transposition either on left or on the
right. This means that in each step, two adjacent columns or two adjacent rows of the
permutation matrix are exchanged. Thus the 1s in the permutation matrix can be thought
of as particles moving horizontally or vertically.

After scaling, we may consider the [−1, 1]2-valued trajectories for the n particles in a
uniformly chosen two-sided sorting network. It can be shown that Conjecture 1 would
imply that the trajectory process of two-sided random sorting networks converges to an
optimal coupling of the Archimedean path A.

1.6. Permuton geometry. Let P denote the space of all permutons. Motivated by the
great circle conjecture about random sorting networks it is natural to study P in the Wasser-
stein metric since it is an infinite dimensional analogue of the permutohedron embedded



GEOMETRY OF PERMUTATION LIMITS 7

into the Euclidean sphere. (The permutohedron of order n embeds naturally into an (n−2)-
dimensional sphere in R

n.) In analogy with the sphere, one may ask whether the sum of
distances squared, W (id,P)2 + W (P, rev)2, is uniquely minimized by the Archimedean
measure over all P ∈ P?

Theorem 4. The function P 7→ W (id,P)2 + W (P, rev)2 is minimized by a permuton
P ∼ (X,Y ) if and only if the pair

(

X−Y√
2
, X+Y√

2

)

is also a permuton. In particular, the

Archimedean measure is not the unique minimizer.

In proving this theorem we will find a nice formula for the Wasserstein distance from any
permuton to the identity, as stated in Theorem 6.

One can also ask whether there is a unique minimal energy path from id to a given
permuton P? A motivation for this question is to understand minimal length paths from
the identity to arbitrary permutations of the permutohedron. These are called reduced
decompositions. Counting reduced compositions is a deep and difficult combinatorial prob-
lem. We may get insights by studying related questions in the space of permutons. For
instance, are there analogues of the Archimedean path conjecture for reduced decompo-
sitions of permutations approximating a target permuton P? Can large deviation theory
provide an asymptotic count for the number of relaxed reduced decompositions of P, à la
sorting networks? We pose the following two open problems.

Question 1.1 (Uniqueness of minimal energy paths). Under what condition does there
exist an unique minimal energy path in P from id to a given permuton P? What about for
the Lebesgue permuton?

Question 1.2 (Diameter of permuton space). Suppose P is a permuton. Does the minimal
energy path(s) from id to P have energy at least that of the Archimedean path?

Remark. Proof of the conjectures from [3] have been announced in [4]. The proof uses the
framework of permuton processes and the main step involves proving Conjecture 1. The
proof also relies on the local structure of random sorting networks and additional local-to-
global properties from [1, 5, 8].

Outline of the paper. We prove Theorem 1 in Section 2. In Section 3 we define path
energy in metric spaces and discuss some of its basic properties. In Section 3.1 we prove
Theorem 5 about realizing measure valued paths as stochastic processes. In Section 4 we
prove Theorem 2 and Corollary 2.1. In Section 5 we prove Theorem 3. Finally, in Section
6 we prove Theorem 4.

2. Limits of permutation processes

In proving Theorem 1 we state a lemma about approximating continuous processes by
their piecewise linear parts. The proof is in the Appendix.

Lemma 2.1. Let Y = (Y (t); 0 ≤ t ≤ 1) be a continuous [−1, 1]-valued process. Consider its
modulus of continuity mδ(Y ) = sups,t:|s−t|≤δ |Y (s)− Y (t)|. Then E

[

mδ(Y )
]

→ 0 as δ → 0.
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Moreover, if Y and Ŷ are continuous processes then |mδ(Y ) − mδ(Ŷ )| ≤ 2||Y − Ŷ ||∞.
Finally, let Lin(n, Y ) be the process obtained from Y such that it agrees with Y at times
t = i/n for 0 ≤ i ≤ n and is linear in between. Then E [||Lin(n, Y )− Y ||∞] → 0 as n → ∞.

Proof that limit of permutation processes is a permuton processes. Suppose that
the trajectory processes Xn of a sequence of permutation processes (σn

t ; t ∈ [tn]) converges
to a continuous process X. By Skorokhod’s representation Theorem, we may assume that
the Xn and X are realized on a common probability space and ||Xn − X||∞ → 0 almost
surely. For a fixed t, we may choose sn ∈ {i/tn; 0 ≤ i ≤ tn} such that |t− sn| ≤ 1/tn. Then
by triangle inequality and Lemma 2.1,

|X(t)−Xn(sn)| ≤ ||X −Xn||∞ +m1/tn(Xn) ≤ 3||X −Xn||∞ +m1/tn(X).

The term m1/tn(X) → 0 almost surely in the sample outcomes of X due to continuity, and
||Xn − X||∞ → 0 almost surely as well. Thus |X(t) − Xn(sn)| → 0 almost surely. The
distribution of Xn(sn) is uniform on the set {2i

n −1; i ∈ [n]} as remarked earlier. Therefore,
Xn(sn) converges weakly to Uniform[−1, 1] and it follows thatX(t) ∼ Uniform[−1, 1].

Proof that a permuton process is a limit of permutation processes. Let X =
(X(t); 0 ≤ t ≤ 1) be the permuton process that is to be approximated by permutation
processes. We will construct a sequence of random permutation processes and show that it
converges almost surely to X. For n ≥ 1 set Πn = {i/n; 0 ≤ i ≤ n}. The following defines
a random permutation process (σn

t ; t ∈ [n]) of Sn.

Let X1, X2, . . . be i.i.d. copies of X. We may assume that for every t in the countable set
∪nΠn the values X1(t), X2(t), . . . are all distinct. For each n, consider the order statistics
of X1(0), . . . , Xn(0): X(1)(0) < X(2)(0) < · · · < X(n)(0). Let π(i) be the index such that
X(i)(0) = Xπ(i)(0). For t ∈ [n], define the permutation σn

t by

σn
t (i) = rank of Xπ(i)(t/n) among X1(t/n), . . . , Xn(t/n).

For fixed t ∈ [0, 1], set ∆i,j = 1{Xj(t)≤Xi(t)} − (Xi(t) + 1)/2. As the rank of xi among

x1, . . . , xn is
∑

j 1{xj≤xi}, we have that for t ∈ Πn,

(2.1)
2σn

nt(π
−1(i))

n
− 1−Xi(t) =

2

n

n
∑

j=1

∆i,j .

Observe that |∆i,j | ≤ 1. Also, for j 6= i, E [∆i,j | Xi(t)] = 0. This is where we use the
fact that X(t) ∼ Uniform[−1, 1] for every t. Moreover, for all j such that j 6= i, the ∆i,js
are mutually independent conditional on Xi(t). Therefore by Bernstein’s concentration
inequality we infer that for ǫ ≥ 0 and every i,

(2.2) P





1

n− 1
|
∑

j:j 6=i

∆i,j | > ǫ
∣

∣

∣
Xi(t)



 ≤ 2e−
ǫ2(n−1)

4 .

The right hand side (r.h.s.) of (2.1) is bounded in absolute value by 2
n +

2|∑j 6=i ∆i,j |
n−1 .

Therefore, taking an union bound over all t ∈ Πn, setting ǫ = n−1/4 in (2.2), then taking
expectation over Xi(t) and another union bound over all particles i = 1, . . . , n, we infer
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that for all large n,

(2.3) P

[

sup
1≤i≤n, t∈Πn

∣

∣

∣

∣

2σn
nt(i)

n
− 1−Xπ(i)(t)

∣

∣

∣

∣

> 2n−1/4 + 2n−1

]

≤ 2n2 e−
n1/2

8 .

Recall that the trajectory of particle i is Tn
i (t) = (2/n)σn

nt(i) − 1 for t ∈ Πn, and Tn
i is

linearly interpolated in between the times in Πn. Let

An = sup
1≤i≤n, t∈Πn

|Tn
i (t)−Xπ(i)(t)| .

Let Lin(n,Xi) be the piecewise linear function that agrees with Xi at times t ∈ Πn. Observe
that ||Tn

i −Lin(n,Xπ(i))||∞ = supt∈Πn
|Tn

i (t)−Xπ(i)(t)| because both functions are piecewise
linear between the times t ∈ Πn. Let

Bn =
1

n

∑

i

||Xi − Lin(n,Xi)||∞.

From another application of Bernstein’s inequality we deduce that

P

[

Bn > E [||X − Lin(n,X)||∞] + n−1/4
]

≤ e−
n1/2

16 .

The r.h.s. above is summable over n and Lemma 2.1 implies that E [||X − Lin(n,X)||∞] →
0 as n → ∞. Furthermore, P

[

An ≥ 4n−1/4
]

is summable over n due to (2.3). Therefore
the Borel-Cantelli lemma implies that there is a subset Ω of outcomes of the Xi’s having
probability 1 such that both An, Bn → 0 if ω ∈ Ω.

Let I ∼ Uniform([n]) and let EI denote expectation w.r.t. I, that is, the outcomes of the
Xks are kept fixed. Then,

EI [||Tn
I −Xπ(I)||∞] ≤ EI [||Tn

I − Lin(n,Xπ(I))||∞] + EI [||Lin(n,Xπ(I))−Xπ(I)||∞]

≤ An +Bn.

Consequently, if ω ∈ Ω then for every uniformly continuous and bounded F : C → R we
have that EI [F (Tn

I )− F (Xπ(I))] → 0.

The distribution of Xπ(I) over the random I is the empirical measure (1/n)
∑

i δXi on C.
As C is a Polish space, the strong law of large numbers for empirical measures on Polish
spaces [10] implies that there is a subset Ω′ of outcomes of the Xks having probability 1
such that Xπ(I) converges weakly to X if ω ∈ Ω′.

If ω ∈ Ω ∩ Ω′ then for every function F as above we have that EI [F (Tn
I )] → E [F (X)].

We thus conclude that almost surely in the outcomes of the Xks, the function Tn
I converges

weakly to X. This means that the sequence {σn} converges almost surely to the process X.
Selecting any such good outcome of the Xks gives a deterministic sequence of permutation
processes converging to X.

2.1. Convergence of random permutation processes. The limit notion for permuta-
tion processes naturally defines the limit notion for random permutation processes. More
precisely, if σn is a sequence of random permutation processes of Sn then it converges if its
trajectory processes converge weakly as random measures on C. The limit in this case is
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a random permuton process, that is, a measure on permuton processes. We illustrate this
with two contrasting examples.

First, consider the interchange process, Intn, on the n-path. It is a random permutation
process of Sn generated by first sampling i.i.d. uniform random adjacent transpositions
τ1, τ2, . . ., and then setting Intnt = Intnt−1 ◦ τt for t ≥ 1 with Intn0 = idn. The stationary
distribution of this process is the uniform measure of Sn and its relaxation time is of order
n3. Thus, one expects a limit of this process to exist if it is run until time n3.

It is shown in [13] that if Intn is run until time n3 then it converges to a deterministic
permuton process: stationary Brownian motion on [−1, 1]. (Actually, [13] considers the
continuous time interchange process but the conclusion also holds for the discrete time
process.) Observe that the trajectory of each particle of Intn is a simple random walk
on the n-path. So by Donsker’s Theorem [10], after appropriate rescaling, each trajectory
converges to Brownian motion on [−1, 1]. However, this alone does not imply that the
trajectory process converges to stationary Brownian motion.

The convergence to the deterministic limit occurs because the trajectories become “asymp-
totically independent”, which means the following. Let Xn

ω be the trajectory process for a
sample outcome ω of Intn. Let Tn

I1
and Tn

I2
be two samples from Xn

ω , that is, the trajectory
of two particles I1 and I2 chosen independently and uniformly at random from Xn

ω . Then,
for every continuous and bounded function F : C → R,

Eω,I1,I2

[

F (Tn
I1)F (Tn

I2)
]

− Eω,I1

[

F (Tn
I1)

]2 n→∞−→ 0.

Asymptotic independence suffices to ensure that random permutation processes have deter-
ministic limits; see [13] for the details.

The second example illustrates a random limit of permutation process. Consider n par-
ticles placed on the vertices of the n-cycle. At each time step, rotate the cycle one unit
clockwise or counter clockwise (by 2π/n radians) independently and uniformly at random.
This gives a random permutation process σn whereby each particle performs a simple ran-
dom walk on the n-cycle. However, note that the distances between particles remain fixed.
When run until time n3 this process has the following limit. Periodic Brownian motion
on [−1, 1], denoted Bperiodic, is Brownian motion started from a uniform random point of
[−1, 1] and run in a period by identifying the endpoints ±1. Let U ∼ Uniform[−1, 1] be
independent of Bperiodic. The limit of {σn} is the random permuton process ω → Xω such
that for a sample outcome Uω of U ,

Xω
law
= Uω +Bperiodic

(

mod [−1, 1]
)

.

In other words, [−1, 1] is first rotated by Uω (by identifying ±1) and then rotated indepen-
dently according a periodic Brownian motion. Two samples from Xω provide two periodic
Brownian motions that start from a common point ω–almost surely.

3. Metric and energy for permutons

Let (K, d) be a metric space. A path γ = (γ(t); 0 ≤ t ≤ 1) is a continuous function from
the interval [0, 1] into K. A finite partition of the interval [a, b] is a set of ordered points
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Π = {a = t0 < t1 < · · · < tn = b}. Let Part[a, b] denote the set of all finite partitions of the
interval [a, b]. The mesh size of a partition Π is ∆(Π) = max1≤i≤n{|ti − ti−1|}.

The energy of a path γ with respect to a partition Π ∈ Part[0, 1] is

E [γ,Π] =
n
∑

i=1

d2(γ(ti), γ(ti−1))

ti − ti−1
.

The energy of γ, denoted E [γ], is

(3.1) E [γ] = sup
Π∈Part[0,1]

{

E [γ,Π]
}

.

The energy of γ restricted to the interval [a, b] is

E [γ, [a, b]] = sup
Π∈Part[a,b]

{

E [γ,Π]
}

.

Notice that if a ≤ b ≤ c then we have

(3.2) E [γ, [a, c]] ≥ E [γ, [a, b]] + E [γ, [b, c]].
In particular, if t0 ≤ t1 ≤ . . . ≤ tn then E [γ, [t0, tn]] ≥

∑n
i=1 E [γ, [ti−1, ti]].

For partitions Π,Π′ of [0, 1], we write Π ⊂ Π′ (Π′ is a refinement of Π) if Π′ contains
all points of Π. The energy of a path is non-decreasing under refinements, as Lemma
3.1 below shows. The proof is in the Appendix. We will use this lemma throughout our
arguments.

Lemma 3.1. Suppose Π ⊂ Π′ are two finite partitions of [0, 1]. Then E [γ,Π] ≤ E [γ,Π′] for
any path γ in K.

Using Lemma 3.1 we observe that for a path γ there is a sequence of nested finite partitions
Π0 = {0, 1} ⊂ Π1 ⊂ Π2 . . . such that E [γ,Πn] ր E [γ]. We may also assume that ∆(Πn) → 0.
Thus ∪nΠn is a dense set of points in [0, 1].

We consider paths in two types of metric spaces. First, given a probability space (Ω,Σ, P )
we take K = L2(P, [−1, 1]), the Hilbert space of all square integrable random variables
Z : Ω → [−1, 1]. A path in K is then a stochastic process X = (X(t); 0 ≤ t ≤ 1)).
Permuton processes fall within this setup. Second, we take K to be the space of permutons
P in the Wasserstein metric, which is the setting of Theorem 3. The Wasserstein metric
induces the topology of weak convergence on P (see Lemma 7.1), and P is compact in the
weak topology by Phokhorov’s Theorem.

Finite energy paths in the space of Borel probability measures of a compact metric space
K, under Wasserstein metric, are related to finite energy K-valued stochastic processes, in
L2 metric. We may realize the former as the latter in an energy preserving manner. This
is the content of Theorem 5 below, which is used to prove Theorem 3.

3.1. Realizing measure valued paths as stochastic processes. Throughout this sec-
tion (K, d) denotes a compact metric space andM(K) denotes the space of Borel probability
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measures on K in the Wasserstein metric. A path γ = (γ(t); 0 ≤ t ≤ 1) in M(K) is re-
alized by a K-valued stochastic process X = (X(t); 0 ≤ t ≤ 1) if the following conditions
holds.

(1) X(t) ∼ γ(t) for every t.

(2) X has continuous sample paths almost surely.

The energy of X is as given by (3.1) with respect to the L2 metric:

dL2(X(t), X(s)) := E
[

d(X(t), X(s))2
]1/2

.

Theorem 5. Suppose that γ is a M(K)–valued path with finite energy with respect to the
Wasserstein distance. There is a stochastic process X that realizes γ in a energy preserving
manner: E [X] = E [γ].

We refer to the process X as an optimal coupling of γ.

The rest of the section proves Theorem 5. To begin, note the following fact. If ν, ν ′ ∈
M(K) are two Borel probability measures then there is a coupling (V,W ) of ν with ν ′

such that W (ν, ν ′) = E
[

d(V,W )2
]1/2

. This is because K is compact. Using this fact we
inductively build up optimal couplings by using the following lemma.

Lemma 3.2. Let γ0, . . . , γn ∈ M(K). There exist jointly distributed K–valued random
variables (X0, . . . , Xn) such that Xi ∼ γi and E

[

d(Xi−1, Xi)
2
]

= W (γi−1, γi)
2 for 1 ≤ i ≤ n.

Proof. We proceed by induction. The case for two measures is mentioned above (see Lemma
7.2). To carry out the induction step we will need the following measure theoretic fact. It
is often known as the Disintegration Theorem (see [10, Theorem 5.10]).

Fact: Let (X,Y ) ∈ K2 be jointly distributed random variables. There is a measurable
function g : K × [0, 1] → K2 such that if U ∼ Uniform[0, 1] and U is independent of (X,Y )
then (X, g(X,U)) has the same joint distribution as (X,Y ).

Suppose the statement of the lemma holds for γ0, . . . , γn−1 with jointly distributed random
variables (X0, . . . , Xn−1). Using Lemma 7.2, we find a coupling (X ′

n−1, X
′
n) of γn−1 with γn

such that W (γn−1, γn)
2 = E

[

d(X ′
n−1, X

′
n)

2
]

. Let U ∼ Uniform[0, 1] be independent of all
the random variables X0, . . . , Xn−1, X

′
n−1 and X ′

n. Let g be as mentioned in the fact above
for the pair (X ′

n−1, X
′
n).

Since Xn−1 has the same distribution as X ′
n−1, and U is independent of all other random

variables, the pair (Xn−1, g(Xn−1, U)) has the same distribution as (X ′
n−1, X

′
n). Let Xn =

g(Xn−1, U). Thus, W (γn−1, γn)
2 = E

[

d(X ′
n−1, X

′
n)

2
]

= E
[

d(Xn−1, Xn)
2
]

. The random
variables (X0, . . . , Xn) provide the desired coupling. �

Now suppose γ is a M(K) valued path. We may choose a sequence of nested finite
partitions Π0 ⊂ Π1 . . . such that ∆(Πn) → 0 and E [γ,Πn] ր E [γ].



GEOMETRY OF PERMUTATION LIMITS 13

For each n, we apply Lemma 3.2 to find coupled random variables (Xn(t); t ∈ Πn) such
that if Πn = {0 = t0 < . . . < tk = 1} then

E
[

d(Xn(ti), Xn(ti−1))
2
]

= W (γ(ti), γ(ti−1))
2 for every 1 ≤ i ≤ k.

Fix an x0 ∈ K. Set Π∞ = ∪nΠn and extend Xn to Π∞ by setting Xn(t) ≡ x0 if t ∈
Π∞ \Πn.

The process Xn takes values in KΠ∞ for every n. As KΠ∞ is compact in the product
topology, by applying Prokhorov’s Theorem we can find a subsequence ni → ∞ and a
process (X(t); t ∈ Π∞) such that Xni → X weakly. As the partitions Πn are nested we may
assume w.l.o.g. that ni = n, that is, Xn → X weakly.

Consider the process (X(t); t ∈ Π∞). We must extend X continuously from the dense
subset Π∞ to [0, 1]. First, we show that X has finite energy along Π∞. Let

E [X,Π∞] := lim
n→∞

E [X,Πn],

which exists by monotonicity.

Lemma 3.3. The process (X(t); t ∈ Π∞) satisfies E [X,Π∞] ≤ E [γ]. Moreover, for every
s < t in Π∞, E

[

d(X(t), X(s))2
]

≤ (t− s)E [γ, [s, t]].

Proof. We begin by showing E
[

d(X(t), X(s))2
]

≤ (t − s)E [γ, [s, t]] for s < t in Π∞. Sup-
pose that s < t are both in Π∞. From weak convergence of the Xn and compactness
of K we have that E

[

d(X(t), X(s))2
]

= limn→∞ E
[

d(Xn(t), Xn(s))
2
]

. We now bound

E
[

d(Xn(t), Xn(s))
2
]

. As s, t ∈ Π∞, there is an N such that s, t ∈ Πn for n ≥ N . Suppose
that the points of Πn between s and t are s = t0,n < t1,n < . . . < tkn,n = t. Using Lemma
3.1 we deduce that for n ≥ N ,

E
[

d(Xn(t), Xn(s))
2
]

t− s
≤

kn
∑

i=1

E
[

d(Xn(tn,i), Xn(tn,i−1))
2
]

tn,i − tn,i−1

=

kn
∑

i=1

W (γ(tn,i), γ(tn,i−1))
2

tn,i − tn,i−1

≤ E [γ, [s, t]].
The last inequality follows due to the tn,i forming a partition of [s, t]. By letting n → ∞
we conclude from the above estimate that E

[

d(X(t), X(s))2
]

≤ (t− s) E [γ, [s, t]].

For the partition Πn = {0 = t0 < . . . < tn = 1} we deduce from the inequality above that

(3.3)

n
∑

i=1

E
[

d(X(ti), X(ti−1))
2
]

ti − ti−1
≤

n
∑

i=1

E [γ, [ti−1, ti]].

From the inequality (3.2) we now deduce that
∑n

i=1 E [γ, [ti−1, ti]] ≤ E [γ]. Therefore,
E [X,Π∞] ≤ E [γ] as required. �

We now show that X has a continuous extension to a process defined for times t ∈ [0, 1].
Let (Ω,Σ, µ) denote the probability space where (X(t), t ∈ Π∞) is jointly defined and
let Xω(t) denote the outcome of X(t) for ω ∈ Ω. The inequality E [X,Π∞] ≤ E [γ] from
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Lemma 3.3 implies that for µ-almost every ω the energy of the discrete K-valued path
(Xω(t), t ∈ Π∞) is finite. In particular, for µ-almost every ω there exists a constant Cω

such that
d(Xω(t), Xω(s)) ≤ Cω

√

|t− s| for s, t ∈ Π∞.

Since Π∞ is a dense subset of [0, 1], Lemma 7.3 from the Appendix implies that (Xω(t); t ∈
Π∞) has a continuous extension to times t ∈ [0, 1] for µ-almost every ω. We denote this
extension by X = (X(t), 0 ≤ t ≤ 1), which is then a K-valued stochastic process with
continuous sample paths.

Now we show that X realizes γ. Certainly, X(t) ∼ γ(t) for t ∈ Π∞ because Xn(t) → X(t)
weakly and Xn(t) ∼ γ(t) for all large n due to the partitions Πn being nested. Suppose
that t ∈ [0, 1] \ Π∞. Choose a sequence tn ∈ Πn such that tn → t. By continuity of X and
the bounded convergence theorem we conclude that E [d(X(tn), X(t))] → 0. This implies
that X(tn) → X(t) weakly. The distribution of X(tn) is γ(tn) and γ(tn) → γ(t) weakly
because the path γ is continuous due to having finite energy. Therefore, X(t) ∼ γ(t) for
every t.

Finally we show that E [X] = E [γ]. As X realizes γ, E
[

d(X(t), X(s))2
]

≥ W (γ(t), γ(s))2.
Hence, E [X] ≥ E [γ]. To get the reverse inequality first recall from Lemma 3.3 that

E
[

d(X(t), X(s))2
]

≤ (t− s) E [γ, [s, t]] for every s, t ∈ Π∞ with s < t.

Suppose s < t are two arbitrary points in [0, 1]. Choose sequences {sn} and {tn} such that
sn, tn ∈ Πn, sn ≤ tn, sn ց s and tn ր t. From continuity ofX and the bounded convergence
theorem we have that E

[

d(X(t), X(s))2
]

= limn→∞ E
[

d(X(tn), X(sn))
2
]

. Since

E
[

d(X(tn), X(sn))
2
]

≤ (tn − sn) E [γ, [sn, tn]] and E [γ, [sn, tn]] ≤ E [γ, [s, t]],
we conclude that E

[

d(X(t), X(s))2
]

≤ (t − s) E [γ, [s, t]] for every s ≤ t. For an arbitrary
partition Π = {0 = t0 < . . . < tn = 1} we use this inequality to deduce that E [X,Π] ≤
∑n

i=1 E [γ, [ti−1, ti]]. The inequality (3.2) implies that
∑n

i=1 E [γ, [ti−1, ti]] ≤ E [γ]. As Π was
arbitrary it follows that E [X] ≤ E [γ]. This completes the proof.

4. Minimal energy permuton processes from identity to reverse

In this section we prove Theorem 2 and Corollary 2.1. The proof of Theorem 2 uses the
following lemma about minimal energy paths on a Hilbert sphere. A proof is provided in
the Appendix.

Lemma 4.1. Let γ be a path on the unit sphere of a Hilbert space between two antipodal
points γ(0) and −γ(0) = γ(1). Then E [γ] ≥ π2 with equality if and only if

γ(t) = cos(πt)γ(0) + sin(πt)γ(1/2).

Proof of Theorem 2. Suppose X = (X(t); 0 ≤ t ≤ 1) is a permuton process with X(0) =
−X(1). Since E

[

X(t)2
]

= 1/3, the process X is a path between two antipodal points on the

sphere of radius 1/
√
3 in the Hilbert space L2(Ω,Σ, P ), where (Ω,Σ, P ) is the probability

space over which the process X is defined. From Lemma 4.1 we see that E [X] ≥ π2/3
with equality if and only only if X(t) = cos(πt)X(0) + sin(πt)X(1/2). In case of equality,
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since X(t) ∼ Uniform[−1, 1] for every t, this equation for X implies that the projection
of (X(0), X(1/2)) onto any line through the origin has the Uniform[−1, 1] distribution.
Thus, (X(0), X(1/2)) is distributed according to the Archimedean measure and X is the
Archimedean process. �

Proof of Corollary 2.1. Theorem 2 implies that all limit points of Xn are supported on
permuton processes with energy at least π2/3. Due to the uniqueness of energy minimizers,
Xn will converge to the Archimedean process if the expected energy of any limit point X
of Xn is at most π2/3. By bounded convergence theorem and assumption (1.8) we have

E
[

(X(t)−X(0))2
]

≤ (πt)2

3
.

The ǫn-stationarity of Xn implies ǫ-stationarity of X for all ǫ > 0, so

E
[

(X(t)−X(s))2
]

≤ (π(s− t))2

3
,

and therefore for every partition Π = {t0 = 0, . . . , tk = 1} we have

k
∑

i=1

E
[

(X(ti)−X(ti−1))
2
]

ti − ti−1
≤ π2

3
. �

Note that conversely, the Archimedean process limit and the bounded convergence theo-
rem would imply that for every t, E

[

(Xn(t)−Xn(0))2
]

→ 2
3(1− cos(πt)).

5. Minimal energy permuton paths from identity to reverse

In this section, we prove Theorem 3. Using Theorem 5 we transfer the study of paths in P
to [−1, 1]2–valued stochastic processes. Then we solve the corresponding energy minimiza-
tion problem for stochastic processes. We verify that there is an unique energy minimizer
and its fixed time marginals agree with the Archimedean path.

1-dimensional energy minimization. In proving Theorem 3 we will reduce the 2-dimensional
energy minimization problem to a pair of 1-dimensional energy minimization problems. Here
we solve that 1-dimensional problem.

For continuous f : [0, 1] → R, let E [f ] and E [f,Π] denote energy w.r.t. the Euclidean
metric on R.

Lemma 5.1. Let X = (X(t); 0 ≤ t ≤ 1) be a continuous R-valued stochastic process

such that E [X(t)] = 0 and E
[

X(t)2
]

< ∞ for every t. Set σ(t) = E
[

X(t)2
]1/2

. Then

E [X] ≥ E [σ]. Here the energy of X is w.r.t. the L2-metric and the energy of σ is w.r.t. the
Euclidean metric.

Moreover, suppose that E [X] = E [σ], E [σ] < ∞ and σ(t) > 0 for t > 0. Then the following
holds almost surely,

X(t) =
σ(t)

σ(1)
X(1) for every 0 ≤ t ≤ 1.
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Proof. We have that E
[

|X(t)−X(s)|2
]

= σ(t)2 − 2E [X(t)X(s)] + σ(s)2. The Cauchy-

Schwarz inequality implies E [X(t)X(s)] ≤ σ(t)σ(s), and hence, E
[

|X(t)−X(s)|2
]

≥ (σ(t)−
σ(s))2. From this inequality it is immediate that E [X] ≥ E [σ].

Now suppose that E [X] = E [σ], E [σ] is finite and σ(t) > 0 for every t > 0. If we show that
X(t)/σ(t) is almost surely constant on the interval [ǫ, 1], for any ǫ > 0, then the continuity
of X implies that X(t)/σ(t) is almost surely constant on [0, 1]. Therefore, we may assume
that σ(t) > 0 for t ∈ [0, 1].

Set δ = inft∈[0,1] σ(t). Then δ > 0 since σ(t) is continuous and positive on [0, 1]. Set

Y (t) = X(t)
σ(t) . For 0 ≤ s ≤ t ≤ 1,

E
[

|Y (t)− Y (s)|2
]

=
E
[

|X(t)−X(s)|2
]

− |σ(t)− σ(s)|2
σ(s)σ(t)

≤ E
[

|X(t)−X(s)|2
]

− |σ(t)− σ(s)|2
δ2

.

The estimate above implies that for any finite partition Π of [0, 1],

E [Y,Π] ≤ δ−2
(

E [X,Π]− E [σ,Π]
)

≤ δ−2
(

E [X]− E [σ,Π]
)

.

Choose a sequence of nested partitions Π0 ⊂ Π1 ⊂ · · · such that E [σ,Πn] → E [σ]. We
deduce from the above that E [Y,Πn] → 0 due to E [X] = E [σ]. Since E [Y,Πn] is monotone
increasing we conclude that E [Y,Πn] = 0 for every n. Set Π = ∪nΠn. Then for every
s, t ∈ Π,

E
[

|Y (t)− Y (s)|2
]

≤ |t− s| ·
(

sup
n

E [Y,Πn]

)

= 0.

Fix an arbitrary p ∈ Π. We deduce from the above that for every q ∈ Π, P [Y (q) = Y (p)] =
1. Taking the countable intersection of these events over all q ∈ Π we conclude that

P [Y (q) = Y (p) for every q ∈ Π] = 1.

The continuity of Y and the fact that Π is a dense subset of [0, 1] imply that almost surely,

Y (t) ≡ Y (p) for every t ∈ [0, 1]. In other words, X(t) = σ(t)
σ(1) X(1) for every t, almost surely,

as required. �

Proof of Theorem 3. Let P = (P(t); 0 ≤ t ≤ 1) be a path in P from id to rev such that
E [P] < ∞ in the Wasserstein metric. Using Theorem 5 we may realize P as a [−1, 1]2-valued
continuous stochastic process X such that E [P] = E [X].

Write X(t) = (x(t), y(t)). Then x(t) and y(t) are distributed as Uniform[−1, 1] since P(t)
is a permuton. Also, x(0) = y(0) and x(1) = −y(1) due to P(0) = id and P(1) = rev.
Set

u(t) =
x(t)− y(t)√

2
,

v(t) =
x(t) + y(t)√

2
.
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Then E [u(t)] = E [v(t)] = 0 for every t. For the boundary conditions we have u(0) = 0
and u(1) =

√
2x(1), while v(0) =

√
2x(0) and v(1) = 0. Set

σ2
u(t) = E

[

u(t)2
]

and σ2
v(t) = E

[

v(t)2
]

.

Since u(t)2 + v(t)2 = x(t)2 + y(t)2, we see that σ2
u(t) + σ2

v(t) = E
[

x(t)2 + y(t)2
]

= 2/3 due
to x(t) and y(t) being distributed as Uniform[−1, 1].

The map t → (σu(t), σv(t)) is a path on the circle of radius
√

2/3 that begins at (0,
√

2/3)

and ends at (
√

2/3, 0). It is well known that there is a unique path of minimal energy on

such a circle from (0,
√

2/3) to (
√

2/3, 0). This is the minor arc going from (0,
√

2/3) to

(
√

2/3, 0), and uniquely parametrized by t →
√

2/3 (sin(π2 t), cos(
π
2 t)). The energy of this

path is
π2

6

∫ 1

0
cos

(π

2
t
)2

+ sin
(π

2
t
)2

dt =
π2

6
.

Consequently, E [(σu, σv),Π]2 ≥ π2/6. In case of equality we must have

(5.1) σu(t) =
√

2/3 sin
(π

2
t
)

and σv(t) =
√

2/3 cos
(π

2
t
)

.

Note that E
[

|X(t)−X(s)|2
]

= |u(t) − u(s)|2 + |v(t) − v(s)|2, where the distance for X

is in the Euclidean metric of R2. This implies that E [X] = E [u] + E [v]. Lemma 5.1 then
implies E [u] + E [v] ≥ E [σu] + E [σv]. Therefore,

E [γ] = E [X] = E [u] + E [v] ≥ E [σu] + E [σv].
However, E [σu] + E [σv] = E [(σu, σv)] ≥ π2/6.

We have deduced that E [γ] ≥ π2/6 for any path γ in P. As E [A] = π2/6, we deduce that
(A(t); 0 ≤ t ≤ 1) has minimal energy among all paths from id to rev in P. If E [γ] = π2/6
then the functions σu and σv must equal the functions from (5.1). In this case we may
apply the case of equality from Lemma 5.1 to the processes u(t) and v(t) to conclude that
u(t) =

√
2 sin(π2 t)x(1) and v(t) =

√
2 cos(π2 t)x(0) for every t, almost surely. In terms of X

we get that almost surely, for all 0 ≤ t ≤ 1,

x(t) = cos
(π

2
t
)

x(0) + sin
(π

2
t
)

x(1)(5.2)

y(t) = cos
(π

2
t
)

x(0)− sin
(π

2
t
)

x(1).

We claim that (5.2) implies (x(0), x(1)) is distributed as the Archimedean measure. If this
holds then we have γ(t) = A(t) because X(t) ∼ γ(t) and (5.2) implies that X(t) ∼ A(t).
The latter holds because the formula above implies the density function of X(t) agrees with
that of A(t) if (x(0), x(1)) is distributed as the Archimedean measure.

To see that (x(0), x(1)) is distributed as the Archimedean measure observe that x(t) is
the projection of (x(0), x(1)) onto the line through the origin with angle π

2 t. Also, y(t) is
the projection of (x(0), x(1)) on the line through the origin with angle −π

2 t. As x(t) and
y(t) are distributed as Uniform[−1, 1] for every t, it follows that the distribution of the
projection of (x(0), x(1)) onto any line through the origin is Uniform[−1, 1]. This property
determines the Archimedean measure. This completes the proof of Theorem 3.
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6. Permutons in Wasserstein metric

In the final section of the paper we establish a formula for the Wasserstein distance from
the identity to any permuton and use it to prove Theorem 4.

Lemma 6.1. Let σ and τ be permutations in Sn. Then,

W (µσ, µτ )
2 =

4

n3
inf

π∈Sn

∑

i

(i− π(i))2 + (σ(i)− τ(π(i)))2 .

The proof is in the Appendix.

Theorem 6. The Wasserstein distance of the identity permuton id from any permuton
P = (X,Y ) is as follows. Let (X ′, Y ′) denote an independent copy of (X,Y ). Then,

W (id,P)2 =
4

3
− 2E

[

max {X + Y,X ′ + Y ′}
]

.

Proof. We first derive the analogue of the above formula for permutations and then take
limits to get the final result. For a permutation σ ∈ Sn, consider

∑

i

(i− π(i))2 + (i− σπ(i))2 = 4
∑

i

i2 − 2
∑

i

i · (π(i) + σπ(i)).

Reindexing the latter sum by setting i := π−1(i) and replacing π by π−1 we get that

inf
π∈Sn

∑

i

(i− π(i))2 + (i− σπ(i))2 = 4
∑

i

i2 − 2 sup
π

∑

i

π(i)(i+ σ(i)) .

The sum
∑

i π(i) · (i + σ(i)) is maximized by choosing π(i) to be the rank of i + σ(i)
in the sequence 1 + σ(1), . . . , n + σ(n). We can write the maximizing permutation π as
π(i) =

∑

j 1{j+σ(j)≤i+σ(i)}, whence,

sup
π

∑

i

π(i) · (i+ σ(i)) =
∑

i

∑

j

1{j+σ(j)≤i+σ(i)}(i+ σ(i))

=
1

2

∑

i,j

max {i+ σ(i), j + σ(j)} .

Therefore,

(6.1) inf
π∈Sn

∑

i

(i− π(i))2 + (i− σπ(i))2 = 4
∑

i

i2 −
∑

i,j

max {i+ σ(i), j + σ(j)}.
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Let µσ be the empirical distribution associated to σ. If (X,Y ) and (X ′, Y ′) are two
independent random variables with distribution µσ then from (6.1) and elementary simpli-
fications we get

E
[

max {X + Y,X ′ + Y ′}
]

=
2

n2

∑

i,j

max

{

i+ σ(i)

n
− 1,

j + σ(j)

n
− 1

}

=
2

n3

[

4
∑

i

i2 − inf
π

∑

i

(i− π(i))2 + (i− σ(π(i)))2
]

− 2

=
2

n3

[

4
∑

i

i2 − n3

4
W (µidn , µσ)2

]

− 2,

where the last equality follows from Lemma 6.1. Since
∑

i i
2 = n3/3 + O(n2), the above

implies

W (µidn , µσ)2 =
4

3
− 2E

[

max {X + Y,X ′ + Y ′}
]

+O(1/n).

There exits permutations σn ∈ Sn such that µσn
converges to P in the Wasserstein dis-

tance by [9, Theorem 1.6] and Lemma 7.1. Therefore, W (id,P)2 = limn E
[

W (µidn , µσn
)2
]

.

The formula for W (id,P)2 follows from this convergence upon taking the large n limit of
the formula above. �

Observe that for a permuton P = (X,Y ) we have W ((X,Y ), rev) = W ((X,−Y ), id).
From Theorem 6 we conclude that for any permuton P = (X,Y ),
(6.2)

W (id,P)2 +W (P, rev)2 =
8

3
− 2E

[

max {X + Y,X ′ + Y ′}+max {X − Y,X ′ − Y ′}
]

.

Proof of Theorem 4. Given P = (X,Y ), let W = X−Y√
2
, V = X+Y√

2
. Define (W ′, V ′) analo-

gously for the pair (X ′, Y ′). From (6.2) we have

W (id,P)2 +W (P, rev)2 =
8

3
− 2

√
2E

[

max {W,W ′}+max {V, V ′}
]

.

Suppose Z is an integrable random variable and Z ′ is an independent copy of Z. Then

E
[

max{Z,Z ′}
]

= 2E
[

Z PZ′ [Z ′ < Z]
]

+ E
[

Z PZ′ [Z ′ = Z]
]

.

Define F (z, u) = P [Z < z]+uP [Z = z] for z ∈ R and 0 < u < 1. The function F is called the
“distributional transform” of Z. If U is independent of Z and distributed as Uniform[0, 1]
then F (Z,U) is distributed as Uniform[0, 1] as well [14, Proposition 2.1]. From the definition
of F (z, u) we obtain

E
[

Z P
[

Z ′ < Z
]]

= E [ZF (Z,U)]− 1

2
E
[

Z PZ′ [Z = Z ′]
]

.

In particular, E [max{Z,Z ′}] = 2E [ZF (Z,U)]. Hence,

E
[

max {W,W ′}+max {V, V ′}
]

= 2E [WF (W,U) + V G(V,U)] ,

where F and G are the distributional transforms of W and V .
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Set F̂ (x, u) = 2F (x, u)− 1 and Ĝ(x, u) = 2G(x, u)− 1. Observe that

WF (W,U) + V G(V,U) =
WF̂ (W,U)

2
+

W

2
+

V ˆG,U(V )

2
+

V

2
.

We take expectations of this equation and use that E [W ] = E [V ] = 0. Then in order

to bound the expectation of the r.h.s. we use the inequality ab ≤ a2+b2

2 . This gives that

WF̂ (W,U) ≤ (W 2+F̂ (W,U)2)/2 and V Ĝ(V,U) ≤ (V 2+Ĝ(V,U)2)/2. Since E
[

W 2 + V 2
]

=

E
[

X2 + Y 2
]

= 2/3, we conclude that

E [WF (W,U) + V G(V,U)] ≤ 1

4
E

[

W 2 + F̂ (W,U)2 + V 2 + Ĝ(V,U)2
]

=
1

3
.

Furthermore, there is equality if and only if W = F̂ (W,U) and V = Ĝ(V,U), which is
equivalent to (W,V ) being a permuton. As a result,

W (id,P)2 +W (P, rev)2 ≥ 8− 4
√
2

3
,

with equality if and only if
(

X−Y√
2
, X+Y√

2

)

is a permuton. �
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7. Appendix

Proof of Lemma 2.1.

Proof. Note that mδ(Y ) is non increasing in δ and converges to zero as δ → 0 almost
surely since t → Y (t) is uniformly continuous. Also, mδ(Y ) ≤ 2, and thus, E

[

mδ(Y )
]

→
0 as δ → 0 by the bounded convergence Theorem. For the second claim observe that
∣

∣|Y (t)−Y (s)|−|Ŷ (t)− Ŷ (s)|
∣

∣ ≤ 2||Y − Ŷ ||∞ by the triangle inequality. Therefore, mδ(Y ) ≤
mδ(Ŷ ) + 2||Y − Ŷ ||∞ and vice-versa, which implies the claim. Finally, for the third claim
notice that

|Lin(n, Y )(t)−Y (t)| =
n
∑

i=1

|Y (
i

n
)−Y (t)+n(Y (

i− 1

n
)−Y (

i

n
))(t− i

n
)|1[ i−1

n
, i
n
](t) ≤ 2m1/n(Y ).

The claim now follows from the assertion of the first claim. �

Proof of Lemma 3.1.

Proof. Suppose that Π = {0 = t0 < t1 . . . < tn = 1}. As Π′ is a refinement of Π it
contains points between the ti. Suppose the points of Π′ are indexed as ti,j for 0 ≤ i ≤ n
and 0 ≤ j ≤ ki such that ti = ti,0 < ti,1 < . . . < ti,ki = ti+1,0 = ti+1. From the triangle
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inequality, d(γ(ti), γ(ti−1)) ≤
∑ki−1

j=1 d(γ(ti−1,j), γ(ti−1,j−1)). So we deduce from the Cauchy-
Schwarz inequality that

d(γ(ti), γ(ti−1)) ≤
ki−1
∑

j=1

√

ti−1,j − ti−1,j−1
d(γ(ti−1,j), γ(ti−1,j−1))√

ti−1,j − ti−1,j−1

≤
√

ti − ti−1





ki−1
∑

j=1

d(γ(ti−1,j), γ(ti−1,j−1))
2

ti−1,j − ti−1,j−1





1/2

.

We conclude that

d(γ(ti), γ(ti−1))
2

ti − ti−1
≤

ki−1
∑

j=1

d(γ(ti−1,j), γ(ti−1,j−1))
2

ti−1,j − ti−1,j−1
.

Summing the inequality above over i implies that E [γ,Π] ≤ E [γ,Π′]. �

Proof of Lemma 4.1.

Proof. Suppose that γ is a path on the unit sphere of a Hilbert space H from the vector γ(0)
to its antipode −γ(0). For unit vectors a and b it is easily seen that ||a− b||2 = 4 sin(θ/2)2

where θ = arccos(〈a, b〉) is the unique angle between a and b in the interval [0, π]. Let θ(s, t)
denote the angle between γ(s) and γ(t). Using the inequality x − (x3/6) ≤ sin(x) ≤ x for
0 ≤ x ≤ π, we see that for any partition Π = {0 = t0 < . . . < tn = 1},

(1− δ(Π))2
n
∑

i=1

θ(ti−1, ti)
2

ti−1 − ti
≤ E [γ,Π] ≤

n
∑

i=1

θ(ti−1, ti)
2

ti−1 − ti
,

where δ(Π) = maxi{θ(ti−1, ti)
2}/24. Note that θ(s, t) is continuous as γ is continuous,

and in particular, δ(Π) → 0 as the mesh size ∆(Π) → 0. This implies that E [γ] =

supΠ
∑

i
θ(ti−1,ti)

2

ti−1−ti
.

If a, b and c are unit vectors in H then the corresponding angles between them satisfy
θ(a, b) + θ(b, c) ≥ θ(a, c). This elementary fact can be deduced by considering unit vectors
in R

3 since a, b and c lie is a 3-dimensional subspace. In particular,
∑

i

θ(ti−1, ti) ≥ θ(0, 1) = π

because γ(0) and γ(1) are antipodal. From the Cauchy-Schwarz inequality we conclude that

π2 ≤
∑

i

(
√

ti−1 − ti)
2 ·

∑

i

θ(ti−1, ti)
2

(
√
ti−1 − ti)2

=
∑

i

θ(ti−1, ti)
2

ti−1 − ti
,

with equality only if θ(ti−1, ti) = π(ti−1 − ti). We may now conclude that E [γ] ≥ π2, and
moreover, if there is equality then θ(s, t) = π|s− t|.

Now suppose that E [γ] = π2. We show that γ(t) = cos(πt)γ(0)+sin(πt)γ(1/2). From the
fact that θ(s, t) = π|t− s| we see that θ(0, t) = πt and we may write

γ(t) = cos(πt) γ(0) + sin(πt)x(t),
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where x(t) is a unit vector that is orthogonal to γ(0). Noting that x(1/2) = γ(1/2) we
have that 〈γ(t), γ(1/2)〉 = sin(πt) 〈x(t), x(1/2)〉. Now 〈γ(t), γ(1/2)〉 = cos(θ(t, 1/2)), which
equals sin(πt) because θ(t, 1/2) = π|t − 1

2 |. Therefore, 〈x(t), x(1/2)〉 = 1 for 0 < t < 1,
which implies that x(t) = x(1/2) as both of these are unit vectors. Consequently, γ(t) =
cos(πt)γ(0) + sin(πt)γ(1/2). �

Proof of Lemma 6.1.

Proof. Couplings between µσ and µτ are supported on the points
(

2i
n − 1, 2σ(i)n − 1, 2jn − 1, 2τ(j)n − 1

)

for 1 ≤ i, j ≤ n. Thus, a coupling (V,W ) between µσ and µτ is always described by the
array of numbers [αi,j ]1≤i,j≤n such that

(7.1) αi,j = P

[

V =

(

2i

n
− 1,

2σ(i)

n
− 1

)

,W =

(

2j

n
− 1,

2τ(j)

n
− 1

)]

.

The constraints V ∼ µσ and W ∼ µτ is equivalent to the matrix M = [nαi,j ] being doubly
stochastic. Denoting M = [mi,j ], we get that

(7.2) E
[

||V −W ||2
]

=
4

n3

∑

i,j

mi,j [(i− j)2 + (σ(i)− τ(j))2].

Let Bn be the set of all n×n doubly stochastic matrices. The map taking M = [mij ] ∈ Bn to
the r.h.s. of (7.2) is linear, and hence minimized at one of the extreme points of the convex
set Bn. These are the permutation matrices Pπ for π ∈ Sn. For a permutation matrix Pπ,
we have that

∑

i,j mi,j [(i − j)2 + (σ(i) − τ(j))2] =
∑

i(i − π(i))2 + (σ(i) − τ(π(i)))2. As a

result, we conclude from (7.2) that

W (µσ, µτ )
2 =

4

n3

[

inf
π∈Sn

∑

i

(i− π(i))2 + (σ(i)− τ(π(i)))2

]

.

�

The proofs of the following lemmas use standard arguments. We omit them for brevity.

Lemma 7.1. Let (K, d) be a compact metric space. Let νn be a sequence of Borel probability
measures on K. Then νn converges weakly to a measure ν if and only if W (νn, ν) → 0.

Lemma 7.2. Let ν, ν ′ be Borel probability measures on a compact metric space (K, d).

There exists a coupling (V,W ) of ν with ν ′ such that W (ν, ν ′) = E
[

d(V,W )2
]1/2

.

Lemma 7.3. Let K be a complete metric space and S ⊂ [0, 1] a countable dense set.
Suppose f : S → K has modulus of continuity m on S, i.e., d(f(t), f(s)) ≤ m(|t − s|) for
s, t ∈ S. Then f has an extension to [0, 1] with modulus of continuity m.

References

[1] O. Angel, D. Dauvergne, A. E. Holroyd, and B. Virág. The local limit of random sorting networks. To
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