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Geometry of polycrystals and microstructure
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Abstract. We investigate the geometry of polycrystals, showing that for polycrystals formed of convex grains
the interior grains are polyhedral, while for polycrystals with general grain geometry the set of triple points is
small. Then we investigate possible martensitic morphologies resulting from intergrain contact. For cubic-to-
tetragonal transformations we show that homogeneous zero-energy microstructures matching a pure dilatation
on a grain boundary necessarily involve more than four deformation gradients. We discuss the relevance of
this result for observations of microstructures involving second and third-order laminates in various materials.
Finally we consider the more specialized situation of bicrystals formed from materials having two martensitic
energy wells (such as for orthorhombic to monoclinic transformations), but without any restrictions on the
possible microstructure, showing how a generalization of the Hadamard jump condition can be applied at the
intergrain boundary to show that a pure phase in either grain is impossible at minimum energy.

1 Introduction

In this paper we investigate the geometry of polycrystals
and its implications for microstructure morphology within
the nonlinear elasticity model of martensitic phase trans-
formations [1, 2]. The rough idea is that the microstruc-
ture is heavily influenced by conditions of compatibility at
grain boundaries resulting from continuity of the deforma-
tion.

However, in order to express this precisely, it is first
of all necessary to give a careful mathematical description
of the assumed grain geometry, something that is not of-
ten done even in mathematical treatments (a rare exception
being [3]). In particular, it is useful to be able to articulate
the intuitively obvious fact that in the neighbourhood of
most points of a interior grain boundary only two grains
are present, because it is at such points that it is easiest to
apply compatibility conditions.

A second issue is then to develop useful forms of
the compatibilty conditions at such points, expressed in
terms of deformation gradients, which on the one hand do
not make unjustified assumptions about the microstructure
morphology, and on the other hand can be exploited to
draw conclusions about that morphology.

The plan of the paper is as follows. In Section 2 we
give a precise description of grain geometry, defining inte-
rior and boundary grains, and the set of triple points. We
then discuss the case of convex grains, showing that inte-
rior grains form convex polyhedra and that in 3D the set of
triple points is a finite union of closed line segments. For
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possibly nonconvex grains we then show under weak con-
ditions on the grain geometry that in 2D a polycrystal with
N grains can have at most 2(N − 2) triple points, while in
arbitrary dimensions the set of triple points is small.

In Section 3 we address some examples in which com-
patibility at grain boundaries leads to restrictions on pos-
sible microstructures. First we show that, for a cubic-
to-tetragonal transformation, a macroscopically homoge-
neous zero-energy microstructure matching a pure dilata-
tion on the boundary must involve more than four val-
ues of the deformation gradient. We discuss the reasons
why nevertheless second-order laminates, involving to a
good approximation just four gradients in a single grain,
are observed in materials, such as the ceramic BaTiO3 and
RuNb alloys, which undergo cubic-to-tetragonal transfor-
mations. Then we consider the situation of a bicrystal with
special geometry formed of a material undergoing a phase
transformation with just two energy wells (such as cubic-
to-orthorhombic), and without further assumptions on the
microstructure give conditions under which a zero-energy
microstructure must be complex, i.e. cannot be a pure vari-
ant in either grain; this analysis uses a generalization of the
Hadamard jump condition developed in [4].

Finally in Section 4 we draw some conclusions and
give some perspectives on possible future developments.

2 Geometry of polycrystals

By a domain in n-dimensional Euclidean space Rn, n ≥
2, we mean an open and connected subset of Rn. (For
the applications below n = 2 or 3.) If E ⊂ Rn then E
denotes the closure of E, ∂E the boundary of E, and int E
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the interior of E. We consider a polycrystal which in a
reference configuration occupies the bounded domainΩ ⊂
Rn. We suppose that the polycrystal is composed of a finite
number of disjoint grains Ω j, 1 ≤ j ≤ N, where each Ω j is
a bounded domain, so that Ω = int

⋃N
j=1Ω j.

In general (see Theorem 1 below) we cannot assume
that the boundaries of the Ω j are smooth. We will make
various different assumptions concerning this below, but
we always assume the minimal requirement that each Ω j

is a regular open set, that is Ω j = intΩ j. This avoids
pathologies such as a grain consisting of an open ball with
a single point at its centre removed. We can divide the
grains into interior grains for which ∂Ω j ⊂

⋃
k, j ∂Ωk, and

boundary grains, for which ∂Ω j \
⋃

k, j ∂Ωk is nonempty.
Note that an interior grain can have points of its boundary
lying in ∂Ω (see Fig. 1). We denote by D =

⋃N
j=1 ∂Ω j the

union of the grain boundaries, and by

T =
⋃

1≤i1<i2<i3≤N

∂Ωi1 ∩ ∂Ωi2 ∩ ∂Ωi3

the set of triple points, i.e. points which belong to the
boundaries of three or more grains.

Figure 1. Schematic polycrystal grain structure in 2D, with
boundary grains shaded. The boundaries of the two interior
grains A and B have points in common with the boundary ∂Ω

of the polycrystal.

2.1 Convex grains

We recall that a set E ⊂ Rn is said to be convex if the
straight line segment joining any two points x1, x2 ∈ E
lies in E, i.e. λx1 + (1 − λ)x2 ∈ E for all λ ∈ [0, 1]. An
open half-space is a subset H of Rn of the form H = {x ∈
R3 : x · e < k} for some unit vector e ∈ Rn and constant
k. A nonempty bounded open subset P ⊂ Rn is a convex
polyhedron if P is the intersection of a finite number of
open half-spaces. The dimension of a convex set E ⊂ Rn

is the dimension of the affine subspace of Rn spanned by
E. The following statements, which are probably known,
are elementary consequences of the hyperplane separation
theorem (see, for example, [5, Theorem 11.3]), which as-
serts that if subsets E, F are disjoint convex subsets of Rn

with E open, then there exist a unit vector e ∈ Rn and a
constant k such that

x · e < k ≤ y · e for all x ∈ E, y ∈ F.

In particular, taking F = {z} with z ∈ ∂E, any open convex
set is regular.

Theorem 1. Suppose that each grain Ω j is convex. Then
(i) each Ω j is the intersection of Ω with a finite number of
open half-spaces,
(ii) each interior grain is a convex polyhedron,
(iii) the set T of triple points is a finite union of closed
convex sets of dimension less than or equal to n − 2.

Proof. By the hyperplane separation theorem, given a
grain Ω j, for any k , j there exists an open half-space
H j,k such that Ω j ⊂ H j,k and Ωk ⊂ R

n \ H j,k. Hence

Ω j ⊂ Ω ∩
⋂
k, j

H j,k.

Let x ∈ Ω∩
⋂

k, j H j,k. Then sinceΩ∩
⋂

k, j H j,k is open and
disjoint from Ωk for k , j, it follows that x is an interior
point of Ω j. Since Ω j is regular, x ∈ Ω j, and hence Ω j =

Ω ∩
⋂

j,k H j,k. This proves (i).
Let Ω j be an interior grain and suppose for contradic-

tion that x ∈
⋂

k, j H j,k with x < Ω j. Given any x0 ∈ Ω j

there exists a convex combination y = λx0 + (1 − λ)x,
λ ∈ [0, 1], with y ∈ ∂Ω j. Since

⋂
k, j H j,k is convex,

y ∈
⋂

k, j H j,k, and thus y < ∂Ωk for k , j, contradicting
that Ω j is an interior grain. This proves (ii).

Given 1 ≤ i1 < i2 < i3 ≤ N the set K = ∂Ωi1 ∩

∂Ωi2 ∩ ∂Ωi3 = Ωi1 ∩Ωi2 ∩Ωi3 is closed and convex. Let A
denote the linear span of K. Then by [5, Theorem 6.2] the
dimension of K is less than n. By the same result, if the
dimension of K equals n− 1 then there exists x̄ ∈ K which
is a relative interior point of K in A, so that for some ε > 0
the closed ball B(x̄, ε) = {x ∈ Rn : |x − x̄| ≤ ε} is such
that B(x̄, ε) ∩ A ⊂ K. Suppose that in this case A is given
by the hyperplane A = {x ∈ Rn : x · e = k}. Then there
exists a point x1 ∈ Ωi1 which lies strictly on one side of
A, say x1 · e < k. Hence the closed convex hull of x1 and
B(x̄, ε) ∩ K lies in Ωi1 , and its interior contains the open
half-ball {x ∈ Rn : x · e < k, |x − x̄| < ε′} for some small
ε′ > 0. Since Ωi1 is regular this half-ball is a subset of
Ωi1 . Repeating this argument for i2 and i3 we find a half-
ball centre x̄ which is a subset of two of the disjoint grains
Ωi1 ,Ωi2 ,Ωi3 . This contradiction implies (iii).

Part (iii) implies that if n = 2 there are finitely many triple
points (see Theorem 2 below for a more general state-
ment), while if n = 3 then T is the union of finitely many
closed line segments.

2.2 Triple points in 2D

A famous counterexample in topology, the Lakes of Wada
(see, for example, [6, 7]), shows that there can be three
(or more) simply-connected, regular, open subsets of the
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closed unit square [0, 1]2 in R2 having a common bound-
ary. Thus there is no hope to prove that the set T of triple
points is finite for n = 2 without imposing further restric-
tions on the geometry of the grains Ω j. We will assume
that each grain is a bounded domain in R2 which is the
interior of a Jordan curve, that is a non self-intersecting
continuous loop in the plane. Such curves can be highly
irregular. Nevertheless we can give a precise bound on the
number of triple points.

Theorem 2 ([4]). Assume that each grain Ω j, j =
1, . . . ,N, is the interior of a Jordan curve. Then there are
a finite number m of triple points, and m ≤ 2(N − 2).

The bound is optimal, and attained for the configura-
tion shown in Fig. 2. The proof of Theorem 2 involves a

Figure 2. N grains (labelled 1 to N) in 2D with 2(N − 2) triple
points.

reduction to a problem of graph theory, as in the proof of
the Four Colour Theorem for maps [8], and use of Euler’s
formula relating the numbers of faces, vertices and edges
of a polyhedron.

2.3 Triple points in 3D

For dimensions n = 3 and higher, we do not have as pre-
cise results as Theorem 2. However, we can prove under
rather general conditions that the set T of triple points is in
some sense very small compared to the union of the grain
boundaries D. We assume that the closureΩ j of each grain
is a topological manifold with boundary, that is for each
x ∈ Ω̄ j there is a relatively open neighbourhood U(x) and
a homeomorphism ϕ between U(x) and a relatively open
neighbourhood of the closed half-space

Rn
+ := {(x1, . . . , xn) : x · en ≥ 0},

where en = (0, . . . , 0, 1). The precise details of this defi-
nition are not so important for this paper, but we note that
if n = 2 and Ω j is the interior of a Jordan curve then Ω j

is a topological manifold with boundary, while for n ≥ 2
any domain whose boundary can be locally represented in
suitable Cartesian coordinates by the graph of a continu-
ous function is also a topological manifold with boundary.
Thus any geometry that is likely to be encountered in prac-
tice satisfies this condition.

Theorem 3 ([4]). Suppose that the closure Ω j of each
grain is a topological manifold with boundary. Then the
set T of triple points is closed and nowhere dense in the
union D of grain boundaries, i.e. there is no point x ∈ T
and ε > 0 such that B(x, ε) ∩ D ⊂ T.

If n = 3, then under the hypotheses of Theorem 3 the set T
can have infinite length (technically, its one-dimensional
Hausdorff measure can be infinite). One can conjecture
that this is impossible if the grains Ω j have more regular,
for example Lipschitz, boundaries.

3 Microstructure of polycrystals

In this section we derive some results concerning marten-
sitic microstructure in polycrystals using the framework of
the nonlinear elasticity model for martensitic phase trans-
formations (see [1, 2]), in which at a constant temperature
the total elastic free energy is assumed to have the form

I(y) =
∫
Ω

W(x,∇y(x)) dx, (1)

where y : Ω → R3 is the deformation. Denoting M3×3 =

{real 3 × 3 matrices}, M3×3
+ = {A ∈ M3×3 : det A > 0}

and S O(3) = {R ∈ M3×3
+ : RT R = 1}, we suppose that

the free-energy density W is given by W(x, A) = ψ(AR j)
for x ∈ Ω j, where R j ∈ S O(3) and ψ is the free-energy
density corresponding to a single crystal. We assume that
ψ : M3×3

+ → [0,∞) is continuous, frame-indifferent, that is

ψ(QA) = ψ(A) for all A ∈ M3×3
+ ,Q ∈ S O(3), (2)

and has cubic symmetry, so that

ψ(AR) = ψ(A) for all A ∈ M3×3
+ ,R ∈ P24, (3)

where P24 is the group of rotations of a cube into itself. We
assume that we are working at a temperature at which the
free energy of the martensite (which we take to be zero)
is less than that of the austenite, so that K = {A ∈ M3×3

+ :
ψ(A) = 0} is given by

K =
M⋃

i=1

S O(3)Ui, (4)

where the Ui are positive definite symmetric matrices rep-
resenting the different variants of martensite, so that the Ui

are the distinct matrices RU1RT for R ∈ P24.
Zero-energy microstructures are represented by gradi-

ent Young measures (νx)x∈Ω satisfying supp νx ⊂ KRT
j for

x ∈ Ω j. For each x ∈ Ω, νx is a probability measure on
M3×3 that describes the asymptotic distribution of the de-
formation gradients ∇y( j) of a minimizing sequence y( j)

for I (i.e. such that I(y( j)) → 0) in a vanishingly small
ball centred at x. Here the support supp νx of νx is de-
fined to be the smallest closed subset E ⊂ M3×3 whose
complement Ec has zero measure, i.e. νx(Ec) = 0; in-
tuitively it can be thought of as the limiting set of gra-
dients at x. Thus the condition that supp νx ⊂ KRT

j

for x ∈ Ω j is equivalent to
∫
Ω

∫
M3×3 W(x, A) dνx(A) dx =
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∑N
j=1

∫
Ω j

∫
M3×3 ψ(AR j) dνx(A) dx = 0 and expresses that the

microstructure has zero energy. The corresponding macro-
scopic deformation gradient is given by ∇y(x) = ν̄x =∫

M3×3 A dνx(A). We note the minors relations

det ν̄x = 〈νx, det 〉 =
∫

M3×3
det A dνx(A), (5)

cof ν̄x = 〈νx, cof 〉 =
∫

M3×3
cof A dνx(A), (6)

where cof A denotes the matrix of cofactors of A. Note that
(5) implies that det ν̄x = det U1 for any zero-energy mi-
crostructure. (See [9] for a description of gradient Young
measures in the context of the nonlinear elasticity model
for martensite.)

In the absence of boundary conditions on ∂Ω there
always exist such zero-energy microstructures. Indeed
by the self-accommodation result of Bhattacharya [10]
for cubic austenite there exists a homogeneous gradient
Young measure ν with supp ν ⊂ K and ν̄ = (det U1)

1
3 1.

We can then define for x ∈ Ω j the measure νx(E) =
ν(RT

j ER j) of a subset E ⊂ M3×3 of matrices. Then, since
RT

j M3×3R j = M3×3 we have that ν̄x =
∫

M3×3 A dνx(A) =
R j
∫

M3×3 B dν(B)RT
j = (det U1)1 for x ∈ Ω j. By a result of

Kinderlehrer & Pedregal [11] it follows that (νx)x∈Ω is a
gradient Young measure, and since

∫
M3×3 ψ(AR j) dνx(A) =∫

M3×3 ψ(R jB) dν(B) = 0 it follows that (νx)x∈Ω is a zero-
energy microstructure.

3.1 Higher-order laminates for cubic-to-tetragonal

transformations

In this subsection we consider a cubic-to-tetragonal trans-
formation, for which K is given by (4) with M = 3
and U1 = diag (η2, η1, η1), U2 = diag (η1, η2, η1), U3 =

diag (η1, η1, η2), where η1 > 0, η2 > 0 and η1 , η2. Mo-
tivated by the observation above that a zero-energy mi-
crostructure with uniform macroscopic deformation gra-

dient (det U1)
1
3 1 = η

2
3
1 η

1
3
2 1 exists for any polycrystal, we

discuss whether this can be achieved with a microstruc-
ture that in each grain involves just k gradients, where
k is small. Without loss of generality we can consider
a single unrotated grain, so that the question reduces to
whether there exists a homogeneous gradient Young mea-
sure ν having the form

ν =

k∑
i=1

λiδAi with λi ≥ 0,
k∑

j=1

λ j = 1, and Ai ∈ K, (7)

and with macroscopic deformation gradient ν̄ = η
2
3
1 η

1
3
2 1.

In (7) we have used the notation δA for the Dirac mass at
A ∈ M3×3, namely the measure defined by

δA(E) =
{

1 if A ∈ E,
0 if A < E.

The following result implies in particular that this is im-
possible unless k > 4, so that (7) cannot be satisfied for
a double laminate, a result also obtained by Muehlemann
[12].

Theorem 4. There is no homogeneous gradient Young
measure ν with supp ν ⊂ K = ∪3

i=1S O(3)Ui and satisfy-

ing ν̄ = η
2
3
1 η

1
3
2 1, such that supp ν ∩ (S O(3)U j ∪ S O(3)Uk)

contains at most two matrices for some distinct pair j, k ∈
{1, 2, 3}.

Proof. Suppose first that supp ν is contained in the union
of two of the wells, say supp ν ⊂ S O(3)U1 ∪ S O(3)U2.
Then by the characterization of the quasiconvex hull of

S O(3)U1∪S O(3)U2 in [2] we have that ν̄T ν̄e3 = η
4
3
1 η

2
3
2 e3 =

η2
1e3. Hence η1 = η2, a contradiction. Without loss of

generality we can therefore suppose that

ν = λ1µ + λ2δR2U2 + λ3δR3U3 (8)

where λi ≥ 0,
∑3

i=1 λi = 1, R2,R3 ∈ S O(3) and µ
is a probability measure on S O(3)U1. Define µ∗(E) =
µ(EU1) for E ⊂ M3×3. Then µ∗ is a probability mea-
sure with supp µ∗ ⊂ S O(3). Let H = µ̄∗. Then µ̄ =∫

S O(3)U1
A dµ(A) =

∫
S O(3) RU1 dµ∗(R) = HU1. Letting

k = η2/η1 and calculating ν̄ from (8), we deduce that

k
1
3 1 = λ1Hdiag (k, 1, 1) + λ2R2diag (1, k, 1)

+λ3R3diag (1, 1, k). (9)

We now apply the minors relation (6) to ν. Noting that

〈µ, cof 〉 =
∫

S O(3)U1

cof A dµ(A)

=

∫
S O(3)

cof (RU1) dµ∗(R)

=

∫
S O(3)

R cof (U1) dµ∗(R)

= H cof U1,

we obtain

k−
1
3 1 = λ1Hdiag (k−1, 1, 1) + λ2R2diag (1, k−1, 1)

+λ3R3diag (1, 1, k−1). (10)

Subtracting (10) from (9) and dividing by k − k−1 we de-
duce that

c(k)1 = λ1He1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, (11)

where c(k) = k
1
3 −k−

1
3

k−k−1 = (1 + k
2
3 + k−

2
3 )−1 > 0, from which

it follows that

λ1He1 = c(k)e1, λ2R2e2 = c(k)e2, λ3R3 = c(k)e3.

Hence λ2 = λ3 = c(k). Acting (9) on e1 we have that

k
1
3 e1 = c(k)(ke1 + R2e1 + R3e1).

Hence k
1
3 ≤ c(k)(k+2), from which we obtain (k

1
3−k−

1
3 )2 ≤

0, so that k = 1, a contradiction.

The conclusion of Theorem 4 contrasts with observa-
tions of polycrystalline materials undergoing cubic-to-
tetragonal phase transformations, but for which some
grains are completely filled by a single double laminate.
Such cases arise for the ceramic BaTiO3 [13] and in var-
ious RuNb and RuTa shape-memory alloys [14–17]. Arlt
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[13] gives an interesting qualitative discussion of energet-
ically preferred grain microstructure, drawing a distinc-
tion between the microstructures in interior and bound-
ary grains. Following his reasoning, a likely explanation
for why double, and not higher-order, laminates are ob-
served in interior grains in these materials is that it is en-
ergetically better to form a double laminate with gradients
away from the energy wells, than to form a higher-order
laminate having gradients extremely close to the energy
wells. According to this explanation, the extra interfacial
energy (ignored in the nonlinear elasticity model) involved
in forming a higher-order laminate would exceed the total
bulk plus interfacial energy for the double laminate. Of
course once the gradients are allowed to move away from
the wells the conclusion of Theorem 4 will not hold. Ad-
ditional factors could include cooperative deformation of
different grains (so that the assumption of a pure dilatation
on the boundary is not a good approximation), some of
which may have more complicated microstructures than
a single laminate. It is interesting that third-order lami-
nates are observed for RuNb alloys undergoing cubic-to-
monoclinic transformations [16].

3.2 Bicrystals with two martensitic energy wells

We now consider restrictions on possible zero-energy mi-
crostructures in polycrystals without making any assump-
tions other than those given by the grain geometry and
texture. In particular, unlike in Section 3.1, we make
no assumptions on the macroscopic deformation gradi-
ent of the microstructure. The restrictions result only
from continuity of the deformation across grain bound-
aries. In order to give precise results, we restrict attention
to a bicrystal, that is a polycrystal with just two grains
Ω1 and Ω2. We assume that the grains have the cylin-
drical form Ω1 = ω1 × (0, d),Ω2 = ω2 × (0, d), where
d > 0, and ω1, ω2 ⊂ R

2 are bounded domains. We
assume for simplicity that the boundaries ∂ω1, ∂ω2 are
smooth and intersect nontrivially, so that ∂ω1 ∩ ∂ω2 con-
tains points in the interior ω of ω1 ∪ω2. The grain bound-
ary ∂Ω1 ∩ ∂Ω2 = (∂ω1 ∩ ∂ω2)× (0, d) thus contains points
in a neighbourhood of which Ω1 and Ω2 are separated by
a smooth surface having normal n(θ) = (cos θ, sin θ, 0) in
the (x1, x2) plane.

We consider a martensitic transformation with two en-
ergy wells (for example, orthorhombic-to-monoclinic) for
which M = 2 and K = S O(3)U1 ∪ S O(3)U2, where U1 =

diag (η2, η1, η3), U2 = diag (η1, η2, η3), where η1 > 0,
η2 > 0, η1 , η2 and η3 > 0. We further suppose that
Ω1 has cubic axes in the coordinate directions e1, e2, e3,
while in Ω2 the cubic axes are rotated through an angle α
about e3. Thus a zero-energy microstructure corresponds
to a gradient Young measure (νx)x∈Ω such that

supp νx ⊂ K for x ∈ Ω1, supp νx ⊂ KR(α) for x ∈ Ω2,

where R(α) =

 cosα − sinα 0
sinα cosα 0
0 0 1

. It can be shown

that KR(α) = K if and only if α = nπ
2 for some integer n.

Hence we assume that α , nπ
2 .

We ask whether it is possible for there to be a zero-
energy microstructure which is a pure variant in one of the
grains, i.e. either for i = 1 or i = 2, νx = δQ(x)U j for x ∈ Ωi

and some j, where Q(x) ∈ S O(3). Since Ωi is connected,
a standard result [18] shows that νx = δQ(x)U j for x ∈ Ωi

implies that Q(x) is smooth and hence [19] is a constant
rotation, so that ∇y(x) is constant in Ωi.

Theorem 5 ([4]). Suppose that the grain boundary is pla-
nar, i.e. ∂Ω1∩∂Ω2 ⊂ Π(N) whereΠ(N) = {x ∈ R3 : x·N =
a} for some unit vector N = (N1,N2, 0) and constant a.
Then there exists a zero-energy microstructure which is a
pure variant in one of the grains.

Thus, in order to eliminate the possibility of a pure variant
in one of the grains we need a curved grain boundary. To
give an explicit result we consider the special case when
α = π

4 . Let

D1 = ( π8 ,
3π
8 ) ∪ ( 5π

8 ,
7π
8 ) ∪ ( 9π

8 ,
11π

8 ) ∪ ( 13π
8 , 15π

8 ),

D2 = (−π8 ,
π
8 ) ∪ ( 3π

8 ,
5π
8 ) ∪ ( 7π

8 ,
9π
8 ) ∪ ( 11π

8 , 13π
8 ).

Theorem 6 ([4]). Let α = π
4 and η2

η1
≤

√
1 +
√

2. If ∂Ω1 ∩

∂Ω2 has points with normals n(θ) and n(θ′) with θ ∈ D1
and θ′ ∈ D2, then there is no zero-energy microstructure
which is a pure variant in one of the grains.

The main ingredients in the proofs of Theorems 5 and
6 are (i) a reduction to two dimensions using the plane
strain result [20], (ii) the characterization in [2] of the
quasiconvexification of K, (iii) a generalization of the
Hadamard jump condition that implies that the difference
between the polyconvex hulls of suitably defined limiting
sets of gradients on either side of a point on the grain
boundary where the normal is n contains a rank-one
matrix a ⊗ n, and (iv) long and detailed calculations.

4 Conclusions and perspectives

In this paper we have provided a framework for dis-
cussing the effects of grain geometry on the microstruc-
ture of polycrystals as described by the nonlinear elastic-
ity model of martensitic transformations. This consists of
two threads, a description and analysis of the grain geom-
etry itself, and the use of generalizations of the Hadamard
jump condition and other techniques to delimit possible
zero-energy microstructures compatible with a given grain
geometry.

Both threads need considerable development. The
quantitative description of polycrystals, as described for
example in the book [21], is a large subject which has
many aspects (for example, sectioning and stochastic de-
scriptions) for which a more rigorous treatment would be
valuable.

The problem of determining possible zero-energy mi-
crostructures is essentially one of multi-dimensional cal-
culus, namely that of determining deformations compat-
ible with a given geometry having deformation gradients
lying in, or Young measures supported in, the energy-wells
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corresponding to each grain. Nevertheless we are very far
from understanding how to solve it in any generality, one
obstacle being the well-known lack of a useful character-
ization of quasiconvexity (see, for example, [22]), which
is known to be a key to understanding compatibility. The
generalizations of the Hadamard jump conditions consid-
ered in [4] (see also [23]) are also insufficiently general
and tractable. As well as for polycrystals, such generalized
jump conditions are potentially relevant for the analysis of
nonclassical austenite-martensite interfaces as proposed in
[24, 25], which have been observed in CuAlNi [26, 27],
ultra-low hysteresis alloys [28], and have been suggested
to be involved in steel [29].

Despite the usefulness of the nonlinear elasticity the-
ory, we have seen in connection with Theorem 4 that in
some situations the effects of interfacial energy can make
its predictions of microstructure morphology inconsistent
with experiment. This highlights the importance of devel-
oping a better understanding of how polycrystalline mi-
crostructure depends on the small parameters describing
grain size and interfacial energy.
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